
R. Kalpana et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2212-2222

Combining Speedup Techniques based on
Landmarks and Containers

R. KALPANA
Department of Computer Science & Engineering

 Pondicherry Engineering College
Pondicherry, India
rkalpana@pec.edu

Dr. P. THAMBIDURAI
Perunthalaivar Kamarajar Institute of Engineering &

Technology
Karaikal, Pondicherry

India

I. Abstract—The Dijkstra’s algorithm [1] , which is applied in
many real world problems like mobile routing, road maps,
railway networks, etc,. is used to find the shortest path between
source and destination. There are many techniques available to
speedup the algorithm while guaranteeing the optimality of the
solution. The main focus of the work is to implement landmark
technique and Containers separately and compare the results
with random graphs and planar graphs. The combined speedup
technique which is based on landmarks and containers were also
experimented with random graphs and planar graphs to improve
the speedup of the shortest path queries.

Keywords- Dijkstra’s Algorithm, Graph Theory, Land mark
technique, Geometric Containers , speed-up

I. INTRODUCTION

A directed simple graph G is a pair (V, E), where V is
the set of nodes / vertices and VVE is a set of edges,
where an edge is an ordered pair of nodes of the form (u, v)
such that Vvu , . Usually the number of nodes V is

denoted by n and the number of edges E is denoted by m. A

path in graph G is a sequence of nodes),...,
1

(
k

uu so that

E
i

u
i

u)
1

,(for all ki 1 . A path in which
k

uu
1

is

called a cycle or cyclic path.Given the edge weights
REl : , the length of the path),...,

1
(

k
uuP is the sum

of the lengths of its edges ki i
u

i
ulPl 1)

1
,(:)(. For

any two nodes ,, Vts a shortest s-t path is a path of minimal

length with su
1

 and t
k

u . The distance),(tsd between

s and t is the length of the shortest path s-t. A layout of a graph

),(EVG is a function 2: RVL that assigns each node

a position in 2R . A graph is called sparse if)(nOm .

Let G = (V, E) be a directed graph whose edges are
weighted by a function REw : . The weights are
interpreted as the edges’ or lengths in the sense that the length
of a path is the sum of the weights of its edges. The single-
source single-target (SSST) shortest-path problem consists in
finding a path of minimum length from a given source

Vs to a given target Vt . The problem is only well

defined for all pairs, if G does not contain negative cycles. In
the presence of negative weights, but not negative cycles, it is
possible, using Johnson’s algorithm, to convert in

)log2(nnnmO time the original edge weights

REw : to non-negative edge weights
 0: REw

that result in the same shortest paths. Hence, it can be safely
assumed that the edge weights are non-negative. It can also be
assumed that for all pairs VVts),(, the shortest path

from s to t is unique.
 The classical algorithm for computing shortest paths
in a directed graph with nonnegative edge weights is that of
Dijkstra’s algorithm. Dijkstra’s algorithm implemented with
Fibonacci heaps is still the fastest known algorithm for the
general case of arbitrary nonnegative edge lengths, taking

)log(nnmO worst-case time. For special cases (eg.

undirected graphs, integral or uniformly distributed edge
weights), better algorithms are identified.

II. RELATED WORK

A. Basic speedup technique

Computing shortest paths between nodes in a given directed
graph is classically solved by Dijkstra’s algorithm[1]. But
besides Dijkstra’s algorithm there are many recent algorithms
that solve variants and special cases of the shortest-path
problem with better running time. This section also focuses on
variants of Dijkstra’s algorithm (also denoted as speedup
techniques in the following) that further exploit the fact that a
target is given. Typically, such improvements of Dijkstra’s
algorithm cannot be proved to be asymptotically faster than
the original algorithm, and, in this sense are heuristics.
However, it can be empirically shown that they indeed
improve the running time drastically for many realistic data
sets. An overview of the speedup techniques is as follows

 Goal-directed search: The given edge weights are
modified to favour edges leading toward the target
node [2]. With graphs from timetable information, a
speed-up in running time of a factor of roughly 1.5 is
reported [2]

 Bidirectional search: Start a second search backward,
from the target to the source[3]. Both searches stop

ISSN : 0975-3397 2212

R. Kalpana et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2212-2222

when their search horizons meet. Using bidirectional
search space can be reduced by a factor of 2.

 Multilevel approach: This approach takes advantage
of hierarchical coarsening of the given graph, where
additional edges have to be computed. These edges
can be regarded as distributed to multiple levels.
Depending on the given query, only a small fraction
of these edges have to be considered to find a shortest
path. Using this technique, speed-up factors of more
than 3.5 were observed for road map and public
transport graphs [4]. Timetable information queries
could be improved by a factor of 11 [5].

 Shortest-path containers: These containers[6]
provide a necessary condition for each edge, whether
or not it has to be respected during the search. More
precisely, the set of all nodes that can be reached on a
shortest path using this edge is stored. Speedup
factors in the range between 10 and 20 can be
achieved.

