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Abstract—Skyline queries have recently attracted a lot of 
attention for its intuitive query formulation. It can act as a 
filter to discard sub-optimal objects. However, a major 
drawback of skyline is that, in datasets with many 
dimensions, the number of skyline objects becomes large and 
no longer offer any interesting insights. To solve the problem, 
k-dominant skyline queries have been introduced, which can 
reduce the number of skyline objects by relaxing the 
definition of the dominance. However, sometimes, a k-
dominant skyline query may retrieve too few objects to 
analyze. This paper addresses the problem of k-dominant 
skyline for high dimensional dataset. In addition, we extend 
the notion of k-domination by defining extended k-dominant 
skyline, which retrieves neither too many nor too few objects.  
We propose algorithms for k-dominant and extended k-
dominant skyline computation. An extensive performance 
evaluation using both real and synthetic datasets   
demonstrated that our proposed methods are efficient and 
scalable. 

 

Keywords: Skyline, k-dominant Skyline, Extended k-dominant 
Skyline, Databases. 

I.  INTRODUCTION  

Skyline queries are useful to multi-criteria decision 
making such as customer information systems, decision 
support, data visualization, and so forth. It represents the set 
of all solutions that are not worse than any objects. It can act 
as a filter to discard sub-optimal objects. The user can then 
interactively look at the (smaller) set of skyline objects and 
further select the ones that fit his/her needs. 

Given an n-dimensional dataset DB, an object Oi   is said 
to be in skyline of DB if there is no other object Oj (i ≠ j) 
in DB such that Oj is better than Oi   in all dimensions. If 
there exist such Oj, then we say that Oi  is dominated by 
Oj or Oj   dominates Oi. Figure 1 shows an example of 
skyline. The  table  in  the  figure is  a  list  of  stocks, each  
of  which contains two numerical attributes: risk and return. 
An investor chooses a stock from the list according to 
her/his preference. In this situation, her/his choice usually 
comes from the stocks in skyline, i.e., one of A, C, D (See 
figure 1(b)). Stock D has lower risk and higher return than 
B and E, meaning that D is better independently of the 
relative importance of the two attributes. On the other hand,  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
D and A are incomparable since a long-term investor may be 
willing to get lower return to ensure lower risk. A number of 
efficient algorithms for computing skyline objects have been 
reported in the literature [1], [2], [3], [4], [5]. 

 
It is always assumed that all of the attributes are involved 

in the skyline queries, that is, the dominating relationship is 
evaluated based on every dimensions of the dataset. However, 
a major drawback of skylines is that, in datasets with many 
dimensions, the number of skyline objects becomes large and 
no longer offer any interesting insights. The reason is that as 
the number of dimensions increases, for any object O1, it is 
more likely there exists another objects O2   where O1   and O2 

are better than each other over different subsets of dimensions. 
If the investor, cared not just about return and risk, but also 
about the price/earning (P/E) ratio and price-to-book ratio, 
then most stocks may have to be included in the skyline 
answer since for each stock there may be no one stock that 
beats it on all criteria. 

To deal with this dimensionality curse, one possibility is 
to reduce the number of dimensions considered. However, 
which dimensions to retain is not easy to determine, and at 
the very least requires intimate knowledge of the 
application domain. To reduce the number of dimensions 
without any intimate knowledge of the application domain, 
Chan, et al. considered k-dominant skyline query [6]. They 
relaxed the definition of “dominated” so that an object is 
likely to be dominated by another. Given an n-dimensional 

 

Fig. 1.    Skyline example 
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dataset, an object Oi  is said to  k-dominates  another  object   

 

 
 

 
 
 

 
 

 
 

 
 
 

 
 

Oj    (i  ≠ j) if  there  are  k (k ≤ n)  dimensions in  which  

Oi   is  better  than  or  equal to Oj . A k-dominant skyline 
object is an object that is not k-dominated by any other 
objects. In contrast, conventional skyline objects are n-
dominant objects. However, sometimes, a k-dominant 
skyline query may retrieves too few objects to analyze. To 
solve this problem in this paper, we extend the notion of 
k-domination by defining extended k-dominant skyline, 
which retrieves neither too many nor too few objects. 

An object Oi is said to extended k-dominates another 
object Oj   (i ≠ j) if there are k (k ≤ n) dimensions in which 
Oi  is better than Oj. An extended k-dominant skyline object 
is an object that is not extended k-dominated by any other 
objects. 

