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I. Abstract—The Dijkstra’s algorithm [1] , which is applied in 
many real world problems like mobile routing, road maps, 
railway networks, etc,. is used to find the shortest path between 
source and destination. There are many techniques available to 
speedup the algorithm while guaranteeing the optimality of the 
solution. The main focus of the work is to implement landmark 
technique and Containers separately and compare the results 
with random graphs and planar graphs. The combined speedup 
technique which is based on landmarks and containers were also 
experimented with random graphs and planar graphs to improve 
the speedup of the shortest path queries. 
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I. INTRODUCTION  

A directed simple graph G is a pair (V, E), where V is 
the set of nodes / vertices and VVE   is a set of edges, 
where an edge is an ordered pair of nodes of the form (u, v) 
such that Vvu , . Usually the number of nodes V  is 

denoted by n and the number of edges E  is denoted by m. A 

path in graph G is a sequence of nodes ),...,
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any two nodes ,, Vts  a shortest s-t path is a path of minimal 

length with su 
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 and t
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u  . The distance ),( tsd  between 

s and t is the length of the shortest path s-t. A layout of a graph 

),( EVG   is a function 2: RVL   that assigns each node 

a position in 2R . A graph is called sparse if )(nOm  . 

Let G = (V, E) be a directed graph whose edges are 
weighted by a function REw : .  The weights are 
interpreted as the edges’ or lengths in the sense that the length 
of a path is the sum of the weights of its edges. The single-
source single-target (SSST) shortest-path problem consists in 
finding a path of minimum length from a given source 

Vs to a given target Vt . The problem is only well 

defined for all pairs, if G does not contain negative cycles. In 
the presence of negative weights, but not negative cycles, it is 
possible, using Johnson’s algorithm, to convert in 

)log2( nnnmO   time the original edge weights 

REw : to non-negative edge weights 
 0: REw  

that result in the same shortest paths. Hence, it can be safely 
assumed that the edge weights are non-negative. It can also be 
assumed that for all pairs VVts ),( , the shortest path 

from s to t is unique. 
 The classical algorithm for computing shortest paths 
in a directed graph with nonnegative edge weights is that of 
Dijkstra’s algorithm. Dijkstra’s algorithm implemented with 
Fibonacci heaps is still the fastest known algorithm for the 
general case of arbitrary nonnegative edge lengths, taking 

)log( nnmO  worst-case time. For special cases (eg. 

undirected graphs, integral or uniformly distributed edge 
weights), better algorithms are identified. 

II. RELATED WORK 

A. Basic speedup technique 

Computing shortest paths between nodes in a given directed 
graph is classically solved by Dijkstra’s algorithm[1]. But 
besides Dijkstra’s algorithm there are many recent algorithms 
that solve variants and special cases of the shortest-path 
problem with better running time. This section also focuses on 
variants of Dijkstra’s algorithm (also denoted as speedup 
techniques in the following) that further exploit the fact that a 
target is given. Typically, such improvements of Dijkstra’s 
algorithm cannot be proved to be asymptotically faster than 
the original algorithm, and, in this sense are heuristics. 
However, it can be empirically shown that they indeed 
improve the running time drastically for many realistic data 
sets. An overview of the speedup techniques is as follows 

 Goal-directed search: The given edge weights are 
modified to favour edges leading toward the target 
node [2].  With graphs from timetable information, a 
speed-up in running time of a factor of roughly 1.5 is 
reported [2] 

 Bidirectional search: Start a second search backward, 
from the target to the source[3]. Both searches stop 
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when their search horizons meet. Using bidirectional 
search space can be reduced by a factor of 2.  

 Multilevel approach: This approach takes advantage 
of hierarchical coarsening of the given graph, where 
additional edges have to be computed. These edges 
can be regarded as distributed to multiple levels. 
Depending on the given query, only a small fraction 
of these edges have to be considered to find a shortest 
path. Using this technique, speed-up factors of more 
than 3.5 were observed for road map and public 
transport graphs [4]. Timetable information queries 
could be improved by a factor of 11 [5]. 

 Shortest-path containers: These containers[6] 
provide a necessary condition for each edge, whether 
or not it has to be respected during the search. More 
precisely, the set of all nodes that can be reached on a 
shortest path using this edge is stored. Speedup 
factors in the range between 10 and 20 can be 
achieved.  

B. Combining Speedup Techniques  

Combining each pair of techniques is outlined in [7] and it 
is noted that extending these to combinations, including three 
or all four techniques, are not difficult. 
Goal-Directed Search and Bidirectional Search: Combining 
goal-directed and bidirectional search[7] is not as obvious as it 
may seem. Simple application of a goal-directed search 
forward and backward yields a wrong termination condition. 
In certain situations the search in each direction almost 
reaches the sources of the other direction. This often results in 
a slower algorithm. 
To overcome these deficiencies, it is preferable to use the very 
same edge weights )()(),(),(' wvwvlwvl    for both 