B. Combining Speedup Techniques

Combining each pair of techniques is outlined in [7] and it
is noted that extending these to combinations, including three
or all four techniques, are not difficult.
Goal-Directed Search and Bidirectional Search: Combining
goal-directed and bidirectional search[7] is not as obvious as it
may seem. Simple application of a goal-directed search
forward and backward yields a wrong termination condition.
In certain situations the search in each direction almost
reaches the sources of the other direction. This often results in
a slower algorithm.
To overcome these deficiencies, it is preferable to use the very
same edge weights)()(),(),(' wvwvlwvl for both

the forward and the backward search. With these weights, the
forward search is directed to the target t and the backward
search has no preferred direction, but favours edges that are
directed towards t. This proceeding always computes shortest
paths, as an s-t path is shortest independent of whether l or l
is used for the edge weights.
Goal-Directed Search and Multilevel Approach: The
multilevel pproach determines, for each query, a subgraph of
the multilevel graph on which Dijikstra’s algorithm is finally
run. The computation of this subgraph does not affect edge
lengths and thus a goal-directed search can be simply
performed on it.
Goal-Directed Search and Shortest-Path Containers:
Similar to the multilevel approach, the shortest-path containers
approach determines for a given query a subgraph of the
original graph. Again, edge lengths are irrelevant for the
computation of the subgraph and goal-directed search can be
applied readily.
Bidirectional Search and Multilevel Approach: A
bidirectional search can be applied to the subgraph defined by
the multilevel approach. The subgraph can be computed on the
fly during Dijikstra’s algorithm: for each node considered, the

set of necessary outgoing edges is determined. To perform a
bidirectional search on the multilevel subgraph, a symmetric,
backward version of the subgraph computation has to be
implemented: for each node considered in the backward
search, the incoming edges that are part of the subgraph have
to be determined. Shortest paths are guaranteed, since
bidirectional search is run on a subgraph that preserves
optimality, and, by the additional edges, only contains
supplementary information consistent with the original graph.
Bidirectional Search and Shortest-Path Containers: In
order to take advantage of shortest-path containers in both
directions of a bidirectional search a second set of containers
is needed. For each edge e E, the set Sb(e) is computed
containing those nodes from which a shortest path ending with
e exists. For each edge e E the bounding box of Sb(e) is
stored in an associative array Cb with index set E. The forward
search checks whether the target is contained in C(e), the
backward search, checks whether the source is in Cb(e). It can
be verified that by construction only such edges are pruned
that do not form part of any partial shortest path and thus of
any shortest s-t path.

Multilevel Approach and Shortest-Path containers: The
multilevel approach enriches a given graph with additional
edges. Each new edge (u1, uk) represents a shortest path
(u1,u2,...,uk) in G. Such a new edge (u1, uk) is annotated with
C(u1,u2), the associated bounding box of the first edge on this
path. This consistent labelling of new edges, which represent
shortcuts in the original graph, ensures still shortest paths.

Hierarchical and Goal-directed speed-up techniques. The
combination of hierarchical and goal directed speedup
techniques [8], [9] found to give best results for unit disk
graphs, grid networks, and time-expanded timetables. It is
suggested that the goal directed technique can be applied to
higher levels of hierarchy.

C. A* Search and Landmarks

In this section a new shortest path algorithm that uses A*
search in combination with a new graph-theoretic lower-
bounding technique based on landmarks and the triangle
inequality is explained[2]. The algorithm computes optimal
shortest paths and works on any directed graph. Experimental
results show that the new technique outperforms A* search
with Euclidean bounds, by a wide margin on road networks
[2].
 Potential Function
 A potential function is a function, from vertices to
reals. Given a potential function π, the reduced cost of an edge
is defined as follow

)()(),(),(wvwvlwvl (2.1)

 Suppose l is replaced by
l

then for any two vertices

x and y, the length of any x-y path changes by the same
amount)()(xy . Thus a path is a shortest path with

ISSN : 0975-3397 2213

R. Kalpana et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2212-2222

respect to l iff it is a shortest path with respect to
l

 and the

two problems are equivalent. Note that, π is feasible if
l

 is

nonnegative for all arcs. It is well known that if 0)(t and

π is feasible, then for any v,)(v is a lower bound on the

distance from v to t. It is to be noted that

Lemma 2.1 If
1

 and
2

 are feasible potential functions, then

)
2

,
1

max(p is feasible.

 Feasible potential functions can be combined by
taking the minimum, or, the average of feasible potential
functions. The maximum is used in particular to combine
feasible lower bound functions in order to get one that any
vertex is at least as high as each original function.

 A* Search

Consider the problem of looking for a path from s to t and
assume that a function RV

t
: exists such that

)(v
t

 gives an estimate on the distance from v to t. A* search

is an algorithm that works like Dijkstra’s algorithm, except
that at each step it selects a labelled vertex v with the smallest
value)()()(v

t
v

s
dvk to scan next. It is easy to verify

that A* search is equivalent to Dijkstra’s algorithm on the
graph with length function

t
l .

D. Geometric containers for efficient shortest path
computation

A fundamental approach in finding efficiently best routes or
optimal itineraries in traffic information is to reduce the search
space of the most commonly used shortest path routine
(Dijikstra’s algorithm) on a suitable defined graph. Reduction
of the search space should simultaneously be combined with
ways of retaining data structures, created during a
preprocessing phase of size linear to the size of the graph. The
search space of Dijikstra’s algorithm can be significantly
reduced by extracting geometric information from a given
layout of the graph and by encapsulating precomputed
shortest-path information in resulted geometric objects
(containers) [6]. When edge weights are subject to change,
methods exist for dynamically updating the containers instead
of recomputing everything from scratch [6].

1) Shortest-Path Containers:In this section, we
consider the concept of containers, which helps to reduce the
search space of Dijkstra’s algorithm. Containers are used to
keep the nodes, which are potentially useful for shortest-path
computations. This idea gives rise to Dijkstra’s Algorithm
with Pruning[6], which reduces the search space by
examining, at each iteration, only a subset of the neighbors of
a node (line 5a); the differences to Dijkstra’s algorithm are
shown in boldface. The condition in line 5a is formalized by
the notion of a consistent container.

