
Santosh kumawat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1716-1721

Sequence Related IT Functions for String Based
Update Operations by New Operational

Transformation Algorithms for Wide-Area
Collaborative Applications

1Santosh kumawat 2Ajay Khunteta
Mtech Scholar Asst Prof. Dept. of CS
Poornima College of Engineering Poornima College of Engineering
34, Meera Kutir, Jain Mohalla, Jaipur, Rajasthan, India
Main Bazar, Sanganer, Jaipur-302029

Abstract— Operational transformation (OT) is an established
optimistic consistency control method in collaborative
applications. This approach requires correct transformation
functions. In general all OT algorithms only consider two
character-based primitive operations and hardly two or three of
them support string based two primitive operations, insert and
delete. In our earlier paper [1] we have proposed new
algorithms that consider first time in history new string
operations that are update for atomic string operations in
addition to primitive operations like insert and delete. In this
paper we have proposed new algorithms LocalU and RemoteU
for handling local and remote update operations of strings for
both atomic and sequential operations. These algorithms first
time in history are handling sequential update string operations.
These algorithms satisfy correctness criteria like causality
preservation and admissibility preservation. These algorithms
are for sequential update operations but have synchronization
with existing primitive operations like insert and delete also. It
also handles overlapping and splitting of operations when
concurrent operations are transformed. These algorithms can
be applied in a wide range of practical collaborative
applications.

Key words: Operational transformation, transformation functions,
update string sequential operations, collaborative applications.

I. INTRODUCTION

 Operational Transformation (OT) was originally
invented for consistency maintenance in plain-text group
editors [8]. In over 20 years, OT has evolved to support an
increasing number of applications, including group undo,
group-awareness, operation notification and compression,
spreadsheet and table-centric applications, HTML/XML and
tree-structured document editing, word processing and slide
creation, transparent and heterogenous application-sharing
and mobile replicated computing and database systems. To
effectively and efficiently support existing and new
applications, it must continue to improve the capability and
quality of OT in solving both old and new problems. The
soundness of the theoretical foundation for OT is crucial in

this process. One theoretical underpinning of all existing OT
algorithms is causality/concurrency causally related
operations must be executed in their causal order; concurrent
operations must be transformed before their execution.

 Operational Transformation (OT) [3] is an established
optimistic consistency control method in collaborative
applications network. Consistency control in this environment
must not only guarantee convergence of replicated data, but
also attempt to preserve intentions of operations. Fast local
response and timely group awareness are accepted
performance metrics in group editors. In general optimistic
consistency control on linear data structures is done. In this
context a family of optimistic concurrency control algorithms
called OT has been well established. OT allows to build real
time groupware tools by correct transformation functions.

 The objective of a collaborative environment [10] is to
facilitate team working and, in particular, to enable a group of
persons to manipulate shared objects, and modify them in a
coherent manner. Moreover, an integrated set of schemes and
algorithms, which support the proposed consistency model,
are devised and discussed in detail. In particular, it have
contributed (1) a novel generic operation transformation
control algorithm for achieving intention preservation in
combination with schemes for achieving convergence and
causality preservation and (2) a pair of reversible inclusion
and exclusion transformation algorithms for string wise
operations for text editing

 A plethora of OT algorithms have been proposed
over the past two decades. Most of OT algorithms are
developed under the framework of Sun et al [11], which
includes an informal condition called "intention preservation".
As a consequence, in general their correctness cannot be
formally proved. In general all OT algorithms only consider
two character-based primitive operations and hardly two or
three of them support string based two primitive composite
operations, insert and delete. In real collaborative applications
in which string based operations are common. The handling of
string operations is very intricate, as confirmed in [11]. So

ISSN : 0975-3397 1716

Santosh kumawat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1716-1721

there is a open challenge to handle more string composite
operations.