the forward and the backward search. With these weights, the 
forward search is directed to the target t and the backward 
search has no preferred direction, but favours edges that are 
directed towards t. This proceeding always computes shortest 
paths, as an s-t path is shortest independent of whether  l  or l   
is used for the edge weights. 
Goal-Directed Search and Multilevel Approach: The 
multilevel pproach determines, for each query, a subgraph of 
the multilevel graph on which Dijikstra’s algorithm is finally 
run. The computation of this subgraph does not affect edge 
lengths and thus a goal-directed search can be simply 
performed on it. 
Goal-Directed Search and Shortest-Path Containers: 
Similar to the multilevel approach, the shortest-path containers 
approach determines for a given query a subgraph of the 
original graph. Again, edge lengths are irrelevant for the 
computation of the subgraph and goal-directed search can be 
applied readily. 
Bidirectional Search and Multilevel Approach: A 
bidirectional search can be applied to the subgraph defined by 
the multilevel approach. The subgraph can be computed on the 
fly during Dijikstra’s algorithm: for each node considered, the 

set of necessary outgoing edges is determined. To perform a 
bidirectional search on the multilevel subgraph, a symmetric, 
backward version of the subgraph computation has to be 
implemented: for each node considered in the backward 
search, the incoming edges that are part of the subgraph have 
to be determined. Shortest paths are guaranteed, since 
bidirectional search is run on a subgraph that preserves 
optimality, and, by the additional edges, only contains 
supplementary information consistent with the original graph. 
Bidirectional Search and Shortest-Path Containers:  In 
order to take advantage of shortest-path containers in both 
directions of a bidirectional search a second set of containers 
is needed. For each edge e  E, the set Sb(e) is computed 
containing those nodes from which a shortest path ending with 
e exists. For each edge e  E the bounding box of Sb(e) is 
stored in an associative array Cb with index set E. The forward 
search checks whether the target is contained in C(e), the 
backward search, checks whether the source is in Cb(e). It can 
be verified that by construction only such edges are pruned 
that do not form part of any partial shortest path and thus of 
any shortest s-t path. 

 
Multilevel Approach and Shortest-Path containers: The 
multilevel approach enriches a given graph with additional 
edges. Each new edge (u1, uk) represents a shortest path 
(u1,u2,...,uk) in G. Such a new edge (u1, uk) is annotated with 
C(u1,u2), the associated bounding box of the first edge on this 
path. This consistent labelling of new edges, which represent 
shortcuts in the original graph, ensures still shortest paths. 
 
Hierarchical and Goal-directed speed-up techniques. The 
combination of hierarchical and goal directed speedup 
techniques [8], [9] found to give best results for unit disk 
graphs, grid networks, and time-expanded timetables. It is 
suggested that the goal directed technique can be applied to 
higher levels of hierarchy.   
 

C. A* Search and Landmarks 

In this section a new shortest path algorithm that uses A* 
search in combination with a new graph-theoretic lower-
bounding technique based on landmarks and the triangle 
inequality is explained[2]. The algorithm computes optimal 
shortest paths and works on any directed graph. Experimental 
results show that the new technique outperforms A* search 
with Euclidean bounds, by a wide margin on road networks 
[2]. 
 Potential Function 
 A potential function is a function, from vertices to 
reals. Given a potential function π, the reduced cost of an edge 
is defined as follow 

)()(),(),( wvwvlwvl                         (2.1) 

 Suppose l  is replaced by
l

then for any two vertices 

x and y, the length of any x-y path changes by the same 
amount )()( xy   . Thus a path is a shortest path with 
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respect to l  iff it is a shortest path with respect to 
l

 and the 

two problems are equivalent. Note that, π is feasible if 
l

 is 

nonnegative for all arcs. It is well known that if 0)( t  and 

π is feasible, then for any v, )(v  is a lower bound on the 

distance from v to t. It is to be noted that 

Lemma 2.1 If 
1

 and 
2

 are feasible potential functions, then 

)
2

,
1

max( p is feasible. 

 Feasible potential functions can be combined by 
taking the minimum, or, the average of feasible potential 
functions. The maximum is used in particular to combine 
feasible lower bound functions in order to get one that any 
vertex is at least as high as each original function. 
 
 A* Search 

Consider the problem of looking for a path from s to t and 
assume that a function RV

t
:  exists such that 

)(v
t

 gives an estimate on the distance from v to t. A* search 

is an algorithm that works like Dijkstra’s algorithm, except 
that at each step it selects a labelled vertex v with the smallest 
value )()()( v

t
v

s
dvk   to scan next. It is easy to verify 

that A* search is equivalent to Dijkstra’s algorithm on the 
graph with length function 

t
l .  

D. Geometric containers for efficient shortest path 
computation 

A fundamental approach in finding efficiently best routes or 
optimal itineraries in traffic information is to reduce the search 
space of the most commonly used shortest path routine 
(Dijikstra’s algorithm) on a suitable defined graph. Reduction 
of the search space should simultaneously be combined with 
ways of retaining data structures, created during a 
preprocessing phase of size linear to the size of the graph. The 
search space of Dijikstra’s algorithm can be significantly 
reduced by extracting geometric information from a given 
layout of the graph and by encapsulating precomputed 
shortest-path information in resulted geometric objects 
(containers) [6]. When edge weights are subject to change, 
methods exist for dynamically updating the containers instead 
of recomputing everything from scratch [6].  
 