Definition 2.1. Let G = (V, E), w : E → R be a weighted
graph. A set of nodes C V is called a container. A container
C associated with an edge (u, v) is called consistent, if for all
shortest paths from u to t that start with the edge (u, v), the
target t is in C.

In other words, C(u, v) is consistent, if S(u, v) C(u,
v), where S(u, v) represents the set of nodes x for which the
shortest u-x-path starts with the edge (u, v). Note that further
nodes may be part of a consistent container. However, at least
the nodes that can be reached by a shortest path starting with
(u, v) must be in C(u, v). The additional nodes are referred as
wrong nodes, since they lead the search in the wrong way.

Theorem 2.1. Let G = (V, E), w: E → R be a
weighted graph and for each edge e let C(e) be a consistent
container. Then, Dijkstra’s Algorithm with Pruning finds a
shortest path from s to t.

Proof. Consider the shortest path P from s to t that is
found by Dijkstra’s algorithm. If for all edges e P the target
node t is in C(e), the path P is found by Dijkstra’s Algorithm
with Pruning, because the pruning does not change the order
in which the edges are processed. A subpath of a shortest path
is again a shortest path, so for all (u, v) P, the subpath of P
from u to t is a shortest u-t-path. Then, by the definition of
consistent container, t C(u, v).

Definition 2.2. Let C denote a set of containers and for each
edge e E let S (e) V denote the set of nodes that can be
reached by a shortest path starting with e. For both sets, the
number of nodes inside all containers is counted:
 Ee eCt)}({ and Ee eSt)}({ . Both sums are

bounded by n · m. Therefore the quality of C can be defined
as:

Ee eStmn

Ee eCtmn

)}({

)}({

This fraction is biased by the number of correct
nodes. It equals 1, if the number of wrong nodes inside
containers is zero, while it becomes 0, if all containers in C
contain the entire graph.

III. COMBINING SPEEDUP TECHNIQUES

A. LANDMARKS:

The search space of Dijkstra’s algorithm can be reduced by
using landmarks. Heuristic estimates on the distance of a
vertex to the target can be calculated using landmarks.
Landmarks tend to attract the search towards them and so by
appropriately selecting landmarks the overall performance can
be improved.
 The procedure in Algorithm 1 outlines the shortest
path computation technique with heuristic values modifying
the priority of vertices. Lines 4a and 6 are the changes made to
the original Dijkstra’s algorithm. The purpose of line 4a is

ISSN : 0975-3397 2214

R. Kalpana et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2212-2222

evident of its own because the problem under consideration is
single source single target shortest path problem. The key
change is that of line 6. Traditional Dijkstra’s algorithm
considers only the distance of a vertex from the source
whereas in Algorithm 1 potential (u) is used an estimate of the
distance from the vertex to the target. So a heuristic / potential
function can direct the search towards the target thereby
reducing the search space considerably.

Algorithm 1. Using Landmarks in Shortest Path Computation

Landmark Selection: For incorporating landmarks into
shortest path computation the following additions are to be
made to the existing path computation technique: A procedure
for selecting landmarks, computing the distance values from
the landmarks to the remaining vertices and utilizing the
computed distance values to obtain heuristic estimates which
could be used to modify the priority of vertices to be
considered.

Code Segment 1. Farthest Landmark Selection Technique

The landmark selection procedure is briefed in code

segment 1. The procedure used for selecting landmarks is
called “Farthest landmark selection technique”. The idea
behind this procedure is that, landmarks are chosen in such a
way that they are far apart, i.e. the landmarks are spread
throughout the entire graph and this helps to obtain good
potential values for any vertex chosen at random without any
bias. The data structure “landmarks” is a list containing the
landmarks chosen by the procedure. “LANDMARKCOUNT”
indicates the number of landmarks required.

The selection procedure proceeds as follows. A single source
all target shortest path query is initiated similar to traditional
Dijkstra’s algorithm. The vertices deleted from the priority
queue are kept track of and the final vertex to be deleted from
the queue is added to the list of landmarks. The final vertex is
selected as a landmark because in Dijkstra’s algorithm the
vertices are always considered in the increasing order of their
shortest path distance and the final vertex deleted from the
queue is the one farthest from the source. The selection
procedure is repeated with the newly selected landmark as the
source. Once the required number of landmarks are selected
the procedure stops.

 1 for(int landmarkSelected = 0; landmarkSelected <
LANDMARKCOUNT;
 2 landmarkSelected++) {
 3 forall_nodes(v,G) {
 4 if(v == s) dist[v] = 0; else dist[v] =
MAXDOUBLE;
 5 PQ.insert(v,dist[v]);
 6 }
 7 while (!PQ.empty()) {
 8 u = PQ.del_min();
 9 if(dist[u] == MAXDOUBLE) {
 10 PQ.clear();
 11 break;
 12 }
 13 forall_adj_edges(e,u) {
 14 v = target(e);
 15
 16 double c = dist[u] + cost[e];
 17 if (c < dist[v]) {
 18 PQ.decrease_p(v,c); dist[v] = c;
 19 }
 20 }//Neighbour distance updation ends
 21 }//While the Priority Queue has vertices to be
explored
 22 landmarks.append(u); //Select the farthest node
from s as landmark
 23 s = u; //Next Source for another landmark selection
 24 } //Landmark Selection loop