 To address the above challenges, this paper proposes
two OT algorithms RemoteU and LocalU. It is based on the
ABT framework [12, 13] which formalizes two correctness
condition, causality and admissibility preservation. Causality
preservation needed whenever an operation o is executed at a
site, all operations that happen before o must have been
executed at that site. Conceptually, admissibility requires that
the execution of every operation not violate the relative
position of effects produced by operations that have been
executed so far. In general the ABT framework algorithms
can be formally proved. The new proposed algorithms first
time are handling string operations like update for atomic and
composite operations both in addition to primitive operations
insert and delete. Earlier our paper [1] first time in history has
given algorithms for atomic update operations for strings and
now in this paper we are proposing algorithms what handle
both atomic and sequential update operations for strings, first
time in history. It handles overlapping and splitting of
operations when concurrent operations are transformed. These
algorithms can be applied in a wide range of practical
collaborative applications that require atomic string
operations. Moreover, the design of these algorithms will
provide a new starting point when extending OT algorithms to
support composite and block operations that semantically
must be applied together, such as cut-paste and find-replace.

A. OT Functions- Inclusion and Exclusion Transformation

 OT functions used in different OT systems may be
named differently, but they can be classified into two
categories.

 One is Inclusion Transformation (or Forward
Transformation): IT(Oa, Ob) or T(op1,op2), which transforms
operation Oa against another operation Ob in such a way that
the impact of Ob is effectively included and the other is
Exclusion Transformation (or Backward Transformation) :
ET (Oa, Ob) or T-1(op1,op2), which transforms operation Oa
against another operation Ob in such a way that the impact of
Ob is effectively excluded.

II. BACKGROUND AND RELATED WORK

 The philosophy of O'I' is to avoid operation overwriting
so as not to lose user interaction results. The objective of a
collaborative environment [15] is to facilitate team working
and, in particular, to enable a group of persons to manipulate
shared objects, and modify them in a coherent manner.

A. System Model and Notations

 A number of collaborating sites is there in a system. The
shared data is replicated at all sites when a session starts.

Local operations are executed immediately and for local
responsiveness, each site submits operations only to its local
replica. In the background, local operations are propagated to
remote sites. The shared data is like a linear string of atomic
characters. Objects are referred to by their positions in the
string, starting from zero. It consider two only primitive
operations, namely, insert(p, s) and delete(p, s), which insert
and delete a string s at position p in the shared data,
respectively. Any operation o has attributes like o.id is the
unique id of the site that originally submits o; o.type is the
operation type which is either insert or delete; o.pos is the
position in the shared data at which o is applied; o.str is the
target string which the operation inserts or deletes. For a
operation o, o.pos is always defined relative to some specific
state of the shared data.

 In the following table1 from [3] general notations of
operation are summarized.

TABLE I. A SUMMARY OF MAIN NOTATIONS

 To support string wise transformation, we need to
introduce a few more notations. Given any string s, notation
|s| is the number of characters in s. If 0 <= i<j <= |s|, notation
s[i:j] returns a substring of s starting from position i to
position j -1. If j is not specified, s [i:] returns a substring
from i to the end. For example, let s="abc", then |s|=3 and
s[0:2]="ab" and s[1:]="bc".

B. Literature Survey

 Research on real-time group editors in the past decade
has invented an innovative technique for consistency
maintenance, under the name of operational transformation,
which was pioneered by the GROVE Since then, several
search groups have independently extended the operational
transformation technique in their design and implementation
of these types of systems. The limitation of causality had
caused correctness problems from the very beginning of OT
history. The dOPT algorithm was the first OT algorithm based
on concurrency relationships among operations: a pair of

ISSN : 0975-3397 1717

Santosh kumawat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1716-1721

operations is transformable as long as the operations are
concurrent.

 Major representatives in this area include the
REDUCE (REal-time Distributed Unconstrained Cooperative
Editing) system, the Jupiter system, and the adOPTed
algorithm. And then a new optimized generic operational
transformation control algorithm get proposed.

 Algorithms like aDOPTed, GOTO are used to
maintain the consistency of shared data.

 Operational transformation control algorithm SLOT
for concurrency control, is significantly simpler and more
efficient than existing algorithms. Furthermore, it is free of
state vectors, free of ET transformation functions, and free of
the TP2 transformation condition.