 

Motivating Example 

Assume we have a symbolic dataset as listed in Table 
I. In the table, each object is represented as a tuple 
containing six attributes or dimensions from D1 to D6.  
Without loss of generality, we assume smaller value is better 
in each dimension. Conventional skyline query for this 
dataset returns objects: from O3 to O10 and O12. Objects O1   

and O2 are not in skyline because they are dominated by 
O4. Similarly, object O11 is not in skyline because it is 
dominated by O8. Thus, skyline query for this dataset 
returns nine out of twelve objects (too large). The k-
dominant skyline query can control the selectivity by 
changing k. Consider the case where k = 5, then the 5-
dominant skyline query for this dataset returns objects O8 and 
O5. Other objects are not in 5-dominant skyline because they 
are 5-dominated by O8. Similarly, 4-dominant skyline query 
(i.e., k = 4) returns only one object, O8 is in 4-dominant 
skyline. If we decrease the value of k by one, then the 3-
dominant skyline will retrieve empty result. Thus we see 
that k-dominant skyline query for this dataset returns at 

most two out of twelve objects (too few). Again, if we 
apply proposed extended 5-dominant skyline query for this 
dataset, then it will retrieves O4, O5, O8, and O9. That means 
extended k-dominant skyline query for this dataset retrieves 
four objects out of twelve (neither too large nor too few). 

In this paper, we propose efficient algorithms to compute 
k-dominant as well as extended k-dominant skyline. The 
remainder of this paper is organized as follows. Section II 
discusses related work. Section III presents the notions and 
properties of k-dominant skyline computation and its 
extension. We provide detailed examples and analysis of our 
algorithms in Section IV. We experimentally evaluate 
proposed algorithms in Section V under a variety of settings. 
Finally, Section VI concludes the paper. 

II.  RELATED WORK 

Previous studies about skyline query processing are re- 
viewed in this section. The related work on skyline query 
processing and k-dominant skyline query processing are 
discussed in Section II-A and  II-B, respectively. 

 

A. Skyline Query Processing 
 

Borzsonyi, et al. first introduce the skyline operator over 
large datasets and proposed three algorithms: Block-
Nested-Loops (BNL), Divide-and-Conquer (D&C), and 
B-tree- based schemes [2]. BNL compares each object of the 
dataset with every other object, and reports it as a result only 
if any other object does not dominate it. A window W is 
allocated in main memory, and the input relation is 
sequentially scanned. In this way, a block of skyline objects 
is produced in every iteration. In case the window saturates, a 
temporary file is used to store objects that cannot be placed in 
W. This file is used as the input to the next pass. D&C divides 
the dataset into several partitions such that each partition can 
fit into memory. Skyline objects for each individual partition 
are then computed by a main-memory skyline algorithm. The 
final skyline is obtained by merging the skyline objects for 
each partition. Chomicki, et al. improved BNL by presorting, 
they proposed Sort-Filter-Skyline (SFS) as a variant of 
BNL [4]. SFS requires the dataset to be pre-sorted 
according to some monotone scoring function. Since the 
order of the objects can guarantee that no object can 
dominate objects before it in the order, the comparisons of 
tuples are simplified. 

Among index-based methods, Tan, et al. proposed two 
progressive skyline computing methods Bitmap and Index 
[7]. Both of them require preprocessing. In the Bitmap 
approach, every dimension value of an object is 
represented by a few bits. By applying bit-wise and 
operation on these vectors, a given object can be checked if 
it is in the skyline without referring to other objects. The 
index method organizes a set of n-dimensional objects into 
n lists such that an object O is assigned to list i if and only if 

                                                                                  TABLE I 
                             SYMBOLIC   DATASET 

 
Object D1 D2 D3 D4 D5 D6

O1 
O2 
O3 
O4 
O5 
O6 
O7 
O8 
O9 
O10 
O11 
O12 

7 
7 
2 
3 
4 
2 
3 
1 
5 
2 
1 
3 

7 
6 
2 
3 
4 
5 
2 
1 
6 
6 
2 
6 

4 
5 
3 
4 
1 
2 
2 
6 
4 
4 
6 
5 

5 
6 
4 
5 
2 
4 
4 
3 
3 
5 
5 
2 

4 
3 
5 
1 
6 
3 
6 
1 
3 
2 
4 
4 

2 
2 
6 
2 
3 
4 
5 
1 
1 
3 
4 
5 

 