1 for all nodes u belongs to V
 set dist(u) := infinity
2 initialize priority queue Q with source s and dist(s) := 0
3 while priority queue Q is not empty
4 get node u with smallest tentative distance dist(u) in
Q
4a if u = t return
5 for all neighbor nodes v of u
6 set new-dist := dist(u) + w(u, v) + potential(u)
7 if new-dist < dist(v)
8 if dist(v) = infinity
9 insert neighbor node v in Q with priority
new-dist
10 else
11 set priority of neighbor node v in Q to
new-dist
12 set dist(v) := new-dist

ISSN : 0975-3397 2215

R. Kalpana et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2212-2222

1) Calculating and Using Heuristic Values:

Code Segment 2. Updating cost using Landmark based

heuristic values

The distance from landmarks to the remaining vertices should
be calculated for obtaining potential values. The distance
calculation requires initiating a single source all target shortest
path computation from each of the landmarks. The obtained
values are stored as follows. “nodeLandmarkInfo” is a vertex
array, containing an array of landmark and corresponding
distance values. So the distance between a vertex ‘v’ and the
ith landmark can be accessed as
nodeLandmarkInfo[v].nLInfo[i].dist.
 Code Segment 2. highlights the modifications to be
made during the actual shortest path evaluation. Before
updating the distance value of a vertex ‘v’, the maximum
“distance difference” between the vertex ‘v’ and the various
landmarks is calculated and stored in “maxdiff”. This serves as
a heuristic estimate of the distance between the vertex and the
target. Hence the priority is updated only if the sum of, known
distance from source and an estimate of the distance from the
vertex to the target is less than the previously available
priority.

B. SHORTEST PATH CONTAINERS:

The Geometric containers help to reduce the search
space of Dijkstra’s algorithm by enclosing a list of target
nodes for each edge inside a geometric object. The geometric
information associated with each edge is then used for
improving the performance of shortest path computations. Let
G= (V, E), w: E → R be a weighted graph. It is remembered

that a set of nodes C V is called a container. A container C
associated with an edge (u, v) is called consistent, if for all
shortest paths from u to t that start with the edge (u, v), the
target t is in C. In other words, C (u, v) is consistent, if S (u, v)

 C (u, v), where S (u, v) represents the set of nodes x for
which the shortest u-x-path starts with the edge (u, v). Note
that further nodes may be part of a consistent container.
However, at least the nodes that can be reached by a shortest
path starting with (u, v) must be in C (u, v). The additional
nodes are referred as wrong nodes, since they lead the search
in the wrong way.

1) Creating Consistent Containers: S(e) is the
set of all nodes t with the property that there is a unique
shortest s-t path that starts with the edge e. To determine S (s,
x) for every edge (s, x) E, dijkstra’s algorithm is run for
every node s V. A node array “na” is used such that the
entry na[v], v V, stores the first edge (s, x) in a shortest s-v
path in G. This is constructed in a way similar to the shortest
path tree: every time the distance label of a node v is adjusted
via (u, v), we set na[v] to (u, v) if u=s and to na[u] otherwise
(Lines 11 -14 of code segment 3).

Code Segment 3. Container Construction

When a node u is removed from the priority queue

PQ, na[u] holds the outgoing edge with which a shortest path
from s to u starts. This information is stored in an edge array
“ea”. Line 4 invokes the container update routine for
associating the vertex ‘u’ with the appropriate edge.

The problem that arises from using S (e) is the space
requirements. Storing with each edge, a list of target nodes
that can be reached using it would require O (mn) space where
number of edges is m and the number of nodes is n; this is
substantially large for a sparse graph.

Using geometric objects (geometric containers) the
space required for storing preprocessed information can be
reduced. The impact of using the containers to speedup
Dijkstra’s algorithm does depend on the relation of layout and

1 while (!PQ.empty()) {
2 node u = PQ.del_min();
3 if(u != s) {
4 ea[na[u]].addPoint(ncoord[u]);
5 }
6 forall_out_edges(e,u) {
7 v = target(e);
8 double c = dist[u] + cost[e];
9 if(c < dist[v]) {
10 PQ.decrease_p(v,c); dist[v] = c;
 11 if(u==s)
 12 na[v]=e;
 13 else
 14 na[v]=na[u];
 15 }
 16 }
 17 }

1 //Include Landmark based potentials also
2 maxdiff = nodeLandmarkInfo[v].nLInfo[0].dist –
3 nodeLandmarkInfo[t].nLInfo[0].dist;

 4 for(int landmarkCount = 1; landmarkCount <
LANDMARKCOUNT;
 5 landmarkCount++) {
 6 diff =
nodeLandmarkInfo[v].nLInfo[landmarkCount].dist –
 7
nodeLandmarkInfo[t].nLInfo[landmarkCount].dist;
 8 //Triangle Inequality part

 9 if(diff > maxdiff)
 10 maxdiff = diff; //Choose the max Lower
Bound
 11 }

 12 double c = dist[u] + cost[e] + maxdiff; //Update
cost with heuristic value

ISSN : 0975-3397 2216

R. Kalpana et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2212-2222

edge weights. The containers are best suited for constant
graphs because for dynamic graphs where the edge weights
change rapidly results in updating the containers which is a
costly operation and it requires more time. A container can
have wrong nodes. These wrong nodes get naturally added up
when the targets associated with a particular edge are far apart
in the original layout of the graph.