1) Shortest-Path Containers:In this section, we 
consider the concept of containers, which helps to reduce the 
search space of Dijkstra’s algorithm. Containers are used to 
keep the nodes, which are potentially useful for shortest-path 
computations. This idea gives rise to Dijkstra’s Algorithm 
with Pruning[6], which reduces the search space by 
examining, at each iteration, only a subset of the neighbors of 
a node (line 5a); the differences to Dijkstra’s algorithm are 
shown in boldface. The condition in line 5a is formalized by 
the notion of a consistent container. 

 

Definition 2.1. Let G = (V, E), w : E → R be a weighted 
graph. A set of nodes C  V is called a container. A container 
C associated with an edge (u, v) is called consistent, if for all 
shortest paths from u to t that start with the edge (u, v), the 
target t is in C.  

In other words, C(u, v) is consistent, if S(u, v)  C(u, 
v), where S(u, v) represents the set of nodes x for which the 
shortest u-x-path starts with the edge (u, v). Note that further 
nodes may be part of a consistent container. However, at least 
the nodes that can be reached by a shortest path starting with 
(u, v) must be in C(u, v). The additional nodes are referred as 
wrong nodes, since they lead the search in the wrong way. 

Theorem 2.1. Let G = (V, E), w: E → R be a 
weighted graph and for each edge e let C(e) be a consistent 
container. Then, Dijkstra’s Algorithm with Pruning finds a 
shortest path from s to t. 

Proof. Consider the shortest path P from s to t that is 
found by Dijkstra’s algorithm. If for all edges e  P the target 
node t is in C(e), the path P is found by Dijkstra’s Algorithm 
with Pruning, because the pruning does not change the order 
in which the edges are processed. A subpath of a shortest path 
is again a shortest path, so for all (u, v)  P, the subpath of P 
from u to t is a shortest u-t-path. Then, by the definition of 
consistent container, t  C(u, v). 

 
Definition 2.2. Let C denote a set of containers and for each 
edge e  E let S (e)  V denote the set of nodes that can be 
reached by a shortest path starting with e. For both sets, the 
number of nodes inside all containers is counted: 
  Ee eCt )}({  and   Ee eSt )}({ . Both sums are 

bounded by n · m. Therefore the quality of C can be defined 
as: 

  

  

Ee eStmn

Ee eCtmn

)}({

)}({
 

This fraction is biased by the number of correct 
nodes. It equals 1, if the number of wrong nodes inside 
containers is zero, while it becomes 0, if all containers in C 
contain the entire graph. 
 

 

 

III. COMBINING SPEEDUP TECHNIQUES  

A. LANDMARKS: 

The search space of Dijkstra’s algorithm can be reduced by 
using landmarks. Heuristic estimates on the distance of a 
vertex to the target can be calculated using landmarks. 
Landmarks tend to attract the search towards them and so by 
appropriately selecting landmarks the overall performance can 
be improved.  
 The procedure in Algorithm 1 outlines the shortest 
path computation technique with heuristic values modifying 
the priority of vertices. Lines 4a and 6 are the changes made to 
the original Dijkstra’s algorithm. The purpose of line 4a is 
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evident of its own because the problem under consideration is 
single source single target shortest path problem. The key 
change is that of line 6. Traditional Dijkstra’s algorithm 
considers only the distance of a vertex from the source 
whereas in Algorithm 1 potential (u) is used an estimate of the 
distance from the vertex to the target. So a heuristic / potential 
function can direct the search towards the target thereby 
reducing the search space considerably. 
 
 

 
Algorithm 1. Using Landmarks in Shortest Path Computation 

 
Landmark Selection: For incorporating landmarks into 
shortest path computation the following additions are to be 
made to the existing path computation technique: A procedure 
for selecting landmarks, computing the distance values from 
the landmarks to the remaining vertices and utilizing the 
computed distance values to obtain heuristic estimates which 
could be used to modify the priority of vertices to be 
considered. 

  
Code Segment 1. Farthest Landmark Selection Technique 
 
The landmark selection procedure is briefed in code 

segment 1. The procedure used for selecting landmarks is 
called “Farthest landmark selection technique”. The idea 
behind this procedure is that, landmarks are chosen in such a 
way that they are far apart, i.e. the landmarks are spread 
throughout the entire graph and this helps to obtain good 
potential values for any vertex chosen at random without any 
bias. The data structure “landmarks” is a list containing the 
landmarks chosen by the procedure. “LANDMARKCOUNT” 
indicates the number of landmarks required. 
 
The selection procedure proceeds as follows. A single source 
all target shortest path query is initiated similar to traditional 
Dijkstra’s algorithm. The vertices deleted from the priority 
queue are kept track of and the final vertex to be deleted from 
the queue is added to the list of landmarks. The final vertex is 
selected as a landmark because in Dijkstra’s algorithm the 
vertices are always considered in the increasing order of their 
shortest path distance and the final vertex deleted from the 
queue is the one farthest from the source. The selection 
procedure is repeated with the newly selected landmark as the 
source. Once the required number of landmarks are selected 
the procedure stops. 
 
