
Jie Xu et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1952-1958

Building an OSS Quality Estimation Model with
CATREG

Jie Xu, Luiz Fernando Capretz
Department of Electrical and Computer Engineering

University of Western Ontario
London, N6A 5B9 Canada

Danny Ho
NFA Estimation Inc.

Richmond Hill, L4C 0A2 Canada

Correspondence should be addressed to Jie Xu,
jxu89@uwo.ca

Abstract—Open Source Software (OSS) has been a popular
form in software development. In this paper, we use statistical
approaches to derive OSS quality estimation models. Our
objective is to build estimation models for the number of defects
with metrics at project levels. First CATREG (Categorical
regression with optimal scaling) is used to obtain quantifications
of the qualitative variables. Then the independent variables are
validated using the stepwise linear regression. The process is
repeated to acquire optimal quantifications and final regression
formula. This modeling process is performed based on data from
the OSS communities and is proved to be practically valuable.

Keywords-software quality, quality estimation, open source
software, regression, CATREG

I. INTRODUCTION

For open source software, there are very few researches on
quality estimation model, although some analyses have been
carried out for the quality issues in this area. Aberdour
maintained that sustainable community, code modularity,
project management, and test process management were key
areas in OSS quality management [1]. Koch and Neumann
conducted a survey among hundreds of OSS projects, and
analyzed the relationships among process metrics, product
metrics and faulty classes [2]. The results were obtained both at
class level and project level, but they only included qualitative
comparisons. Another study adopted the defect content
estimation approach from closed environment, i.e. using OO
design metrics to derive the number of defects in modules [3].

Theoretically, all methods to derive software quality
estimation models in industry or closed environment can be
replicated for OSS projects. However, OSS projects have many
unique characteristics in development compared with software
projects in industry. Extra efforts are required to determine
effective software metrics for quality estimation. Then suitable
approaches can be adopted to build estimation model for
quality management purpose.

We decide to concentrate on using quality predictors at
project level to estimate the number of defects in the project
since they can be obtained at early stages of software
development. In current practices of software project

management, the number of defects is still a key issue to trace,
fix and manage.

The remainder of this paper is organized as follows. In
Section II, modeling methodology is discussed to establish
estimation models. Section III describes the details of data
preparation. Empirical results are presented to verify the
process in Section IV. Finally there are the conclusions and
future work in Section V.

II. MODELING METHODOLOGY

Statistical techniques are still among the most popular ones
for modeling purposes in software engineering. Applicable
regression techniques need to be explored to fit the data and
establish a model. First the distribution characteristics should
be analyzed to determine the form of the formula. Then
corresponding regression techniques need to be applied to
calculate the parameters in the function.

Some problems have to be solved for building the
regression model. The form of the regression model should be
decided first. The number of defects found in the software
lifecycle is regarded as the dependent variable for this
estimation task, which may have various forms of relationships
with the selected predictors. In this paper, it can be treated as a
linear one with appropriate transformation to the variables [4].

Then certain regression technique should be chosen to
derive the parameters in the function. Although the function
can take a linear form, ordinary linear regression is not
applicable here because many predicators (independent
variables) are categorical. Usually dummy binary variables
have to be designed to apply traditional linear regression, but
the results would be hard for interpretation and impossible for
further recalibration. A special approach named CATREG
(Categorical regression with optimal scaling using alternating
least squares) is suitable to assign numerical values to those
categorical variables and obtain the final regression formula
[5]. The rationale behind it is transforming the categorical
variables according to the optimal scaling levels (nominal or
ordinal) and optimizing the quantifications following the least

ISSN : 0975-3397 1952

Jie Xu et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1952-1958

square criterion [6]. Using CATREG, the quantifications are
achieved at the same time the regression is done.

With the results from CATREG, we still tend to verify the
statistical significance of the predictors. For numeric variables,
a linear transformation is made during CATREG.
Consequently, CATREG is equivalent to a standard linear
regression when the qualitative predictors are substituted by the
transformed values (optimal scaling). As a result, traditional
regression techniques like stepwise linear regression can be
applied by assigning the obtained optimal scaling values to the
qualitative independent variables. Therefore stepwise linear
regression is performed to decide what independent variables
are valid to enter into the regression model. The process can be
repeated until satisfactory results are obtained.