2) Bounding Box: The geometric object used
for testing this speedup technique is the bounding box[6]
shown in Figure 1. It suffices to store four numbers for each
object, which are the lower, upper, left and right boundary of
the box. The bounding boxes can easily be computed online
while the shortest paths are computed in the pre-processing.

Figure 1. Bounding Box from[6]

Expansion of Bounding Box

 The operations involved in computing shortest paths
using geometric containers are creating consistent container,
enlarging the container associated with each edge and then
checking containment of a node within the bounding box
while computing the shortest path. The steps involved in
creating consistent containers are given in code segment 3.
Enlarging the container for each edge to include the target
nodes is performed in code segment 4. Each node is associated
with a coordinate value obtained from the layout of the given
graph. If a new vertex is to be added to the container
associated with an edge, the co-ordinate values of the new
vertex is compared with the existing boundary co-ordinates.
The co-ordinates of the containers are adjusted if necessary to
include the newly added vertex.

Code Segment 4. Expanding the Bounding Box

While computing the shortest path, when an edge e is reached,
the boundary values of that edge e is checked to see if it
contains the target node. If the target is present in the container
then the edge is selected otherwise the edge is discarded. Code
fragment 5 checks if a given node (specifically if the target) is
present in a container.

Code Segment 5. Checking the Container

C. COMBINATION OF LANDMARKS AND GEOMETRIC
CONTAINERS

Algorithm 2. Combination of Landmarks and Geometric Containers

The shortest path computation technique that combines both
the landmarks and geometric containers is given in Algorithm
2. The changes made to the traditional Dijkstra’s algorithm are
in lines 4a, 6 and 7. Line 4a terminates the search procedure
once the target is reached. Line 6 utilizes the containers for
checking if an edge will eventually lead to the specified target.
Line 7 in the algorithm uses potential values obtained from
landmarks to modify vertex priority.

Line 6 assumes the existence of such a container for its
functioning. It is remembered that the container associated
with an edge, gives details pertaining to the targets that are
reachable, with this edge included in their shortest path. Line 7
uses heuristic values to orient the search towards the

1 for all nodes u belongs to V
 set dist(u) := infinity
2 initialize priority queue Q with source s and dist(s) := 0
3 while priority queue Q is not empty
4 get node u with smallest tentative distance dist(u) in Q
4a if u = t return
5 for all neighbor nodes v of u
6 if t belongs to C(u, v)
7 set new-dist := dist(u) + w(u, v) + potential(u)
8 if new-dist < dist(v)
9 if dist(v) = infinity
10 insert neighbor node v in Q with priority
new-dist
11 else
12 set priority of neighbor node v in Q to new-
dist
13 set dist(v) := new-dist

1 bool contains(const CPoint &p) const {
2 if(p.x >= min_x && p.x <= max_x &&
3 p.y >= min_y && p.y <= max_y)
4 return true;
5 else
6 return false;
7 }

 1 bool addPoint(const CPoint &p) {
 2 if(p.x < min_x)
 3 min_x = p.x;
 4 else if(p.x > max_x)
 5 max_x = p.x;

6 if(p.y < min_y)
7 min_y = p.y;
8 else if(p.y > max_y)
9 max_y = p.y;

10 return true; //Sucessflly updated the container
11 }

ISSN : 0975-3397 2217

R. Kalpana et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2212-2222

target.The benefits of both the containers and landmarks are
coupled as follows. The vertex ‘u’ to be visited next is deleted
from the priority queue in line 4. The main modification
occurs in the neighbour distance updation logic. Traditional
Dijkstra’s algorithm considers all the neighbours ‘v’ of the
selected vertex ‘u’; using containers only a subset of the
neighbours ‘v’ to be visited are considered (line 6 of the
algorithm), thereby reducing the search space. Then for the
selected neighbours ‘v’ the distance to be updated includes an
estimate of the distance from the vertex to the target (line 7 of
the algorithm) and this helps to focus the search towards the
target.

IV. EXPERIMENTAL ANALYSIS

The different speedup techniques for Dijkstra’s algorithm
were implemented in C++ with the help of LEDA library
version 6.2 (Library of Efficient Data Types and Algorithms)
[10]. The graph and priority queue data structures as well as
other utilities such precise time measurement function
provided by LEDA were used in the implementation. The code
was compiled using Microsoft ® 32-bit C/C++ Compiler
(version 15.00.30729.01) and the experiments were performed
on an Intel Core2Duo machine (2.20 GHz) with 1 GB RAM
running Windows 7 32-bit operating system.All the speedup
techniques were coded as separate functions, for instance, the
bidirectional search and traditional Dijkstra’s algorithm were
kept as separate modules. The random and planar graph
generators provided by LEDA were used for generating graphs
on which the modules were tested. The number of vertices
visited during the shortest path computation and runtime were
measured and used as metrics for comparing the different
speedup techniques. The time required for preprocessing and
shortest path computation was accurately measured by using
the functionality offered by LEDA.

A. ANALYSIS OF LANDMARKS ON RANDOM
GRAPHS
The following remarks could be made based on the

tabulated values. The preprocessing time steadily increases
with the number of vertices. This is acceptable because the
distance between a landmark and all the remaining vertices are
computed during preprocessing. The running time of the
modified search procedure with landmarks included is either
nearly equal to or slightly higher than that of the traditional

Dijkstra’s algorithm. The performance with landmarks is
expected to improve on real world graphs. The number of
vertices visited is reduced by using landmarks. A speedup of
nearly 1.2 is achieved.