 
 
 

 1     for(int landmarkSelected = 0; landmarkSelected < 
LANDMARKCOUNT;  
 2            landmarkSelected++) { 
 3       forall_nodes(v,G) { 
 4           if(v == s) dist[v] = 0; else dist[v] = 
MAXDOUBLE; 
 5           PQ.insert(v,dist[v]); 
 6       } 
 7       while ( !PQ.empty() ) { 
 8           u = PQ.del_min(); 
 9           if( dist[u] == MAXDOUBLE ) { 
 10              PQ.clear(); 
 11              break; 
 12         } 
 13         forall_adj_edges(e,u) { 
 14             v = target(e); 
 15 
 16             double c = dist[u] + cost[e]; 
 17             if ( c < dist[v] ) { 
 18               PQ.decrease_p(v,c);  dist[v] = c;   
 19             } 
 20         }//Neighbour distance updation ends 
 21     }//While the Priority Queue has vertices to be 
explored 
 22     landmarks.append( u ); //Select the farthest node 
from s as landmark 
 23     s = u; //Next Source for another landmark selection 
 24  } //Landmark Selection loop 

1   for all nodes u belongs to V  
        set dist(u) := infinity 
2   initialize priority queue Q with source s and dist(s) := 0 
3   while priority queue Q is not empty 
4       get node u with smallest tentative distance dist(u) in 
Q 
4a     if u = t return 
5       for all neighbor nodes v of u 
6               set new-dist := dist(u) + w(u, v) + potential(u) 
7               if new-dist < dist(v) 
8                    if dist(v) = infinity 
9                       insert neighbor node v in Q with priority 
new-dist 
10                  else 
11                      set priority of neighbor node v in Q to 
new-dist 
12                  set dist(v) := new-dist  
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1) Calculating and Using Heuristic Values: 
 

 
Code Segment 2. Updating cost using Landmark based 

heuristic values 
 

The distance from landmarks to the remaining vertices should 
be calculated for obtaining potential values. The distance 
calculation requires initiating a single source all target shortest 
path computation from each of the landmarks. The obtained 
values are stored as follows. “nodeLandmarkInfo” is a vertex 
array, containing an array of landmark and corresponding 
distance values. So the distance between a vertex ‘v’ and the 
ith landmark can be accessed as 
nodeLandmarkInfo[v].nLInfo[i].dist. 
 Code Segment 2. highlights the modifications to be 
made during the actual shortest path evaluation. Before 
updating the distance value of a vertex ‘v’, the maximum 
“distance difference” between the vertex ‘v’ and the various 
landmarks is calculated and stored in “maxdiff”. This serves as 
a heuristic estimate of the distance between the vertex and the 
target. Hence the priority is updated only if the sum of, known 
distance from source and an estimate of the distance from the 
vertex to the target is less than the previously available 
priority.  
 

B. SHORTEST PATH CONTAINERS: 

The Geometric containers help to reduce the search 
space of Dijkstra’s algorithm by enclosing a list of target 
nodes for each edge inside a geometric object. The geometric 
information associated with each edge is then used for 
improving the performance of shortest path computations. Let 
G= (V, E), w: E → R be a weighted graph. It is remembered 

that a set of nodes C  V is called a container. A container C 
associated with an edge (u, v) is called consistent, if for all 
shortest paths from u to t that start with the edge (u, v), the 
target t is in C. In other words, C (u, v) is consistent, if S (u, v) 

 C (u, v), where S (u, v) represents the set of nodes x for 
which the shortest u-x-path starts with the edge (u, v). Note 
that further nodes may be part of a consistent container. 
However, at least the nodes that can be reached by a shortest 
path starting with (u, v) must be in C (u, v). The additional 
nodes are referred as wrong nodes, since they lead the search 
in the wrong way.           

1) Creating Consistent Containers: S(e) is the 
set of all nodes t with the property that there is a unique 
shortest s-t path that starts with the edge e. To determine S (s, 
x) for every edge (s, x)  E, dijkstra’s algorithm is run for 
every node s  V. A node array “na” is used such that the 
entry na[v], v  V, stores the first edge (s, x) in a shortest s-v 
path in G. This is constructed in a way similar to the shortest 
path tree: every time the distance label of a node v is adjusted 
via (u, v), we set na[v] to (u, v) if u=s and to na[u] otherwise 
(Lines 11 -14 of code segment 3). 

 

 
Code Segment 3. Container Construction 

 
When a node u is removed from the priority queue 

PQ, na[u] holds the outgoing edge with which a shortest path 
from s to u starts. This information is stored in an edge array 
“ea”. Line 4 invokes the container update routine for 
associating the vertex ‘u’ with the appropriate edge. 

The problem that arises from using S (e) is the space 
requirements. Storing with each edge, a list of target nodes 
that can be reached using it would require O (mn) space where 
number of edges is m and the number of nodes is n; this is 
substantially large for a sparse graph.  