III. DATA PREPARATION

A. Data Source

SourceForge.net is the largest OSS development website in
the world. As of February 2009, there have been more than
230,000 OSS projects registered to use the development
services and more than 2 million registered users involved in
the development activities. Many researchers who are
interested in exploring the inherent characteristics of OSS
projects have chosen it as the primary data source.

SourceForge data has been shared with the University of
Notre Dame for research purposes and it consists of more than
100 tables in the data dumps. A project named FLOSSmole
(Collaborative collection and analysis of free/libre/open source
project data) has been developed to share data about OSS
projects to the public domain [7]. Web crawling of the most
popular OSS hosts, including SourceForge, has been performed
on monthly basis to collect data from those websites. We
concentrated on OSS projects hosted on SourceForge and
extracted related project information of status, ranks, and
developers from the above sources.

B. Data Collection and Integration

Based on popularity, status and other criteria, we selected
1571 OSS projects from SourceForge. Some information of
the projects was accumulated from FLOSSmole and the data
dumps from Notre Dame, but it did not cover all project
characteristics that were related to software quality. Thus we
designed a questionnaire to collect related information
(Appendix A), which comprised of 22 multiple-choice
questions. Some questions about product complexity were
adopted from those of COQUALMO [8].

The survey was conducted by sending the questionnaire to
the project administrators by email. The number of responses
was not so satisfactory. Only 278 valid responses were
received out of 1571 sent emails. Most of the sent emails
might be filtered as junk emails or were neglected. Only a few
of the respondents clearly showed no intent to do it.

We decided to use function points to measure size. Since
we did not have the entries to calculate function points
directly, we counted logical lines of code according to

language types first for each project, and then applied
backfiring method to obtain function points [9].

Finally 194 OSS projects were kept for doing experiments
after removing outliers and data points with missing
information. The data items contained the responses of 22
questions, size of the software, duration of the project, team
size, the number of defects, etc.

IV. EMPIRICAL RESULTS

To apply the modeling methodology discussed before, first
we transformed those quantitative variables by natural
logarithm to make them conform to normal distributions
(Appendix B).

CATREG was performed to the 22 qualitative (22
questions) and 3 quantitative independent variables, with the
number of defects as the dependent variable.

The CATREG summary was displayed in Table 1, with
adjusted R-square being 0.471 and p-value 0.

We did not list the coefficient results of CATREG since
there were so many independent variables. The results showed
that many of the derived coefficients were statistically
significant (p-value > 0.05), which meant that some of the
independent variables should be excluded from the regression
model.

Then we applied stepwise linear regression to the data, with
the resulted quantifications for the respective independent
variables. The summary of the first-round stepwise was
presented in Table 2. Only the last step (No. 9) of the stepwise
regression was listed and the results of the previous stepwise
steps were omitted here for better demonstration. The results
showed the final model included only 9 predictors, with
adjusted R-square being 0.523 and p-value 0.

We also examined the coefficients of the final model and
found all of them were significant (p-value < 0.05, Table 3).

The independent variables entered into the regression
model were Q2, Q3, Q9, Q10, Q11, Q17, Q18, Ln(FP) and
Ln(Duration). Because CATREG would result in different
quantifications if the number of variables is different in the
regression process, we had to perform CATREG for another
round but only including the above independent variables and
the dependent variable.

The model summary of the second-round CATREG was
displayed in Table 4, with adjusted R-square being 0.501 and
p-value 0. The R-square was better than that of the first-round,
even though with less predictors in the model.

TABLE 1. Model summary of first-round CATREG

Multiple R R Square

Adjusted R
Square

Standardized Data 0.766 0.586 0.471

Dependent Variable: Ln(Defect)
Predictors: Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13
Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Ln(FP)
Ln(Developer) Ln(Duration)

ISSN : 0975-3397 1953

Jie Xu et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1952-1958

TABLE 2. Model summary of first-round stepwise linear regression

Model R R Square Adjusted R Square

9 0.739i 0.546 0.523

i. Predictors: (Constant), Ln(FP), Q10, Q11, Ln(Duration), Q3,
Q18, Q9, Q2, Q17

TABLE 3. Coefficients of first-round stepwise linear regression

Model
Unstandardized

Coeff.
Standardized

Coeff. Sig.