ISSN : 0975-3397 1935



Md. Anisuzzaman Siddique et al. / (IJCSE) International Journal on Computer Science and Engineering 
Vol. 02, No.05, 2010, 1934-1943 

 

its value at attribute i is the best among all attributes of O. 
Each list is indexed by a B-tree, and the skyline is computed 
by scanning the B-tree until an object that dominates the 
remaining entries in the B-trees is found. Kossmann, et al. 
observed that the skyline problem is closely related to the 
nearest  neighbor  (NN)  search  problem  [3]. They proposed 
an algorithm that returns skyline objects progressively by 
applying nearest neighbor search on an R*-tree indexed 
dataset recursively. The current most efficient method  is  
Branch-and-Bound Skyline(BBS), proposed by 
Papadias, et al., which is a progressive algorithm based 
on the best-first nearest neighbor (BF-NN) algorithm [5]. 
Instead of searching for nearest neighbor repeatedly, it di- 
rectly prunes using the R*-tree structure. Balke, et al. show 
how to efficiently perform distributed skyline queries and 
thus essentially extend the expressiveness of querying current 
Web information systems  [8].  Kapoor studies the problem 
of dynamically maintaining an effective data structure for an 
incremental skyline computation in a 2-dimensional space 
[9]. Tao and Papadias studied sliding window skylines, 
focusing on data streaming environments [10]. Huang, et al. 
studied continuous skyline queries for dynamic datasets 
[11]. 

B. k-dominant Skyline Query Processing 

Chan, et al. introduce k-dominant skyline query [6]. They 
proposed three algorithms, namely, One-Scan Algorithm 
(OSA), Two-Scan Algorithm (TSA), and Sorted Retrieval 
Algorithm (SRA). OSA uses the property that a k-dominant 
skyline objects cannot be worse than any skyline object on 
more than k dimensions. This algorithm maintains the skyline 
objects in a buffer during the scan of the dataset and uses them 
to prune away objects that are k-dominated. TSA retrieves a 
candidate set of dominant skyline objects in the first scan by 
comparing every object with a set of candidates. The second 
scan verifies whether these objects are truly dominant skyline 
objects or not. This method turns out to be much more efficient 
than the one-scan method. A theoretical analysis is provided to 
show the reason for its superiority. The third algorithm, SRA 
is motivated by the rank aggregation algorithm proposed by 
Fagin, et al., which pre-sorts data objects separately according 
to each dimension and then merges these ranked lists [12]. 

Another study on computing k-dominant skyline is k-Z 
Search proposed by Lee, et al. [13]. They introduced a 
concept called filter-and-reexamine approach. In the filtering 
phase, it removes all k-dominant objects and retain possible 
skyline candidates, which may contain false hits. In the re-
examination phase, all candidates are reexamined to eliminate 
false hits. 

Based on transitivity property of skyline objects most of 
the above algorithms sort the whole tuples (objects) with a 
monotonic scoring function sum. However, this assumption is 
not true for k-dominant skyline computation due to the well- 
known intransitivity of the k-dominance relation. Moreover, 
there is an open issue that the efficiency of the most efficient 

k-dominant skyline search algorithm TSA proposed in [6] 
crucially depends on the pruning capability of non-dominant 
skyline objects during the first scan. If the number of false 
positives produced by the first scan is small, then the perfor- 
mance of TSA will be good. 

Recently, more aspects of skyline computation have been 
explored. Vlachou, et al. introduce the concept of extended 
skyline set, which contains all data elements that are necessary 
to  answer  a  skyline  query  in  any  arbitrary  subspace [14]. 
Fotiadou, et al. mention about the efficient computation of 
extended skylines using bitmaps in [15]. Chan, et al. introduce 
the concept of skyline frequency to facilitate skyline retrieval 
in high-dimensional spaces [16]. Tao, et al. discuss skyline 
queries in arbitrary subspaces [17]. There exist more work 
addressing  spatial skyline  [18],  [19],  skylines  on  partially- 
ordered attributes [20], dada cube for analysis of dominance 
relationships [21], probabilistic skyline [22], skyline search 
over small domains [23], and reverse skyline [24]. 

 

III.  PRELIMINARIES 

This section discusses the k-dominant skyline problems 
and associated properties. Assume there is an n-dimensional 

dataset DB and D1, D2, ···, Dn   be the n attributes of DB. 
Let O1, O2, ···, Or  be r objects of DB.  We use Oi .Dj   to 
denote the j-th dimension value of Oi . 