Using geometric objects (geometric containers) the 
space required for storing preprocessed information can be 
reduced. The impact of using the containers to speedup 
Dijkstra’s algorithm does depend on the relation of layout and 

1   while ( !PQ.empty() ) {  
2     node u = PQ.del_min(); 
3     if(u != s) { 
4       ea[ na[u] ].addPoint( ncoord[u] ); 
5     }           
6     forall_out_edges(e,u) { 
7         v = target(e); 
8         double c = dist[u] + cost[e]; 
9         if( c < dist[v] ) { 
10          PQ.decrease_p(v,c);  dist[v] = c;   
  11          if(u==s) 
 12            na[v]=e; 
 13         else 
 14            na[v]=na[u]; 
 15      } 
 16   }  
 17 }  

1        //Include Landmark based potentials also 
2        maxdiff = nodeLandmarkInfo[v].nLInfo[0].dist –  
3                          nodeLandmarkInfo[t].nLInfo[0].dist; 
 
 4       for(int landmarkCount = 1; landmarkCount < 
LANDMARKCOUNT;  
 5              landmarkCount++) { 
 6           diff = 
nodeLandmarkInfo[v].nLInfo[landmarkCount].dist –  
 7                     
nodeLandmarkInfo[t].nLInfo[landmarkCount].dist; 
 8                     //Triangle Inequality part 
 
 9           if( diff > maxdiff ) 
 10               maxdiff = diff; //Choose the max Lower 
Bound 
 11     } 
 
 12     double c = dist[u] + cost[e] + maxdiff; //Update 
cost with heuristic value  
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edge weights. The containers are best suited for constant 
graphs because for dynamic graphs where the edge weights 
change rapidly results in updating the containers which is a 
costly operation and it requires more time. A container can 
have wrong nodes. These wrong nodes get naturally added up 
when the targets associated with a particular edge are far apart 
in the original layout of the graph.      

2) Bounding Box: The geometric object used 
for testing this speedup technique is the bounding box[6] 
shown in Figure 1. It suffices to store four numbers for each 
object, which are the lower, upper, left and right boundary of 
the box. The bounding boxes can easily be computed online 
while the shortest paths are computed in the pre-processing.    

 
Figure 1. Bounding Box from[6] 

 
Expansion of Bounding Box 
 
 The operations involved in computing shortest paths 
using geometric containers are creating consistent container, 
enlarging the container associated with each edge and then 
checking containment of a node within the bounding box 
while computing the shortest path. The steps involved in 
creating consistent containers are given in code segment 3. 
Enlarging the container for each edge to include the target 
nodes is performed in code segment 4. Each node is associated 
with a coordinate value obtained from the layout of the given 
graph. If a new vertex is to be added to the container 
associated with an edge, the co-ordinate values of the new 
vertex is compared with the existing boundary co-ordinates. 
The co-ordinates of the containers are adjusted if necessary to 
include the newly added vertex. 

 
Code Segment 4. Expanding the Bounding Box 

 
While computing the shortest path, when an edge e is reached, 
the boundary values of that edge e is checked to see if it 
contains the target node. If the target is present in the container 
then the edge is selected otherwise the edge is discarded. Code 
fragment 5 checks if a given node (specifically if the target) is 
present in a container. 

 
Code Segment 5. Checking the Container 

 

C. COMBINATION OF LANDMARKS AND GEOMETRIC 
CONTAINERS 

 

 
Algorithm 2. Combination of Landmarks and Geometric Containers 

The shortest path computation technique that combines both 
the landmarks and geometric containers is given in Algorithm 
2. The changes made to the traditional Dijkstra’s algorithm are 
in lines 4a, 6 and 7. Line 4a terminates the search procedure 
once the target is reached. Line 6 utilizes the containers for 
checking if an edge will eventually lead to the specified target. 
Line 7 in the algorithm uses potential values obtained from 
landmarks to modify vertex priority. 
 
Line 6 assumes the existence of such a container for its 
functioning. It is remembered that the container associated 
with an edge, gives details pertaining to the targets that are 
reachable, with this edge included in their shortest path. Line 7 
uses heuristic values to orient the search towards the 

1   for all nodes u belongs to V  
        set dist(u) := infinity 
2   initialize priority queue Q with source s and dist(s) := 0 
3   while priority queue Q is not empty 
4      get node u with smallest tentative distance dist(u) in Q 
4a      if u = t return 
5       for all neighbor nodes v of u 
6           if t belongs to C(u, v) 
7               set new-dist := dist(u) + w(u, v) + potential(u) 
8               if new-dist < dist(v) 
9                   if dist(v) = infinity 
10                      insert neighbor node v in Q with priority 
new-dist 
11                  else 
12                      set priority of neighbor node v in Q to new-
dist 
13                  set dist(v) := new-dist  
 

1    bool contains(const CPoint &p) const { 
2       if( p.x >= min_x && p.x <= max_x && 
3            p.y >= min_y && p.y <= max_y ) 
4            return true; 
5       else 
6            return false; 
7    } 

 1   bool addPoint( const CPoint &p ) {       
 2       if( p.x < min_x ) 
 3           min_x = p.x; 
 4       else if( p.x > max_x ) 
 5           max_x = p.x; 
 
6        if( p.y < min_y ) 
7            min_y = p.y; 
8       else if( p.y > max_y ) 
9            max_y = p.y; 
 
10     return true; //Sucessflly updated the container 
11  } 
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target.The benefits of both the containers and landmarks are 
coupled as follows. The vertex ‘u’ to be visited next is deleted 
from the priority queue in line 4. The main modification 
occurs in the neighbour distance updation logic. Traditional 
Dijkstra’s algorithm considers all the neighbours ‘v’ of the 
selected vertex ‘u’; using containers only a subset of the 
neighbours ‘v’ to be visited are considered (line 6 of the 
algorithm), thereby reducing the search space. Then for the 
selected neighbours ‘v’ the distance to be updated includes an 
estimate of the distance from the vertex to the target (line 7 of 
the algorithm) and this helps to focus the search towards the 
target. 
                