9 (Constant) -2.675 0.001

Ln(FP) 0.457 0.521 0.000

Q10 0.318 0.235 0.000

Q11 0.216 0.159 0.008

Ln(Duration) 0.449 0.216 0.000

Q3 -0.178 -0.132 0.016

Q18 0.150 0.111 0.031

Q9 0.183 0.135 0.023

Q2 0.183 0.135 0.010

Q17 0.141 0.104 0.042

TABLE 4. Model summary of second-round CATREG

Multiple R R Square

Adjusted R
Square

Standardized Data 0.740 0.548 0.501

Dependent Variable: Ln(Defect)
Predictors: Q2 Q3 Q9 Q10 Q11 Q17 Q18 Ln(FP) Ln(Duration)

We also listed the coefficient results of CATREG in Table

5. The results still showed that two of the derived coefficients
were not statistically significant (p-value > 0.05), which had to
be further examined by stepwise linear regression.

Next we applied the second-round stepwise linear
regression with the CATREG quantifications for the specific
independent variables. The summary of the stepwise regression
was presented in Table 6. Once again only the last one (No. 9)
of the stepwise steps was listed and the results of the previous
stepwise steps were omitted for simplicity. The results
confirmed the final model included exactly the 9 predictors,
with adjusted R-square being 0.526 and p-value 0. The final R-
square was the highest among all the experiments.

The coefficients of the final model were listed in Table 7
and all of them were significant (p-value < 0.05).

TABLE 5. Coefficients of second-round CATREG

 Standardized
Coefficients Sig.

Q2 0.140 0.057

Q3 -0.135 0.012

Q9 0.141 0.002

Q10 0.225 0.000

Q11 0.160 0.006

Q17 0.107 0.135

Q18 0.113 0.024

Ln(FP) 0.525 0.000

Ln(Duration) 0.214 0.000

TABLE 6. Model summary of second-round stepwise linear regression

Model R R Square Adjusted R Square

9 0.740i 0.548 0.526

i. Predictors: (Constant), Ln(FP), Q10, Q11, Ln(Duration),
Q3, Q18, Q9, Q2, Q17

TABLE 7. Coefficients of second-round stepwise linear regression

Model
Unstandardized

Coeff.
Standardized

Coeff. Sig.

9 (Constant) -2.676 0.001

Ln(FP) 0.460 0.524 0.000

Q10 0.306 0.226 0.001

Q11 0.221 0.163 0.007

Ln(Duration) 0.446 0.214 0.000

Q3 -0.179 -0.132 0.015

Q18 0.152 0.112 0.028

Q2 0.189 0.140 0.008

Q9 0.188 0.139 0.022

Q17 0.147 0.109 0.033

Therefore we obtained the final regression formula as

follows:

Ln(Defects) = 0.460*Ln(FP) + 0.446*Ln(Duration) +
0.189*Q2 - 0.179*Q3 + 0.188*Q9 + 0.306*Q10 + 0.221*Q11
+ 0.147*Q17 + 0.152*Q18 – 2.676 (1)

For all the questions, the choices were arranged in a way
from weak to strong. When we looked at the coefficients in the
formula, only the one of Q3 was negative, which meant that
more experienced developers inclined to produce fewer defects.
For other questions, i.e. Q2 (release frequency), Q9 (data
complexity), Q10 (computational complexity), Q11 (structural
complexity), Q17 (bug tracking tool) and Q18 (users involved),
the defect trend conformed to the order of the answers, i.e.
higher level of the answers would result in more defects. For
the two quantitative predictors, both had positive coefficients.
Therefore bigger size resulted in more defects and longer
duration of development led to more defects. All the findings
were consistent with our intuition.

We also verified the predictors in the final formula by other
techniques such as correlation analysis and ANOVA.