.k-dominance 
 

An object Oi  is said to dominate another object Oj, 
which we denote as Oi ≤ Oj, if Oi .Ds ≤n  Oj .Ds  for all 
dimensions Ds (s = 1, ···, n)  and Oi .Dt  < Oj .Dt  for at  
least  one dimension Dt   (1 ≤ t ≤ n).  We call such Oi   as 
dominant object and such Oj   as dominated object between 
Oi  and Oj . 

By contrast, an object Oi is said to k-dominate another 

object Oj, denoted as Oi ≤k Oj, if Oi.Ds ≤ Oj.Ds in k 
dimensions among n dimensions and Oi .Dt < Oj .Dt  in one 
dimension among the k dimensions. We call such Oi  as k- 
dominant object and such Oj as k-dominated object 
between Oi  and Oj . 

An object Oi  is said to have δ-domination power if 
there are δ dimensions in which Oi is better than or equal 
to all other objects of DB. 

 
k-dominant Skyline 

An object Oi ∈ DB is said to be a skyline object of DB 
if Oi is not dominated by any other object in DB. Similarly, 

an object Oi ∈ DB is said to be a k-dominant skyline object 
of DB if Oi  is not k-dominated by any other object in DB. 
We denote a set of all k-dominant skyline objects in DB as 
Skyk(DB). Note that objects that have k-domination 
power must be k-dominant skyline objects but not vice 
versa. 

 
Extended k-dominant Skyline 
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Object D1 D2 D3 D4 D5 D6 DP Sum
O8 

O5 

O4 

O9 

O11 

O12 

O6 

O3 

O10 

O7 

O1 

O2 

1
4 
3 
5 
1 
3 
2 
2 
2 
3 
7 
7 

1
4 
3 
6 
2 
6 
5 
2 
6 
2 
7 
6 

6
1 
4 
4 
6 
5 
2 
3 
4 
2 
4 
5 

3 
2 
5 
3 
5 
2 
4 
4 
5 
4 
5 
6 

1 
6 
1 
3 
4 
4 
3 
5 
2 
6 
4 
3 

1
3 
2 
1 
4 
5 
4 
6 
3 
5 
2 
2 

4
2 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 

13
20 
18 
22 
22 
25 
20 
22 
22 
23 
29 
29 

An object Oi is said to extended k-dominate another object 
Oj, denoted as Oi <ext-k Oj, if Oi.Ds < Oj.Ds in k 
dimensions among n dimensions. We call such Oi as extended 
k-dominant object and such Oj as extended k-dominated 
object between Oi  and Oj . 

An object Oi ∈ DB is said to be a extended k-dominant 
skyline object of DB if Oi  is not extended k-dominated by 
any other object in DB. We denote a set of all extended k-
dominant skyline objects in DB as Skyext−k(DB). 

 
Theorem 1: Every object that belongs to the k-dominant 

skyline also belongs to the extended k-dominant skyline, i.e., 

Skyk(DB) ⊆ Skyext−k(DB). 
 

Proof:  Let O1 ∈ Skyk(DB) and O1 ∈/ Skyext−k(DB). It 
follows that there is an another object O2  that extended  k- 
dominates the objects O1. Based on the definition of 
extended k-dominant skyline ∀Dk (k = 1,···, n): O2.Dk < 
O1.Dk. Therefore, based on the k-dominant skyline 
definition we find that O1 ∈/ Skyk(DB), which leads to a 

contradiction. ♦ 
 

The following theorem 2 [6] shows that there may not 
be any k-dominant skyline object in a dataset for any k < 
n. 

 
Theorem 2: For any k < n (k ≥2) and a n-dimensional 

space, there exist a dataset DBI with size |DBI | ≥ n such 
that Skyk(DBI ) = ø. 

 
Table II shows an example dataset that exhibits the cyclic 

dominance relationship when k = 3. Specifically, we have 

Oi 3-dominates Oi+1, ∀i ∈ [1, 3], and O4   in turn 3-dominates 

O1. In any cyclic dominance relationship, if two objects have 
same domain value in any attribute. Then according to 
extended k-dominant skyline definition, the cyclic 
dominance does not no longer exist. From Table II we 
see that object O4  fails to  become  the  extended  k-dominant  
of  object  O1 .  Thus, the extended 3-dominant query on Table 
II will retrieve O1   as a result. 