IV. EXPERIMENTAL ANALYSIS 

The different speedup techniques for Dijkstra’s algorithm 
were implemented in C++ with the help of LEDA library 
version 6.2 (Library of Efficient Data Types and Algorithms) 
[10]. The graph and priority queue data structures as well as 
other utilities such precise time measurement function 
provided by LEDA were used in the implementation. The code 
was compiled using Microsoft ® 32-bit C/C++ Compiler 
(version 15.00.30729.01) and the experiments were performed 
on an Intel Core2Duo machine (2.20 GHz) with 1 GB RAM 
running Windows 7 32-bit operating system.All the speedup 
techniques were coded as separate functions, for instance, the 
bidirectional search and traditional Dijkstra’s algorithm were 
kept as separate modules. The random and planar graph 
generators provided by LEDA were used for generating graphs 
on which the modules were tested. The number of vertices 
visited during the shortest path computation and runtime were 
measured and used as metrics for comparing the different 
speedup techniques. The time required for preprocessing and 
shortest path computation was accurately measured by using 
the functionality offered by LEDA. 

A. ANALYSIS OF LANDMARKS ON RANDOM 
GRAPHS 
The following remarks could be made based on the 

tabulated values. The preprocessing time steadily increases 
with the number of vertices. This is acceptable because the 
distance between a landmark and all the remaining vertices are 
computed during preprocessing. The running time of the 
modified search procedure with landmarks included is either 
nearly equal to or slightly higher than that of the traditional 

Dijkstra’s algorithm. The performance with landmarks is 
expected to improve on real world graphs. The number of 
vertices visited is reduced by using landmarks. A speedup of 
nearly 1.2 is achieved. 

TABLE I.  COMPARISON OF TRADITIONAL DIJKSTRA’S ALGORITHM WITH 
LANDMARKS BASED ON RUNNING TIME AND VERTICES VISITED DURING 

SHORTEST PATH COMPUTATION ON RANDOM GRAPHS 

Verte
x 

Count 

Edg
e 

Cou
nt 

Preproces
sing Time 

(s) 

Runtime 
[with 

Landma
rks] (s) 

Vertices 
Visited 

[Landma
rks]  

Runti
me 

[Dijkst
ra] (s) 

Vertic
es 

Visited 
[Dijkst

ra] 

10000 
7550

0 
0.332 0.0489 3698 0.0408 5365 

11000 
8525

0 
0.41 0.0703 5215 0.0543 6295 

12000 
9060

0 
0.477 0.0678 4626 0.0451 4739 

13000 
9100

0 
0.518 0.081 5793 0.0536 6378 

14000 
1078
00 

0.582 0.0759 4629 0.0621 5629 

15000 
1125
00 

0.642 0.0899 5682 0.0715 7940 

16000 
1208
00 

0.678 0.0984 6274 0.0739 7712 

17000 
1275
00 

0.765 0.129 7747 0.0899 9177 

18000 
1332
00 

0.886 0.107 5814 0.105 10380 

19000 
1425
00 

0.878 0.108 6139 0.0905 8535 

20000 
1610
00 

0.969 0.149 8147 0.132 12390 

21000 
1554
00 

1.03 0.152 8313 0.125 11826 

22000 
1672
00 

1.06 0.194 11341 0.124 10558 

23000 
1541
00 

1.04 0.189 11749 0.104 10420 

24000 
1668
00 

1.07 0.168 10432 0.119 11639 

25000 
1862
50 

1.27 0.187 10245 0.137 11857 

Figure 1. shows the number of vertices visited by the 
search procedure with landmarks and that of traditional 
Dijkstra plotted against the number of vertices present in the 
graph. The number of vertices visited by searching with 
landmarks is considerably less in most searches. 

B. ANALYSIS OF LANDMARKS ON PLANAR GRAPHS 
The effect of using landmarks during shortest path comp-  

Figure 1. Vertices visited during shortest path computation by traditional 
Dijkstra and search procedure with Landmarks on random graphs 

Figure 2. Vertices visited during shortest path computation by traditional 
Dijkstra and search procedure with Landmarks on planar graphs 
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-utation on planar graphs is analysed below. The performance 
of the technique in this graph type is nearly equal to that of 
traditional Dijkstra’s algorithm. Figure 2 plots the vertices 
visited by traditional Dijkstra and a search using landmarks on 
the planar graphs generated by LEDA. The values are 
tabulated in Table 2. 
 