ISSN : 0975-3397 1954

Jie Xu et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1952-1958

Moreover, we tried to begin the regression process with various
combinations of predictors. The results were consistent, which
proved the selection of the independent variables were effective
and robust.

We have mentioned that ordinary regression methods are
not sound solutions when some predictors are qualitative and
with more than two categories. However, a certain recoding
approach can be applied and frequently dummy variables are
designed to replace the original variable in order to perform
traditional regression. Therefore, several dummy variables have
to be included in place of each categorical predictor, which
makes the final regression formula very complicated. Moreover,
the coefficients of the dummy variables are very hard to reason.
Lastly, the dummy variables and other predictors are included
in the regression, but it is impossible to determine which ones
are more significant predictors and should enter the model first.

We still carried out ordinary regression using dummy
variables despite its weaknesses discussed above. We wanted
to compare the estimation performance of our approach with
that of the ordinary regression. In software estimation area, the
most widely used evaluation criterion is the mean magnitude of
relative error (MMRE) [10]. The magnitude of relative error
(MRE) is calculated by:

i

ii

y

yy
MRE

ˆ
 , (2)

where iy is the actual value and iŷ is the predicted value.

And therefore, MMRE is computed as:

n

i
iMRE

n
MMRE

1

1
. (3)

First we processed all data points using ordinary regression.
The resulted MMRE was 0.9451. The estimation model
derived by our approach obtained a little lower MMRE, 0.9431.
The improvement is not significant. A more convincing method
for model evaluation is cross-validation, in which the dataset is
divided into k subsamples. One subsample is reserved as
validation (testing) data, while the remaining k-1 subsamples
are kept as training data for building the model. The cross-
validation process is therefore to be repeated k times, and the k
results are averaged to find out the final performance of that
model. We conducted a 6-fold cross-validation with MMRE as
the evaluation criterion. The results are presented in Table 8.
The average MMRE of our approach was 1.2727, compared
with 1.4083 of the ordinary regression method. The average
improvement was also not obvious, but one experiment
(Experiment 4) resulted in a significant improvement. The
reason might be that there was unbalance in the data and bias in
the division. Similar results were derived when 10-fold cross-
validation was conducted. In conclusion, we could claim that
our approach would develop a model better than the ordinary
regression method using MMRE, without emphasizing on the
other merits of our approach.

V. CONCLUSIONS AND FUTURE WORK

In this paper we performed statistical techniques to build a
software quality estimation model based on data from OSS
projects.

Two regression methods are suggested to accomplish the
task. CATREG is used to acquire optimal quantifications of the
qualitative predictors in the meantime the regression process is
carried out. With the quantifications from CATREG, stepwise
linear regression can be applied to further validate the
significance of the predictors. The two steps can be repeated
until the final regression formula is derived.

TABLE 8. MMRE results of 6-fold experiments

MMRE
Regression

(Dummy variables)
CATREG +

Stepwise
Improvement

Experiment 1 1.3690 1.3657 0.0033

Experiment 2 1.6432 1.6425 0.0007

Experiment 3 0.7784 0.7747 0.0037

Experiment 4 1.9725 1.1736 0.7989

Experiment 5 1.5635 1.5581 0.0054

Experiment 6 1.1229 1.1216 0.0013

Average 1.4083 1.2727 0.1356

It has been a problematic issue to assign appropriate
numeric values (quantifications) to those categorical
(qualitative) variables in building software estimation models.
In most cases it is done intuitively with subjective judgments.
CATREG provides a method to achieve the goal directly from
data. Moreover, the predictor selection is robust by using
CATREG together with stepwise regression, and the predictors
are determined to enter into or exclude from the model during
the process. Last but not least, the derived estimation model is
easy to interpret and more manageable in software practices.

The suggested techniques were applied to data of OSS
projects. The experiments have proved the process is effective
and valuable. The final estimation model is not accurate
enough to fit the data points perfectly. It is mostly due to the
problems of data quality raised by the data collection and the
casual characteristics of OSS projects.

Our future work includes the following two aspects:

(1) The quantifications and parameters of the derived model
could be further calibrated to achieve better performance.
We plan to apply soft computing techniques to
accomplish the optimization tasks;

(2) As the only realistic data source consists of projects from
the open source community, we plan to develop a way to
acquire more quality-related information. When more
predictors and more accurate defect information are
available, the proposed approach can be used for building
a real tool for OSS quality estimation.