IV.  ALGORITHMS 
In this section, we present our algorithms for computing k- 

dominant and extended k-dominant skyline in n-dimensional 
dataset DB. We use filter based technique to compute 
Skyk(DB) and Skyext−k(DB), efficiently. For both types 
is discusses in Section IV-A. We discuss about k-dominant 
skyline and extended k-dominant skyline computation in 
Section IV-B and Section IV-C, respectively. 

A. Domination Power Calculation 

Chan, et al. sort the whole tuples (objects) with a 
monotonic scoring function sum in their OSA algorithm for 
k-dominant query [6]. By using the ordered tuples, we can 
eliminate some of non-skyline objects easily. However, this 
ordered tuples is not effective for k-dominant query 

computation   especially when values of each attribute is not  

 

 

 

 

 

 
TABLE III 

SO RT E D   DATA S E T 

 

 

 

 

 

 

 

 
 

normalized. For example, assume Oi  = (1, 2, 3, 3, 3, 2) and 
Oj = (7, 1, 3, 2, 3, 1) are two objects in 6-dimensional space. 
Although sum of Oi ’s values is smaller than that of Oj’s, Oi 

does not 5-dominant of Oj. Instead, Oi is 5-dominated by Oj. 
In order to prune unnecessary objects efficiently in the k-

dominant skyline computation, we consider a new type 
statistics of each object which we called domination power. 
An object is said to have δ-domination power if there are 
δ minimal values in which it is better or equal to all other 
objects of DB. We sort objects in descending order by their 
values of domination power (δ). If more than one objects have 
same domination power then sort those objects in ascending 
order of the sum value. This order reflects how likely to k- 
dominate other objects. Higher objects in the sorted sequence 
are likely to dominate other objects. Thus this preprocessing 
helps to reduce the computational cost of k-dominant skyline. 
However, sometimes, lower object can k-dominate higher 
object. Experiments show that our estimation is robust over 
various distributions. Moreover, it also works well when data 
values are correlated, independent or anti-correlated. 
Algorithm 1 represents the domination power statistics 
calculation procedure. 

Table III is the example of sorted dataset DB.  In the 
sorted dataset, object O8 has the highest domination power 4. 
Note that object O8 dominates all objects lie below it in four 
attributes D1, D2, D5, and D6. 

B. k-dominant Skyline Algorithm 
To determine whether an object O is k-dominant or not, 

we need to compare it against k-dominant skyline objects as 
well as non-k-dominant skyline objects. This is because 
O can be k-dominated by any non-k-dominant skyline objects 
even though O is not k-dominated by any of the k-dominant 

                            TABLE II 
CY C L I C D O M I NA N C E  R E L AT I O N S H I P 

 

Object D1 D2 D3 D4

O1 

O2 

O3 

O4 

6
2 
3 
4 

6 
7 
2 
3 

6
7 
8 
6 

6
7 
8 
9 
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objects. To eliminate non-k-dominant skyline objects, one set 
of objects are maintained as Skyk(DB). Similar as TSA 
we also need two scan for k-dominant skyline computation. 
But the dataset sorted by domination power can reduce many 
pairwise comparisons between the objects of Skyk(DB) and 
DB. Algorithm 2 shows our proposed algorithm for k-
dominant skyline computation. 

Algorithm  1: Compute Domination Power, DP 
1. For  each attribute Di (i = 1 to n) do 
2. Initialize minValue = 0 
3. For  each object Oj (j = 1 to r) do 
4. Initialize DP of object Oj , Oj .DP = 0 
5. If (minValue < Oj .Di ) then 
6. minValue = minValue 
7. Else 
8. minValue = Oj .Di 

9.       For  each object Oj (j = 1 to r) do 

10.          If (minValue == Oj .Di ) then 
11.             Increase DP of Oj , Oj .DP by 1 
12.     Sort dataset, DB  in ascending order by DP 
13. If (more than one objects have same DP) then 
14.                Sort those objects in ascending order of SUM 
13.     Return  the sorted DB 

 
During the k-dominant evaluation initially Sky5(DB) is 
empty and O8 is added in Sky5(DB) as a 5-dominant object 
without any comparison. Since O8 and O5 fails to become 
5-dominant of each other, after one comparison O5 is added 
in Sky5(DB). Next, after compare with O8 we see that O4 is 
not in Sky5(DB). In this way objects O9, O11, O12, O6, 
O3, O10, O7, O1, and O2 are not in Sky5(DB). At the end of 
the first scan Sky5(DB)={O8, O5}.  After second scan we 
confirm that there exist no false positive object. Next,  
using Sky5(DB) objects, we get Sky4(DB)={O8}. 
 