Table II Comparison of traditional Dijkstra’s algorithm with Landmarks based 
on running time and vertices visited during shortest path computation on 
planar graphs 

Verte
x 

Count 

Edge 
Coun
t 

Preproc
essing 
Time (s) 

Runtim
e [with 
Landma
rks] (s) 

Vertices 
Visited 
[Landm
arks]  

Runtim
e 

[Dijkstr
a] (s) 

Vertice
s 

Visited 
[Dijkst

ra] 
10000 17509 0.0193 0.00475 439 0.0044 439 

11000 19344 0.0208 0.00505 416 0.00445 434 

12000 21166 0.0226 0.00555 488 0.00515 488 

13000 22999 0.0248 0.0058 494 0.0053 493 

14000 24869 0.0269 0.0063 540 0.00565 548 

15000 26698 0.0282 0.0068 536 0.00635 550 

16000 28555 0.0304 0.00725 554 0.00655 554 

17000 30399 0.0358 0.00945 656 0.0087 656 

18000 32251 0.0383 0.00955 580 0.00905 594 

19000 34111 0.0412 0.01 652 0.0093 679 

20000 35966 0.0452 0.0112 648 0.0102 666 

21000 37844 0.0479 0.0113 683 0.0109 626 

22000 39705 0.0518 0.0127 675 0.0112 718 

23000 41550 0.0578 0.0139 801 0.0146 828 

24000 43435 0.0603 0.0144 767 0.0129 766 

25000 45286 0.0655 0.0144 794 0.0136 794 

 
 
C. PERFORMANCE OF GEOMETRIC CONTAINERS 

ON RANDOM GRAPHS 
Table 3. shows the experimental values obtained by 
comparing Geometric Containers with the traditional shortest 
path computation technique. A speedup of 1.2 is achieved 
based on the number of vertices visited during the shortest 
path computation. The average running time of the search with 
geometric containers nearly equals that of traditional search. 
Two important points of interest are as follows. The first one 
is that increasing the number of vertices can reduce the 
running time but due the memory limitations of the 
experimental setup and the libraries used the vertex count was 
not increased during the analysis. The second point to note is 
that geometric containers have a better performance in real 
word graphs and this was not tested due to time limitations. 

 

Table III. Runtime and Number of vertices visited comparison of 
Geometric containers and traditional Dijkstra on random graphs 

Vert
ex 
Cou
nt 

Edge 
Count 

Pre-
processi
ng 
Time 
(s) 

Runtime 
[Contain
ers] (s) 

Vertices 
Visited 
[Contain
ers]  

Runtim
e 
[Dijkst
ra] (s) 

Vertice
s 
Visited 
[Dijkst
ra] 

1000 8000 1.879 0.0013 512 0.001 325 

2000 16000 7.99 0.0026 984 0.0028 1204 

3000 21000 17.9 0.0042 1430 0.0038 1592 

4000 20000 27.9 0.0037 1316 0.0048 2306 

5000 25000 47.1 0.006 1778 0.006 2749 

6000 30001 73.5 0.0086 2749 0.007 3000 

7000 63000 148 0.0138 3233 0.0108 2959 

8000 72000 214 0.0128 2640 0.0139 3596 

9000 72000 257 0.0158 3224 0.0182 5373 

1000
0 

10000
0 

389 0.029 5634 0.0229 5312 

 
Figure 5.Vertices visited during shortest path computation by traditional 
Dijkstra and search procedure with containers on random graphs 

Figure 5 shows the number of vertices visited by 
traditional search technique and the search with containers, 
plotted against the number of vertices present in the graph. 
 

D. PERFORMANCE OF GEOMETRIC CONTAINERS 
ON PLANAR GRAPHS 

 Using geometric containers on planar graphs 
generated by LEDA had a meagre performance on the number 
of vertices visited. The values are shown in Table 4. It gives a 
varying results of running time and vertices visited compared 
to that of Dijkstra. 
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Table IV. Runtime and visited vertices comparison of Geometric containers 
and traditional Dijkstra on planar graphs 

Verte
x 

Count 

Edge 
Coun

t 

Preproc
essing 

Time (s) 

Runtim
e [with 

Contain
ers] (s) 

Vertices 
Visited 
[Contai

ners]  

Runti
me 

[Dijkst
ra] (s) 

Vertices 
Visited 
[Dijkstr

a] 
10000 17470 25.085 0.0031 116 0.0047 106 

11000 19294 31.3 0.0015 78 0.0063 122 

12000 21102 36.9 0.0045 76 0.0048 103 

13000 23010 43.6 0.0047 99 0.0047 123 

14000 24857 50.5 0.0045 82 0.0048 156 

15000 26756 58.3 0.0063 119 0.0046 60 

16000 28556 66.2 0.0046 164 0.0063 46 

17000 30407 78 0.0125 160 0.0031 108 

18000 32180 87.6 0.014 118 0.0016 98 

19000 34164 98.1 0 112 0.0156 162 

20000 35953 109 0.0156 59 0 114 

 
E. COMBINATION OF LANDMARKS AND 

GEOMETRIC CONTAINERS APPLIED TO 
RANDOM GRAPHS 

 The important technique implemented in this work is 
a search procedure that combines both the landmarks and 
geometric containers during shortest path computation. The 
graphs considered for analysis by this technique are 
undirected, though it is possible to apply the technique to 
directed-graphs, minor changes to the landmarks module will 
be necessary. Table V. shows the experimental results. 
Though the preprocessing time is high, the process occurs only 
once and therefore excluded from the shortest path 
computation runtime values. The new technique reduces the 
number of vertices visited during the shortest path query 
evaluation and speedup of 1.79 based on vertex-visit-count is 
achieved. The values in Table V. are with respect to random 
graphs generated by LEDA. 