ACKNOWLEDGMENT

The authors would like to thank the OSS project
administrators who responded to the questionnaire to help us
accomplish the research.

ISSN : 0975-3397 1955

Jie Xu et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1952-1958

REFERENCES
[1] M. Aberdour, “Achieving Quality in Open Source Software”, IEEE

Software, 24(1), pages 58-64, 2007.

[2] S. Koch and C. Neumann, “Exploring the Effects of Process
Characteristics on Product Quality in Open Source Software
Development”, Journal of Database Management, 19(2), pages 31-57,
2008.

[3] T. Gyimothy, R. Ferenc and I. Siket, “Empirical Validation of Object-
Oriented Metrics on Open Source Software for Fault Prediction”, IEEE
Transactions on Software Engineering, 31(10), pages 897-910, 2005.

[4] M.H. Kutner, C.J. Nachtsheim and J. Neter, Applied Linear Regression
Models, 4th ed. Boston; New York: McGraw-Hill/Irwin, 2004.

[5] L. Angelis, I. Stamelos and M. Morisio, “Building a Software Cost
Estimation Model Based on Categorical Data”, Software Metrics
Symposium, 2001. METRICS 2001. Proceedings. Seventh International,
pages 4-15, 2001.

[6] A.J. Van der Kooij and J.J. Meulman, “MURALS: Multiple Regression
and Optimal Scaling using Alternating Least Squares”, In: E. Faulbaum
& W. Bandilla (Eds.), Softstat ‘97, pages 99-106. Stuttgart: Lucius &
Lucius. 1997.

[7] J. Howison, M. Conklin and K. Crowston, “FLOSSmole: A
Collaborative Repository for FLOSS Research Data and Analyses”,
International Journal of Information Technology and Web Engineering,
1(3), pages 17–26, 2006.

[8] S. Chulani, Bayesian Analysis of Software Cost and Quality Models,
Ph.D. Dissertation, The University of Southern California, 1999.

[9] J. Wong, D. Ho and L. F. Capretz, “Calibrating Function Point
Backfiring Conversion Ratios Using Neuro-Fuzzy Technique”,
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems (IJUFKS), 16(6), pages 847-862, 2008.

[10] B. A. Kitchenham, S. G. MacDoanell, L. M. Pickad and M. J. Shepperd,
“What accuracy statistics really measure”, IEE Proceedings: Software,
148, pages 81-85, 2001.

AUTHORS PROFILE

Jie Xu is currently a Ph.D. student with the Electrical and Computer
Engineering Department, the University of Western Ontario. His research
interests include software engineering, software estimation, soft computing, and
data mining. His email address is jxu89@uwo.ca.

Danny Ho is an independent management consultant and advisor to two
startup companies. He is also appointed as an Adjunct Research Professor at the
Department of Software Engineering, Faculty of Engineering, The University
of Western Ontario and University of Ontario Institute of Technology. His
areas of special interest include software estimation, project management,
object-oriented software development, and complexity analysis. He is currently
a member of the Professional Engineers Ontario (PEO) and a Project
Management Professional (PMP). His email address is danny@nfa-
estimation.com.

Luiz Fernando Capretz is currently an Associate Professor and the Director
of the Software Engineering Program at the University of Western Ontario,
Canada. His present research interests include software engineering (SE),
human factors in SE, software estimation, software product lines, and software
engineering education. He is an IEEE senior member, ACM distinguished
member, MBTI certified practitioner, Professional Engineer in Ontario
(Canada). He can be reached at lcapretz@eng.uwo.ca.

APPENDIX A. QUESTIONNAIRE
1. Is there a specific plan/schedule for the project?