 COT (Context-based OT) algorithm and the theory
of operation context is capable of capturing essential
relationships and conditions for all types of operation in an
OT system; it provides a new foundation for better
understanding and resolving OT problems.

 To ensure the convergence of the copies while
respecting the user intention, it have proposed two new
algorithms, called SOCT3 and SOCT4.

 A novel state difference based transformation (SDT)
approach which ensures convergence in the presence of
arbitrary transformation paths.

 It proposes an alternative framework, called
admissibility-based transformation (ABT), that is theoretically
based on formalized, provable correctness criteria and
practically no longer requires transformation functions to
work under all conditions. Compared to previous approaches,
ABT simplifies the design and proofs of OT algorithms.

 Next it is having ABTS for string handling. First, it is
based on a recent theoretical framework with formal
conditions such that its correctness can be proved. Secondly,
it supports two string based primitive operations and handles
overlapping and splitting of operations. As a result, this
algorithm can be applied in a wide range of practical
collaborative applications.

III. ALGORITHMS

 A history buffer Seq is maintained at each site which

logs operations that have been applied to the data replica at
that site. For getting better correctness Seq is maintained as a
concatenation of three sequences SeqU, SeqIns and SeqDel
which record the executed update, insert and delete operations
in their order of execution, respectively. That is
Seq=SeqU.SeqIns.SeqDel. In addition each site maintains RQ,
a list of operations received from remote sites in their order of
arrival. Each site j runs the following three concurrent threads:

 Thread £ each time receives a local operation o,
applies it to the data replica, calls algorithm LocalU to update

Seq for update operations and compute o', a transformed
version of o, and propagates the resulting o' to remote sites.
Thread N receives remote operations from the network and
appends them to RQ in their order of arrival. Thread R scans
RQ for a remote operation o at a time that is causally ready,
i.e., all operations that happen before o have been executed at
site j. Then algorithm RemoteU is called to update Seq and
transform o into a version o' that can be correctly executed in
current state of site j. After that, o' is executed on the data
replica at site j.

 Note here we are appending our new sequence SeqU
in stating of Seq before SeqIns and SeqDel, so it is not
affecting the appending process of new coming insert/ delete
operations to the existing Seq, so what algorithms we are
having in history for insert/ delete operations the same can
get applied in the proposed scenario also that’s why in this
paper we are proposing new algorithms only for newly
proposed update operation for strings.

A. Algorithm LocalU

Algorithm1 LocalU(o): o'

1. SeqIDSeqIns.SeqDel
2. if o.type=update then
3.(o', SeqID')swapUSqID(SeqID, o)
4. SeqSeqU. o'. SeqID'
5.endif
6. return o'

 Seq is maintained as Seq=SeqU.SeqIns.SeqDel, so
a new local update operation ou must append to SeqU and
insertion and deletion in SeqID where insertion will append to
SeqIns and deletion will append to SeqDel. All operations
executed on the local data replica are in Seq, the new local
operation o is defined in current state of shared data. All
operations in Seq happen before o (Seqo). Here Seq and o
are contextually serialized(or Seqo). So ou cannot directly
append to SeqU due to the presence of SeqID because
SeqUou does not holds. We solve this problem by
computing ou', some version of ou , such that SeqUou'. This
is achieved by swapping SeqID and ou. Before the swapping
SeqIDou holds and after swapping we get SeqID' and ou'
such that ou' SeqID' holds. So ou' can be appended to SeqU.

 Based on above explanation in algorithm LocalU if
the new local operation o is an updation, we swap it with
SeqID and append the resulting o' to SeqU. Then we update
the history to SeqU.o'.SeqID'. The resulting o' is returned and
will be propagated to remote sites. The algorithm swapUSqID
will be explained later.

B. Algorithm RemoteU

 Algorithm RemoteU append o to SeqU where o is a
remote operation and it return o' such that o' can be executed

 Santosh Kumawat is M.Tech Scholar in CS/IT Deptt of Poornima
College of Engineering, Jaipur, Rajasthan, India.