Table V. Combination of Landmarks and Geometric Containers 
compared with traditional Dijkstra on Random Graphs 

 
There is huge difference in pre-processing time of 

landmarks and containers. As the container construction itself 
will take a longer time, combination of landmark and 
container will have more time. The difference steadily 
increases with the number of nodes.   

If running time alone is considered the traditional 
algorithms work better in some case, but large sparse graph it 
is always necessary to consider the preprocessing time also. 
Here, additional advantage is for the number of nodes visited 
during the search. i.e the speedup is measured in terms of 
number of nodes visited. The speedup is expected to improve 
for the increasing number of nodes and for real world graphs. 

 
 
 

F. Combination of Landmarks and Geometric 
Containers applied to Planar Graphs 

 
A speedup of 1.12 was achieved based on the running 

time of the technique whereas the speedup was 1.7 with 
respect the number of vertices visited during the shortest path 
computation. Eventhough the preprocessing phase occurs only 
once, the preprocessing time is considerably reduced in planar 
graphs for containers. The number of vertices visited is 
reduced compared to that of Dijkstra’s algorithm. 
 Figure 6. compares the running time of the combined 
speedup technique with that of Dijkstra’s and the average 
running time is observed to be slightly improved. As 
mentioned earlier containers perform well when applied to real 
world graphs and hence the combined speedup technique is 
also expected to perform better in such a scenario.  

Figure 7. is the graph, which gives the variations of  
the number of vertices visited by the techniques under 
comparison, viz., “combined landmarks and containers” and 
traditional Dijkstra’s algorithm. 

From the tabulated values it can be inferred that the 
combined speedup technique improves the performance of 
shortest path computation to a considerable extent.  
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Vertex 
Count 

Edge 
Count 

Preprocess Time 
[Landmarks] 

Runtime 
[Combination] (s) 

Vertices Visited 
[Combination] 

Runtime 
[Dijkstra] (s) 

Vertices 
Visited 

[Dijkstra] 

Preprocess Time 
[Containers] 

1000 10000 0.019 0.001 85 0.0015 276 3.13 

2000 20000 0.0325 0.0055 552 0.003 348 13.8 

3000 30000 0.0725 0.007 579 0.011 2597 38.1 

4000 40000 0.099 0.022 1801 0.014 2699 80.3 

5000 50000 0.139 0.027 1993 0.0195 3040 145 

6000 60000 0.227 0.0155 892 0.013 1495 229 

7000 70000 0.237 0.0325 1884 0.038 5501 339 

8000 80000 0.348 0.0244 1228 0.0355 4868 467 

9000 90000 0.347 0.0405 2760 0.0375 3067 633 

10000 100000 0.296 0.0386 2062 0.0080 944 781 
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Table VI. Combination of Landmarks and Geometric Containers compared with traditional Dijkstra on Planar Graphs 

  

Vertex 
Count 

Edge 
Count 

Preprocess 
Time 

[Landmarks] 

Runtime 
[Combination] 

(s) 

Vertices 
Visited 

[Combination] 

Runtime 
[Dijkstra] 

(s) 

Vertices 
Visited 

[Dijkstra] 

Preprocess 
Time 

[Containers] 
1000 1519 0.0025 0 40 0.001 124 0.256 

2000 3213 0.0035 0.0005 71 0.001 123 1 

3000 4932 0.005 0.000999 119 0.001 184 2.26 

4000 6659 0.007 0.001 69 0.002 226 4.01 

5000 8435 0.009 0.002 74 0.002 199 6.26 

6000 10249 0.011 0.002 133 0.003 298 9.05 

7000 12075 0.012 0.003 361 0.003 445 12.4 

8000 13878 0.013 0.0035 310 0.003 437 16.3 

9000 15696 0.017 0.0035 234 0.004 349 20.7 

10000 17512 0.0185 0.005 356 0.004 650 25.6 

 
 
 

 
 
 

 
Figure 6. Running time of the “combined landmark and container” speedup 

technique compared with Dijkstra’s algorithm 

 

V. CONCLUSION 

The speedup techniques used for Dijkstra’s algorithm 
like Landmarks and Geometric containers were analysed with 
random graphs and planar graphs. The key metrics for 
evaluation of the techniques like speedup based on running 
time and the number of vertices visited during shortest path 
computation were considered. The technique of combining 
landmarks and geometric containers was also analysed for the 
same random and planar graph types. 

Each speedup technique worked well for a specific 
type of graph and hence the performance was appreciable in 
those cases. The heuristic values obtained by using landmarks 
helped to reduce the number of vertices visited during shortest 
path computation but the running time of the technique was 
marginally high due the computation overhead involved 
during vertex distance updation process. The geometric 
containers achieved speedup based on the vertices visited  

Figure 7. Vertices visited using the “combined landmark and container” 
speedup technique compared with Dijkstra’s algorithm 

during the evaluation of shortest path query but were nearly 
equal in running time to the traditional search process. The 
combined speed up technique based on landmarks and 
containers was able to perform better under the same 
experimental setup compared to the other techniques. Based 
on the running time the speedup was 1.12 while based on the 
number of vertices visited the speedup attained was 1.7.  

The performance is expected to be improved on real 
world graphs compared to the graphs generated by LEDA. The 
technique can be extended for new combinations. This 
technique can also be applied to various other graph types. 
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