Algorithm  2: k-dominant Skyline 

1. Sort DB by domination power and sum 
2. Initialize Skyk(DB) = 0 
3. For  each object O ∈ DB  do 
4. Initialize isDominant = true 
5. For  each object OI  ∈ Skyk(DB) do 
6. If (OI   ≤n  O or OI  ≤k  O) then 
7. isDominant = f alse 
8. break 
9. If (O ≤n  O

I   or O ≤k  O
I ) then 

10. Remove OI   from Skyk(DB) 
11. If (isDominant) then 
12. insert O into Skyk(DB) 

13. For  each object O ∈ DB  do 
14. For  each object OI  ∈ Skyk(DB), do 
15. If ((O ≤n  O

I   or O ≤k  O
I ) and OI  = O) then 

16. Remove OI   from Skyk(DB) 
17. Return  Skyk(DB) 

 

C. Extended k-dominant Skyline Algorithm 

This section introduces how to calculate extended k- 
dominant skyline of sorted dataset DB.  The algorithm (shown 
in algorithm 3) is based on the following key properties. 

Lemma 1: Consider an object O ∈ DB that is not a n 
extended k-dominant skyline object. Then it is possible for O 
not to be extended k-dominated by any extended k-dominant 
skyline object. 

Our algorithm takes as input a n-dimensional dataset DB 
and a parameter k, and outputs the set of extended k-dominant 
skyline objects in DB. To compute extended k-dominant 
skyline (i.e., Skyext−k(DB)) proposed method scan the  
dataset DB twice. In the first scan of DB (steps 1 to 12), a 
set of candidate extended k-dominant skyline objects, 
Skyext−k(DB) is computed progressively by comparing each 

object O ∈ DB against the computed objects in 
Skyext−k(DB). If an object is extended k-dominated, then it 
is removed from Skyext−k(DB). During this scan we ignore 
non-skyline objects that are all dominated (i.e., n-dominated) 
by Skyext−k(DB) objects. This is because according to 
theorem 1 non-skyline object cannot become an extended k-
dominant skyline. Although it has same domain value in some 
attributes compare with other objects in Skyext−k(DB). Note 
that false positives can exist in Skyext−k(DB) due to property 
in lemma 1. 

To eliminate the false positives produced by the first scan, 
a second scan of DB (step 13 to 17) is necessary. During the 
second scan we can exclude all Skyext−k(DB) as well as non-
skyline objects for further extended k-dominant checking. The 
efficiency of our approach depends on the pruning capability 
of non-skyline objects during the first scan. If the number 
of false positives produced by the first scan is small, then the 
performance of the second scan and hence the overall approach 
will be good. 

 

Algorithm  3: Extended  k-dominant Skyline 

1. Sort DB by domination power and sum 

2. Initialize Skyext−k(DB) = 0 
3. For  each object O ∈ DB  do 
4. Initialize isDominant = true 
5. For  each object OI  ∈ Skyext−k(DB) do 
6. If (OI   ≤n  O or OI  <k  O) then 
7. isDominant = f alse 
8. break 
9. If (O ≤n  O

I   or O <k  OI ) then 
10. Remove OI   from Skyext−k(DB) 
11. If (isDominant) then 
12. Insert O into Skyext−k(DB) 

13. For  each object O ∈ DB  do 
14. For  each object OI  ∈ Skyext−k(DB), do 
15. If ((O ≤n  O

I   or O <k  OI ) and OI  = O) then 
16. Remove 

17. Return  Skyext−k(DB) 

Assume k  = 5, then applying the proposed algorithm on 
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Table III,  we note that at the end of first scan objects O8,  O5,  

 

 

 

 

 

 

 

O4, O9, and O12 will be inserted into Skyext−5(DB). This 
example demonstrates the effective pruning ability of the 
extended k-dominant skyline objects in eliminating non- 
extended k-dominant skyline objects. However, there exists 
a false positive object, O12. During the second scan O12 is 
extended 5-dominated by O6. That means after the 
completion of second scan our method give Skyext−5(DB) 

= {O8,O5,O4,O9} as a result. Next, using Skyext−5(DB) 

objects, we get Skyext−4(DB) = {O8}. 