TABLE I. COMPARISON OF TRADITIONAL DIJKSTRA’S ALGORITHM WITH
LANDMARKS BASED ON RUNNING TIME AND VERTICES VISITED DURING

SHORTEST PATH COMPUTATION ON RANDOM GRAPHS

Verte
x

Count

Edg
e

Cou
nt

Preproces
sing Time

(s)

Runtime
[with

Landma
rks] (s)

Vertices
Visited

[Landma
rks]

Runti
me

[Dijkst
ra] (s)

Vertic
es

Visited
[Dijkst

ra]

10000
7550

0
0.332 0.0489 3698 0.0408 5365

11000
8525

0
0.41 0.0703 5215 0.0543 6295

12000
9060

0
0.477 0.0678 4626 0.0451 4739

13000
9100

0
0.518 0.081 5793 0.0536 6378

14000
1078
00

0.582 0.0759 4629 0.0621 5629

15000
1125
00

0.642 0.0899 5682 0.0715 7940

16000
1208
00

0.678 0.0984 6274 0.0739 7712

17000
1275
00

0.765 0.129 7747 0.0899 9177

18000
1332
00

0.886 0.107 5814 0.105 10380

19000
1425
00

0.878 0.108 6139 0.0905 8535

20000
1610
00

0.969 0.149 8147 0.132 12390

21000
1554
00

1.03 0.152 8313 0.125 11826

22000
1672
00

1.06 0.194 11341 0.124 10558

23000
1541
00

1.04 0.189 11749 0.104 10420

24000
1668
00

1.07 0.168 10432 0.119 11639

25000
1862
50

1.27 0.187 10245 0.137 11857

Figure 1. shows the number of vertices visited by the
search procedure with landmarks and that of traditional
Dijkstra plotted against the number of vertices present in the
graph. The number of vertices visited by searching with
landmarks is considerably less in most searches.

B. ANALYSIS OF LANDMARKS ON PLANAR GRAPHS
The effect of using landmarks during shortest path comp-

Figure 1. Vertices visited during shortest path computation by traditional
Dijkstra and search procedure with Landmarks on random graphs

Figure 2. Vertices visited during shortest path computation by traditional
Dijkstra and search procedure with Landmarks on planar graphs

ISSN : 0975-3397 2218

R. Kalpana et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2212-2222

-utation on planar graphs is analysed below. The performance
of the technique in this graph type is nearly equal to that of
traditional Dijkstra’s algorithm. Figure 2 plots the vertices
visited by traditional Dijkstra and a search using landmarks on
the planar graphs generated by LEDA. The values are
tabulated in Table 2.

Table II Comparison of traditional Dijkstra’s algorithm with Landmarks based
on running time and vertices visited during shortest path computation on
planar graphs

Verte
x

Count

Edge
Coun
t

Preproc
essing
Time (s)

Runtim
e [with
Landma
rks] (s)

Vertices
Visited
[Landm
arks]

Runtim
e

[Dijkstr
a] (s)

Vertice
s

Visited
[Dijkst

ra]
10000 17509 0.0193 0.00475 439 0.0044 439

11000 19344 0.0208 0.00505 416 0.00445 434

12000 21166 0.0226 0.00555 488 0.00515 488

13000 22999 0.0248 0.0058 494 0.0053 493

14000 24869 0.0269 0.0063 540 0.00565 548

15000 26698 0.0282 0.0068 536 0.00635 550

16000 28555 0.0304 0.00725 554 0.00655 554

17000 30399 0.0358 0.00945 656 0.0087 656

18000 32251 0.0383 0.00955 580 0.00905 594

19000 34111 0.0412 0.01 652 0.0093 679

20000 35966 0.0452 0.0112 648 0.0102 666

21000 37844 0.0479 0.0113 683 0.0109 626

22000 39705 0.0518 0.0127 675 0.0112 718

23000 41550 0.0578 0.0139 801 0.0146 828

24000 43435 0.0603 0.0144 767 0.0129 766

25000 45286 0.0655 0.0144 794 0.0136 794

C. PERFORMANCE OF GEOMETRIC CONTAINERS

ON RANDOM GRAPHS
Table 3. shows the experimental values obtained by
comparing Geometric Containers with the traditional shortest
path computation technique. A speedup of 1.2 is achieved
based on the number of vertices visited during the shortest
path computation. The average running time of the search with
geometric containers nearly equals that of traditional search.
Two important points of interest are as follows. The first one
is that increasing the number of vertices can reduce the
running time but due the memory limitations of the
experimental setup and the libraries used the vertex count was
not increased during the analysis. The second point to note is
that geometric containers have a better performance in real
word graphs and this was not tested due to time limitations.

Table III. Runtime and Number of vertices visited comparison of
Geometric containers and traditional Dijkstra on random graphs

Vert
ex
Cou
nt

Edge
Count

Pre-
processi
ng
Time
(s)

Runtime
[Contain
ers] (s)

Vertices
Visited
[Contain
ers]

Runtim
e
[Dijkst
ra] (s)

Vertice
s
Visited
[Dijkst
ra]

1000 8000 1.879 0.0013 512 0.001 325

2000 16000 7.99 0.0026 984 0.0028 1204

3000 21000 17.9 0.0042 1430 0.0038 1592

4000 20000 27.9 0.0037 1316 0.0048 2306

5000 25000 47.1 0.006 1778 0.006 2749

6000 30001 73.5 0.0086 2749 0.007 3000

7000 63000 148 0.0138 3233 0.0108 2959

8000 72000 214 0.0128 2640 0.0139 3596

9000 72000 257 0.0158 3224 0.0182 5373

1000
0

10000
0

389 0.029 5634 0.0229 5312

Figure 5.Vertices visited during shortest path computation by traditional
Dijkstra and search procedure with containers on random graphs

Figure 5 shows the number of vertices visited by
traditional search technique and the search with containers,
plotted against the number of vertices present in the graph.