()A. No schedule
()B. Somehow clear schedule
()C. Very clear schedule

2. How often will the project publish new releases (on average)?

()A. Not sure
()B. Every year
()C. Every six months

()D. Every quarter
()E. Every month
()F. Every week

3. What is the average related software development experience of the

developers? (language, application and platform)
()A. <1 year
()B. 1-3 years
()C. 3-5 years
()D. >5 years

4. What is the percentage of personnel change during the development?

()A. <10%
()B. 10% - 20%
()C. 20% - 30%
()D. 30% - 40%
()E. >40%

5. Is there any similar project (functionality and implementation)?

()A. None
()B. A few
()C. Many

6. Is there any reliability requirement for the project?

()A. Low: Slight inconvenience or very small losses when fails;
()B. Nominal: Moderate losses when fails;
()C. High: High financial losses, or risk to life when fails.

7. Is there any response time constraint?

()A. Low: No or loose time constraint;
()B. Nominal: Common time constraints, no special request;
()C. High: Strict time limit or real time system.

8. How do you deal with modularity in the project?

()A. No consideration of modularity
()B. Redesigned during the development stage
()C. Prepared at the beginning of the development phase
()D. Clearly designed during the design stage

9. What is the complexity of data management in the project?

()A. Very low: Simple arrays; Simple DB queries, updates;
()B. Low: Single file with no data structure changes, no edits, no
intermediate files. Moderately complex DB queries, updates;
()C. Nominal: Multi-file input and single file output. Simple structural
updates. Complex DB queries, updates;
()D. High: Simple triggers. Complex structural updates;
()E. Very high: Distributed or complicated database management.
Complex triggers. Search optimization.

10. What is the computational requirement in the project?

()A. Very low: Only basic math expressions involved;
()B. Low: Standard math/statistical routines needed;
()C. Nominal: Basic numerical data analysis like ordinary differential
equations and regular calculation accuracy required;
()D. High: Complex data analysis such as partial differential equations;
()E. Very high: Accurate numerical analysis with noisy, stochastic data.

11. What is the level of control flow in the project?

()A. Very low: Straightforward nesting structured programming with
simple decision conditions;
()B. Low: Basic nesting with decision tables; Simple callback and
message exchange;
()C. Nominal: Highly structured programming with complicated
predicates; Queue and stack control; Basic distributed processing;
()D. High: Recursive coding; Simple interrupt handling; Task
synchronization, complex callbacks, complex distributed processing;
Soft real time control;
()E. Very high: Complex interrupt handling with changing priorities;
Immediate real time control.

12. What is the requirement of user interface management?

()A. Low: Simple forms;
()B. Nominal: Graphic user interface;
()C. High: 2D/3D, dynamic graphics; multimedia.

ISSN : 0975-3397 1956

Jie Xu et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1952-1958

13. Do you have test plan for the project?

()A. No test plan
()B. Somehow clear plan (basic requirements)
()C. Very clear test plan (test phases, test cases)

14. Do you use any tool for testing?

()A. No
()B.Yes (Name ________)

15. What percentage of source code is covered during testing?

()A. < 20%
()B. 20% - 40%
()C. 40% - 60%
()D. 60% - 80%
()E. > 80%

16. The previous coverage information is derived from:

()A. Rough estimation
()B. Coverage tool (Name ________)

17. Is the total number of bugs recorded correctly in the Bug Tracking

System?(If not, please give a number)
()A. No (Number ________)
()B.Yes

18. How many users are involved in the project?

()A. < 5
()B. 5 - 10
()C. 10 - 50
()D. 50 - 100
()E. > 100

19. What percentage of defects/bugs do users report?

()A. < 20%
()B. 20% - 40%
()C. 40% - 60%
()D. 60% - 80%
()E. > 80%

20. What percentage of total development effort is used for testing?

()A. < 20%
()B. 20% - 40%
()C. 40% - 60%
()D. 60% - 80%
()E. > 80%

21. What documentation is used to help new developers get onboard?

()A. No particular documentation
()B. Major guidelines available
()C. Detailed definition of processes and development guidelines
available

22. How is the user documentation prepared?

()A. No particular documentation
()B. Only draft and incomplete version
()C. Important parts covered
()D. Detailed and comprehensive

End of the questionnaire

APPENDIX B. NORMAL PROBABILITY PLOTS

ISSN : 0975-3397 1957

Jie Xu et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 1952-1958

ISSN : 0975-3397 1958