 Ajay Khunteta is Asst Prof in CS/IT Deptt of Poornima College
of Engineering, Jaipur, Rajasthan, India. ISSN : 0975-3397 1718

Santosh kumawat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1716-1721

in current state. In it we are transposing SeqU in two
contextually serialized sequences SeqUh and SeqUc such that
SeqU= SeqUh.SeqUc where SeqUh contain all operations in
SeqU that happen before o and SeqUc contain all operations
in SeqU that are concurrent with o. Then history Seq is equal
to SeqUh.SeqUc.SeqIns.SeqDel

Algorithm 2 RemoteU(o): o'

1. (SeqUh,SeqUc)transposeHC(SeqU,o)
2. o'SITOSq(o, SeqUc)
3. SeqIDSeqIns.SeqDel
4. if o.type=update then
5. SeqID'SITUSqID(SeqID, o')
6. Seq SeqU. o'. SeqID'
7. endif
8. return o'

 As in Algorithm 2, we specify function RemoteU
based on the above discussions. In line 1, it first transposes
SeqU into two contextually serialized subsequences,
SeqUh,SeqUc, by calling algorithm transposeHC. In line 2, it
calls algorithm SITOSq to get o' by transforming o with
SeqUc. Then in line 3, it assigns SeqIns.SeqDel to SeqID. If o
is an updation, it transforms SeqID to incorporate the effect
of o' in line 5. After that in line 6, o' is added between SeqU
and the resulting SeqID'.

 Algorithm transposeHC is already well-understood
[4, 5, 6, 7] and here omitted. The IT function, SITOSq from
our paper[2] and SITUSqID , will be explained in later
Section .

C. Basic Functions

 Basic IT Functions :

 In the most basic form, function IT(o1,o2) transforms a
primitive operation o1 with another primitive operation o2 and
outputs result o1'. The output result can be a composite
operation or atomic operation. According to [14], the
precondition of IT(o1, o2) is o1Uo2 and the postcondition is
o2o1'. From[1] basic IT functions are ITUI and ITUD for
atomic update operations where ITUI Algorithm transforms
operation update o1 with another operation that is insertion o2
to incorporate the effects of o2 in o1 and ITUD transforms
operation update o1 with another operation that is deletion o2
to incorporate the effects of o2 in o1.

 Basic Swap Functions

 The basic swapping function for swapping two
operations. Given two operations o1 and o2, where o1  o2,
function swap(o1, o2) transposes them into o1' and o2' such that
o2' o1'.The precondition of swap(o1, o2) is o1  o2.

 From[1] basic swap functions are swapUI and
swapUD where swapUI swaps an updation o1 and an insertion

o2 and swapUD swaps an updation o1 and an deletion o2.
Algorithm swapUI and swapUD is to swap update operation
on string with other primitive operations like insertion and
deletion on strings.

D. Sequence Related Functions

Algorithm 3 SITUSqID

SITUSqID(Sq, o): Sq'
1. opo
2. SeqIns.SeqDelSq
3. olinsgetSubOpList(SeqIns)
4. oldelgetSubOpList(SeqDel)
5. ol1[] ol2[]
6. for (i=0; i< |olins|; i++)do
7. o1op
8. opITUI(op, olins[i])
9. or ITIU(olins[i], o1)
10. ol1ol1.(or.sol)
11. endfor
12. for (i=0; i< |oldel|; i++)do
13. o2op
14. opITUD (op, oldel [i])
15. or ITDU(oldel[i], o2)
16. ol2ol2.(or.sol)
17. endfor
18. SeqIns'combineSubOpList(ol1)
19. SeqDel' combineSubOpList(ol2)
20. Sq' SeqIns'.SeqDel'
21. return Sq'

 We specify function SITUSqID(Sq, o) for
transforming a sequence Sq with an operation o to
incorporate the effects of o into every operation in Sq where
SeqIns.SeqDelSq means sq consist of at left sequence
SeqIns for insertion and then SeqDel for deletion in a linear
fashion. Then we call functions ITUI, ITIU to inclusively
transform operation o with SeqIns for insertion operations
sequence and get transformed sequence ol1 and ITUD, ITDU
to inclusively transform operation o with deletion operations
sequence SeqDel and get transformed sequence ol2. Finally
we merge all suboperations in ol1 into SeqIns' and ol2 into
SeqDel' and return Sq' where Sq'SeqIns'.SeqDel'