D. PERFORMANCE OF GEOMETRIC CONTAINERS
ON PLANAR GRAPHS

 Using geometric containers on planar graphs
generated by LEDA had a meagre performance on the number
of vertices visited. The values are shown in Table 4. It gives a
varying results of running time and vertices visited compared
to that of Dijkstra.

ISSN : 0975-3397 2219

R. Kalpana et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2212-2222

Table IV. Runtime and visited vertices comparison of Geometric containers
and traditional Dijkstra on planar graphs

Verte
x

Count

Edge
Coun

t

Preproc
essing

Time (s)

Runtim
e [with

Contain
ers] (s)

Vertices
Visited
[Contai

ners]

Runti
me

[Dijkst
ra] (s)

Vertices
Visited
[Dijkstr

a]
10000 17470 25.085 0.0031 116 0.0047 106

11000 19294 31.3 0.0015 78 0.0063 122

12000 21102 36.9 0.0045 76 0.0048 103

13000 23010 43.6 0.0047 99 0.0047 123

14000 24857 50.5 0.0045 82 0.0048 156

15000 26756 58.3 0.0063 119 0.0046 60

16000 28556 66.2 0.0046 164 0.0063 46

17000 30407 78 0.0125 160 0.0031 108

18000 32180 87.6 0.014 118 0.0016 98

19000 34164 98.1 0 112 0.0156 162

20000 35953 109 0.0156 59 0 114

E. COMBINATION OF LANDMARKS AND

GEOMETRIC CONTAINERS APPLIED TO
RANDOM GRAPHS

 The important technique implemented in this work is
a search procedure that combines both the landmarks and
geometric containers during shortest path computation. The
graphs considered for analysis by this technique are
undirected, though it is possible to apply the technique to
directed-graphs, minor changes to the landmarks module will
be necessary. Table V. shows the experimental results.
Though the preprocessing time is high, the process occurs only
once and therefore excluded from the shortest path
computation runtime values. The new technique reduces the
number of vertices visited during the shortest path query
evaluation and speedup of 1.79 based on vertex-visit-count is
achieved. The values in Table V. are with respect to random
graphs generated by LEDA.

Table V. Combination of Landmarks and Geometric Containers
compared with traditional Dijkstra on Random Graphs

There is huge difference in pre-processing time of

landmarks and containers. As the container construction itself
will take a longer time, combination of landmark and
container will have more time. The difference steadily
increases with the number of nodes.

If running time alone is considered the traditional
algorithms work better in some case, but large sparse graph it
is always necessary to consider the preprocessing time also.
Here, additional advantage is for the number of nodes visited
during the search. i.e the speedup is measured in terms of
number of nodes visited. The speedup is expected to improve
for the increasing number of nodes and for real world graphs.

F. Combination of Landmarks and Geometric
Containers applied to Planar Graphs

A speedup of 1.12 was achieved based on the running

time of the technique whereas the speedup was 1.7 with
respect the number of vertices visited during the shortest path
computation. Eventhough the preprocessing phase occurs only
once, the preprocessing time is considerably reduced in planar
graphs for containers. The number of vertices visited is
reduced compared to that of Dijkstra’s algorithm.
 Figure 6. compares the running time of the combined
speedup technique with that of Dijkstra’s and the average
running time is observed to be slightly improved. As
mentioned earlier containers perform well when applied to real
world graphs and hence the combined speedup technique is
also expected to perform better in such a scenario.

Figure 7. is the graph, which gives the variations of
the number of vertices visited by the techniques under
comparison, viz., “combined landmarks and containers” and
traditional Dijkstra’s algorithm.

From the tabulated values it can be inferred that the
combined speedup technique improves the performance of
shortest path computation to a considerable extent.

Vertex
Count

Edge
Count

Preprocess Time
[Landmarks]

Runtime
[Combination] (s)

Vertices Visited
[Combination]

Runtime
[Dijkstra] (s)

Vertices
Visited

[Dijkstra]

Preprocess Time
[Containers]

1000 10000 0.019 0.001 85 0.0015 276 3.13

2000 20000 0.0325 0.0055 552 0.003 348 13.8

3000 30000 0.0725 0.007 579 0.011 2597 38.1

4000 40000 0.099 0.022 1801 0.014 2699 80.3

5000 50000 0.139 0.027 1993 0.0195 3040 145

6000 60000 0.227 0.0155 892 0.013 1495 229

7000 70000 0.237 0.0325 1884 0.038 5501 339

8000 80000 0.348 0.0244 1228 0.0355 4868 467

9000 90000 0.347 0.0405 2760 0.0375 3067 633

10000 100000 0.296 0.0386 2062 0.0080 944 781

ISSN : 0975-3397 2220

R. Kalpana et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2212-2222

Table VI. Combination of Landmarks and Geometric Containers compared with traditional Dijkstra on Planar Graphs

Vertex
Count

Edge
Count

Preprocess
Time

[Landmarks]

Runtime
[Combination]

(s)

Vertices
Visited

[Combination]

Runtime
[Dijkstra]

(s)