V.  PERFORM ANCE EVALUATION 

We conduct a series of experiments to evaluate the effec- 
tiveness and efficiency of proposed methods. In this 
paper, we compare our proposed approach for k-dominant 
skyline against TSA, which is the most efficient k-dominant 
skyline search algorithm proposed in Ref. 6). On the other 
hand in lack of techniques dealing directly with the 
problem of extended k-dominant skyline, we cannot 
compare our proposed method against other methods. 
However, we conduct simulation experiments on a PC 
running on MS Windows XP professional. The PC has an 
Intel(R) Core2 Duo 2GHz CPU and 3GB main memory. All 
experiments were coded in Java J2SE V6.0. Each experiment 
is repeated five times and the average result is considered for 
performance evaluation. 

A. Performance on Synthetic Datasets 

As benchmark datasets, we use the datasets proposed 
in Ref. 2). Objects are generated using one of the following 
three value distributions: 
Anti-Correlated: an anti-correlated dataset represents an en- 
vironment in which, if an object has a small coordinate on 
some dimension, it tends to have a large coordinate on at 
least another dimension. As a result, the total number of non-
dominating objects of an anti-correlated dataset is typically 
quite large. 
Correlated: a correlated dataset represents an environment in 
which objects with large coordinate in one dimension are also 
have large coordinate in the other dimensions. In a correlated 
dataset, few objects dominate many other objects. 
Independent: for this type of dataset, all attribute values are 
generated independently using uniform distribution. Under this 

distribution, the total number of   non-dominating  objects is 
 
 
 
 
 
 
 
 
 
 

between that of the correlated and the anti-correlated datasets. 

The generation of the synthetic datasets is controlled by 
three parameters, n, “Size”, and “Dist”, where n is the number 
of attributes, “Size” is the total number of objects in the 
dataset, and “Dist” can be the any of the three distributions. 

Table IV shows the returned objects comparison between 
skyline, k-dominant skyline, and extended k-dominant skyline. 
For  this  experiment,  we  vary  data  cardinality  from  100k 
to  500k,  set  n  to  13,  and  k  to  12.  We  use  SFS  method 
proposed in Ref. 4) to compute skyline objects and TSA 
method proposed in Ref. 6) to compute k-dominant skyline 
computation. Table IV shows that number of skyline objects 
for all distribution is much larger than that in the k-dominant 
skyline and extended k-dominant skyline. However, the 
returned objects set size of the extended k-dominant skyline is 
between that of the skyline and the k-dominant skyline. 

In the following sections, we will examined the effect of 
cardinality and dimensionality. In each experiment, we 
evaluate total time to compute extended k-dominant skyline. 
Similar to most of the related work in the literature, we employ 
the elapsed time as the performance metric. 

Effect of Cardinality 

For k-dominant skyline experiment, we vary dataset cardi- 
nality ranges from 100k to 500k, set the values of n to 15 
and k to 13. Figure 2(a), (b), and (c) shows that when the 
size of the dataset increases from 100k to 500k, the 
computation time of both algorithms maintain a positive 
correlation. Notice that our proposed method performs better 
than TSA. 

For extended k-dominant skyline experiment, we vary dataset 
cardinality ranges from 100k to 500k, set the value of n to 
13, and k to 12.  Figure 3(a), (b), and (c) shows the time to 
compute extended k-dominant skyline. For all distributions, 
the time of proposed method is increases if the data 
cardinality increases. The result shows that it takes highest 
time for anti-correlated datasets then for independent 
datasets. This is because for anti-correlated distribution, if an 
object has a small coordinate on some dimension, it tends to 
have a large coordinate on other dimensions. As a result, the 

TABLE IV 
NO. OF R E T U R N E D OB J E C T 

 
Size Anti-Correlated Correlated Independent

Skyline 
Objects 

k-dom. 
Objects 

Ext. k-dom.
Objects 

Skyline
Objects

k-dom.
Objects

Ext. k-dom.
Objects 

Skyline 
Objects 

k-dom. 
Objects 

Ext. k-dom.
Objects 

100k 
200k 
300k 
400k 
500k 

57686 
108150 
158570 
211558 
258507 

16745 
33178 
47693 
69613 
87432 

22896 
42698 
62500 
85392 

105454 

7857
15578
23415
30513
38312

1254
2542 
3849 
5047 
6265

2594
4708 
5257 
8758 
10123 

36651 
70516 

110782 
143165 
180156 

10728 
23287 
32872 
48827 
58253 

17411
30540 
45156 
65045 
72854 
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total number of non-dominating objects set size is large. 
 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 2. k-dom. skyline computation for different datasize 
 

Effect of Dimensionality 

For k-dominant skyline experiment, we vary dataset di- 
mensionality n ranges from 10 to 20 and k from 6 to 19. 
Figure 4(a), (b), and (c) represents the effect of dimensionality. 
For all distributions, the response time of the proposed 
method is better than TSA approach and it increases if the 
data dimensionality n increases. 