Algorithm 4 swapUSqID

swapUSqID(sq, o):(o', sq')
1. o'o
2. SeqIns. SeqDelsq
3. ol1 getSubOpList(SeqIns)
4. ol2 getSubOpList(SeqDel)
5. for(i=|ol1 |-1;i>=0;i--) do
6. (o', ol1[i])swapUI (ol1[i], o')

ISSN : 0975-3397 1719

Santosh kumawat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1716-1721

7. endfor
8. for(i=|ol2 |-1;i>=0;i--) do
9. (o', ol2[i])swapUD(ol2 [i], o')
10. endfor
11. SeqIns'combineSubOpList(ol1)
12. SeqDel' combineSubOpList(ol2)
13. sq' SeqIns'.SeqDel'
14. return (o', sq')

 As in Algorithm 4, function swapUSqID(sq, o)
transposes a sequence sq of insertion and deletion with an
updation o, where sq  SeqIns. SeqDel, means sq consist of
at left sequence SeqIns for insertion and then SeqDel for
deletion in a linear fashion. Before swapping there is sqo
and after swapping there is o' sq'. We first flatten sq by
collecting all sub-operations of sq in list ol1 and ol2 for sub
lists SeqIns and SeqDel respectively. Then we call the
specified function swapUI and swapUD to transpose every
operation in ol1 and ol2 respectively with o from right to left.
Finally we merge all suboperations in ol1 into SeqIns' and ol2
into SeqDel' and return the resulting sequence as sq' and o'
where sq' SeqIns'.SeqDel' and o' transposed form of
operation o.

 Functions swapUD, swapUI, ITUI and ITUD from
our paper[1]. Functions getSubOpList and combineSubOpList
from [3].

IV. CONCLUSION

 In this paper we have proposed new optimized generic

operational transformation algorithms that first time in history
consider string operation update for sequence related string
operations in addition to atomic operations. In past first time
in history we have proposed algorithms in [1] for atomic
update string operations and now in this paper we are
proposing algorithms for update operations that support
sequence related string operations. It also support existing
primitive operations like insert and delete. Also since SeqU is
in starting of Seq where SeqSeqU.SeqIns.SeqDel, so it is
not affecting the earlier algorithms for insertion and deletion.
The new algorithms for update operations is also supporting
earlier algorithms for insertion and deletion in history.

 Most of OT algorithms are developed under the
framework of Sun et al [11], which includes an informal
condition called "intention preservation". As a consequence,
in general their correctness cannot be formally proved. In
general all OT algorithms only consider two character-based
primitive operations and hardly two or three of them support
string based two primitive operations, insert and delete.

 To address the above challenges, this paper proposes
a novel OT algorithm. It is based on the ABT framework [12,
13] which formalizes two correctness condition, causality and
admissibility preservation. In general the ABT framework
algorithms can be formally proved. The new proposed
algorithms first time in history are handling string operations
like update for sequential operations in addition to primitive

operations insert and delete and handles overlapping and
splitting of operations when concurrent operations are
transformed. These algorithms can be applied in a wide range
of practical collaborative applications that require string
operations.

 This paper proposed new algorithm like RemoteU
and LocalU for both sequential and atomic string operations.

 Moreover, the design of these algorithms will
provide a new starting point when extending OT algorithms to
support composite and block operations that semantically
must be applied together, such as cut-paste and find-replace.

A. A. Future Work

 There is a lot of efforts needed to preserve intention
preservation and also to preserve semantic consistency and
syntactic consistency. There is still scope to extend the
support to other composite operations of string handling and
char handling. Also it can support other better data structures
also. A lot of work is done to reduce space complexity and
time complexity. Still there is a scope to reduce space
complexity and time complexity.