Vertices
Visited

[Dijkstra]

Preprocess
Time

[Containers]
1000 1519 0.0025 0 40 0.001 124 0.256

2000 3213 0.0035 0.0005 71 0.001 123 1

3000 4932 0.005 0.000999 119 0.001 184 2.26

4000 6659 0.007 0.001 69 0.002 226 4.01

5000 8435 0.009 0.002 74 0.002 199 6.26

6000 10249 0.011 0.002 133 0.003 298 9.05

7000 12075 0.012 0.003 361 0.003 445 12.4

8000 13878 0.013 0.0035 310 0.003 437 16.3

9000 15696 0.017 0.0035 234 0.004 349 20.7

10000 17512 0.0185 0.005 356 0.004 650 25.6

Figure 6. Running time of the “combined landmark and container” speedup

technique compared with Dijkstra’s algorithm

V. CONCLUSION

The speedup techniques used for Dijkstra’s algorithm
like Landmarks and Geometric containers were analysed with
random graphs and planar graphs. The key metrics for
evaluation of the techniques like speedup based on running
time and the number of vertices visited during shortest path
computation were considered. The technique of combining
landmarks and geometric containers was also analysed for the
same random and planar graph types.

Each speedup technique worked well for a specific
type of graph and hence the performance was appreciable in
those cases. The heuristic values obtained by using landmarks
helped to reduce the number of vertices visited during shortest
path computation but the running time of the technique was
marginally high due the computation overhead involved
during vertex distance updation process. The geometric
containers achieved speedup based on the vertices visited

Figure 7. Vertices visited using the “combined landmark and container”
speedup technique compared with Dijkstra’s algorithm

during the evaluation of shortest path query but were nearly
equal in running time to the traditional search process. The
combined speed up technique based on landmarks and
containers was able to perform better under the same
experimental setup compared to the other techniques. Based
on the running time the speedup was 1.12 while based on the
number of vertices visited the speedup attained was 1.7.

The performance is expected to be improved on real
world graphs compared to the graphs generated by LEDA. The
technique can be extended for new combinations. This
technique can also be applied to various other graph types.

ACKNOWLEDGMENT

The authors wish to thank Mr. R. Arvind Kumar for his
efforts in conducting the experiments.

ISSN : 0975-3397 2221

R. Kalpana et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 06, 2010, 2212-2222

REFERENCES
[1] DIJKSTRA, E. W, “A note on two problems in connection with

graphs”, In Numerische Mathematik, Vol. 1, Mathematisch
Centrum, Amsterdam, The Netherlands, 1959, pp269–271.

[2] Andrew V.Goldberg & Chris Harrelson, “Computing the Shortest
Path: A* Search Meets Graph Theory”, In Proc. 16th Annual ACM-
SIAM Symposium on Discrete Algorithms, 2005.

[3] I. Phol, “Bi-directional Search”, In Machine Intelligence, volume
6, 1971, pp 124-140. Edinburgh Univ. Press, Edinburgh.

[4] Martin Holzer, “Hierarchical speedup techniques for shortest path
algorithms”, M, Tech. report, Dept of Informatics, 2003,
vUniversity of Konstanz, Germany.

[5] Frank Schulz, Dorothea Wagner, & Christos Zaroliagis, “Using
multi-level graphs for timetable information in railway systems”,
In Proc. 4th Workshop on Algorithm Engineering and Experiments.
LNCS 2409, Springer-Verlag, New York. , 2002, pp43- 59.

[6] Dorothea Wagner, Thomas Willhalm, & Christos Zaroliagis,
“Geometric Containers for Efficient Shortest-Path Computation”,
ACM Journal of Experimental Algorithmics, 10(1.3), 2005.

[7] Martin Holzer, Frank Schulz, Dorothea Wagner, & Thomas
Willhalm, “Combining Speed-up Techniques for Shortest-Path
Computations”, ACM Journal of Experimental Algorithmics, Vol.
10, Article No. 2.5., 2005.

[8] Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis
Schieferdecker, Dominik Schultes, & Dorothea Wagner, “
Combining hierarchical and goal-directed speed-up techniques for
dijkstra's algorithm”, ACM Journal of Experimental Algorithmics,
Vol. 15, Article No. 3, 2010.

[9] Bauer. R, Delling. D, Sanders. P, Schieferdecker. D, Schultes. D
& Wagner. D, “Combining hierarchical and goal-directed speed-up
techniques for dijkstra's algorithm”, in the proceedings of the 7th
Workshop on Experimental Algorithms(WEA’08), Springer,
Berlin, pp.303-318, 2008.

[10] LEDA, http://www.algorithmic-solutions.com

AUTHORS PROFILE

R. Kalpana is working as Associate Professor in the Department of Computer
Science & Engineering, Pondicherry Engineering College, Pondicherry,
India.She has completed her B.Tech(Computer Science & Engineering) from
Pondicherry University.She has completed her M.Tech(Computer Science &
Engineering) from Pondicherry University. She is pursuing Ph.D at
Pondicherry University. She has published ten papers in national and
international conferences/ journals.

Prof. Dr. P. Thambidurai is the Principal and Professor of Computer
Science & Engineering, Perunthalaivar Kamarajar College of Engineering and
Technology, Karaikal. He has completed his M.E(Computer Science &
Engineering) from Anna University, Chennai. He has completed his Ph.D
from Alagappa University, Karaikudi, Tamilnadu. He has published more than
hundred papers in national, International journals and conferences.

ISSN : 0975-3397 2222