Again  for  extended  k-dominant  skyline  experiment,  we 
vary  dataset  dimensionality n  ranges from  7  to  13  and  
k from 6 to 12. Figure 5(a), (b), and (c) represents the 
effect of dimensionality. For all distributions, the response 
time of the proposed method is increases if the data 
dimensionality n increases. This is because by increasing the 
number of dimensions, the probability that an object 

dominates another one is reduced significantly. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Ext. k-dom. skyline computation for different datasize 

B. Performance on Real Datasets 

To evaluate the performance for real dataset, we study two 
different real datasets.  The first dataset is NBA statistics. It is 
extracted from “www.nba.com”. The dataset contains 17k  
13-dimensional data  objects,  which  correspond  to  the 
statistics  of  an  NBA  players’  performance  in  13  aspects 
(such as points scored, rebounds, assists, etc.) and domain 
have range [0, 4000]. The dataset approximates a correlated 
data distribution. The second dataset is FUEL dataset and 
extracted from “www.fueleconomy.gov”. FUEL dataset 
is 24k 6-dimensional objects, in which each object stands for 
the performance of a vehicle (such as mileage per gallon of 
gasoline in city and highway, etc.). For this dataset attribute 
domain range is [8, 89]. Using both datasets we conduct the 
following experiment. 
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Fig. 4. k-dom. skyline computation for different dimension 

Experiments on Real Dataset for k-dominant Skyline 

We performed two experiments on NBA dataset. In the first 
experiment, we study the effect of dimensionality when n 
varies from 5 to 13 and k from 4 to 12. Figure 6(a) shows 
the result. NBA dataset exhibits similar result to synthetic 
dataset, if the number of dimension increases the performance 
of both algorithms becomes slower. Figure 6(a) represents that 
proposed method is faster than TSA. 

For FUEL dataset, we performed similar experiment like 
NBA dataset. For this experiment, n varies from 3 to 6 
and k varies from 2 to 5. Result is shown in Figure 6(b). For 
this experiment with FUEL dataset, we obtain similar result 
like NBA dataset that represents the scalability of the 
proposed method. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5. Ext. k-dom. skyline computation for different dimension 

 
Experiments on Real Dataset for Extended k-dominant 
Skyline 

We performed an experiment on NBA dataset. In this 
experiment, we study the effect of dimensionality when n 
varies from 7 to 13 and k from 6 to 12. Figure 7(a) shows 
the result. NBA dataset exhibits similar result to synthetic 
dataset, if the number of dimension increases the 
performance of proposed algorithm becomes slower. 

For FUEL dataset, we performed similar experiment like 
NBA dataset. For this experiment, n varies from 3 to 6 
and k varies from 2 to 5. Result is shown in Figure 7(b). For 
this experiment with FUEL dataset, we obtain similar result 
like NBA dataset that represents the scalability of the 
extended k-dominant skyline computation technique. 
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   Fig. 6.  k-dom. experiments on NBA and FUEL dataset 

VI.  CONCLUSION 

In this paper, we consider k-dominant skyline query prob- 
lem and present a method for computing the query result. By 
applying domination power statistics, we can compute the k- 
dominant skyline query result efficiently. Using real and 
synthetic datasets, we demonstrate the efficiency and 
scalability of our proposed method. However, a skyline has a 
side effect of retrieving too many objects and a k-dominant 
skyline query retrieves too few objects to analyze. To 
solve this problem, we consider extended k-dominant 
skyline query problem and present a method for computing 
the query result. Using real and synthetic datasets, we 
demonstrate the efficiency and scalability of our proposed 
method. 

However, proposed methods performance are efficient to 
compute k-dominant and extended k-dominant skyline, but 
those methods are designed only for static datasets. They 
may not efficient for frequently updated datasets. Future 
works need to study techniques to facilitate incremental 
updates. Develop algorithms on k-dominant as well as 
extended k-dominant skyline integrating with ranking the 
usefulness of query results would be desirable. 
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Fig. 7.    Ext. k-dom. experiments on NBA and FUEL dataset 
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