REFERENCES

[1] 1Santosh Kumawat, 2Ajay Khunteta Supporting More String Based
Operations by New Operational Transformation
Algorithms in Real-Time Cooperative Editing Systems International Journal
of Engineering Science and Technology (IJEST) ISSN: 0975-5462 Volume 2
Issue 7, July 2010
[2] 1Santosh Kumawat, 2Ajay Khunteta New Optimized Generic Operational
Transformation Consistency Control Algorithms Supporting String
Operations in Collaborative Applications JOURNAL OF COMPUTING,
VOLUME 2, ISSUE 7, JULY 2010, ISSN 2151-9617

 [3]ABTS: A Transformation-Based Consistency Control Algorithm for
Wide-Area Collaborative Applications Bin Shao , Du Li , Ning Gu . IEEE
Paper published in 2009
[4] D. Li and R. Li. An approach to ensuring consistency in peer-to-peer
real-time group editors. Computer Supported
Cooperative Work: The Journal of Collaborative Computing, 17(5-6):553-
611, Dec. 2008.
[5] R. Li and D. Li. Commutativity-based concurrency control in groupware.
In Proceedings of the First IEEE Conference on Collaborative Computing:
Networking, Applications and Worksharing (CollaborateCom '05), San Jose,
CA, Dec. 2005.
[6] M. Suleiman, M. Cart, and J. Ferrie. Concurrent operations in a
distributed and mobile collaborative environment. In
IEEE ICDE '98 International Conference on Data Engineering, pages 36-45,
Feb. 1998.
[7] C. Sun and C. Ellis. Operational transformation in real-time group
editors: issues, algorithms, and achievements. In Proceedings of the ACM
Conference on Computer-Supported Cooperative Work, pages 59-68, Dec.
1998.
[8] D. Sun, S. Xia, C. Sun, and D. Chen, “Operational Transformation for
Collaborative Word Processing,” Proc. ACM Conf. Computer- Supported
Cooperative Work (CSCW ’04), pp. 162-171, Nov. 2004.
[9] M. Suleiman, M. Cart, and J. Ferrie. Concurrent operations in a
distributed and mobile collaborative environment. In IEEE ICDE '98
International Conference on Data Engineering, pages 36-45, Feb. 1998.

ISSN : 0975-3397 1720

Santosh kumawat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1716-1721

[10] M. Suleiman, M. Cart, and J. Ferrie. Concurrent operations in a
distributed and mobile collaborative environment. In IEEE ICDE '98
International Conference on Data Engineering, pages 36-45, Feb. 1998.
[11] C. Sun, X. Jia, Y. Zhang, Y. Yang, and D. Chen. Achieving
convergence, causality- preservation, and intention-preservation in real-time
cooperative editing systems. ACM Transactions on Computer-Human
Interaction, 5(1):63–108, Mar. 1998.
[12] R. Li and D. Li. Commutativity-based concurrency control in
groupware. In Proceedings of the First IEEE Conference on Collaborative
Computing: Networking, Applications and Worksharing (CollaborateCom
'05), San Jose, CA, Dec. 2005.
[13] D. Li and R. Li. An admissibility-based operational transformation
framework for collaborative editing systems. Computer Supported
Cooperative Work: The Journal of Collaborative Computing, Aug. 2009.
Accepted.
[14] C. Sun and C. Ellis. Operational transformation in real-time group
editors: issues, algorithms, and achievements. In ACM CSCW'98, pages
59{68, Dec. 1998.
[15] G. Oster, P. Urso, P. Molli, and A. Imine. Proving correctness of
transformation functions in collaborative editing systems. Technical Report
5795, INRIA, Dec. 2005.

AUTHORS PROFILE

Frist Author Santosh Kumawat

Mtech Scholar
Poornima College of Engineering
Rajasthan Technical University(RTU)
34, Meera Kutir, Jain Mohalla,
Main Bazar, Sanganer, Jaipur, Rajasthan, India-302029

Second Author Ajay Khunteta
Asst Prof. Dept. of CS
Poornima College of Engineering
Jaipur, Rajasthan, India

ISSN : 0975-3397 1721

