
Md. Anisuzzaman Siddique et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No.05, 2010, 1934-1943

k-dominant and Extended k-dominant Skyline
Computation by Using Statistics

Md. Anisuzzaman Siddique
Graduate School of Engineering

Hiroshima University
Higashi-Hiroshima, Japan

anis_cst@yahoo.com

Yasuhiko Morimoto
Graduate School of Engineering

Hiroshima University
Higashi-Hiroshima, Japan

morimoto@mis.hiroshima-u.ac.jp

Abstract—Skyline queries have recently attracted a lot of
attention for its intuitive query formulation. It can act as a
filter to discard sub-optimal objects. However, a major
drawback of skyline is that, in datasets with many
dimensions, the number of skyline objects becomes large and
no longer offer any interesting insights. To solve the problem,
k-dominant skyline queries have been introduced, which can
reduce the number of skyline objects by relaxing the
definition of the dominance. However, sometimes, a k-
dominant skyline query may retrieve too few objects to
analyze. This paper addresses the problem of k-dominant
skyline for high dimensional dataset. In addition, we extend
the notion of k-domination by defining extended k-dominant
skyline, which retrieves neither too many nor too few objects.
We propose algorithms for k-dominant and extended k-
dominant skyline computation. An extensive performance
evaluation using both real and synthetic datasets
demonstrated that our proposed methods are efficient and
scalable.

Keywords: Skyline, k-dominant Skyline, Extended k-dominant
Skyline, Databases.

I. INTRODUCTION

Skyline queries are useful to multi-criteria decision
making such as customer information systems, decision
support, data visualization, and so forth. It represents the set
of all solutions that are not worse than any objects. It can act
as a filter to discard sub-optimal objects. The user can then
interactively look at the (smaller) set of skyline objects and
further select the ones that fit his/her needs.

Given an n-dimensional dataset DB, an object Oi is said
to be in skyline of DB if there is no other object Oj (i ≠ j)
in DB such that Oj is better than Oi in all dimensions. If
there exist such Oj, then we say that Oi is dominated by
Oj or Oj dominates Oi. Figure 1 shows an example of
skyline. The table in the figure is a list of stocks, each
of which contains two numerical attributes: risk and return.
An investor chooses a stock from the list according to
her/his preference. In this situation, her/his choice usually
comes from the stocks in skyline, i.e., one of A, C, D (See
figure 1(b)). Stock D has lower risk and higher return than
B and E, meaning that D is better independently of the
relative importance of the two attributes. On the other hand,

D and A are incomparable since a long-term investor may be
willing to get lower return to ensure lower risk. A number of
efficient algorithms for computing skyline objects have been
reported in the literature [1], [2], [3], [4], [5].

It is always assumed that all of the attributes are involved

in the skyline queries, that is, the dominating relationship is
evaluated based on every dimensions of the dataset. However,
a major drawback of skylines is that, in datasets with many
dimensions, the number of skyline objects becomes large and
no longer offer any interesting insights. The reason is that as
the number of dimensions increases, for any object O1, it is
more likely there exists another objects O2 where O1 and O2

are better than each other over different subsets of dimensions.
If the investor, cared not just about return and risk, but also
about the price/earning (P/E) ratio and price-to-book ratio,
then most stocks may have to be included in the skyline
answer since for each stock there may be no one stock that
beats it on all criteria.

To deal with this dimensionality curse, one possibility is
to reduce the number of dimensions considered. However,
which dimensions to retain is not easy to determine, and at
the very least requires intimate knowledge of the
application domain. To reduce the number of dimensions
without any intimate knowledge of the application domain,
Chan, et al. considered k-dominant skyline query [6]. They
relaxed the definition of “dominated” so that an object is
likely to be dominated by another. Given an n-dimensional

Fig. 1. Skyline example

ISSN : 0975-3397 1934

Md. Anisuzzaman Siddique et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No.05, 2010, 1934-1943

dataset, an object Oi is said to k-dominates another object

Oj (i ≠ j) if there are k (k ≤ n) dimensions in which

Oi is better than or equal to Oj . A k-dominant skyline
object is an object that is not k-dominated by any other
objects. In contrast, conventional skyline objects are n-
dominant objects. However, sometimes, a k-dominant
skyline query may retrieves too few objects to analyze. To
solve this problem in this paper, we extend the notion of
k-domination by defining extended k-dominant skyline,
which retrieves neither too many nor too few objects.

An object Oi is said to extended k-dominates another
object Oj (i ≠ j) if there are k (k ≤ n) dimensions in which
Oi is better than Oj. An extended k-dominant skyline object
is an object that is not extended k-dominated by any other
objects.

Motivating Example

Assume we have a symbolic dataset as listed in Table
I. In the table, each object is represented as a tuple
containing six attributes or dimensions from D1 to D6.
Without loss of generality, we assume smaller value is better
in each dimension. Conventional skyline query for this
dataset returns objects: from O3 to O10 and O12. Objects O1

and O2 are not in skyline because they are dominated by
O4. Similarly, object O11 is not in skyline because it is
dominated by O8. Thus, skyline query for this dataset
returns nine out of twelve objects (too large). The k-
dominant skyline query can control the selectivity by
changing k. Consider the case where k = 5, then the 5-
dominant skyline query for this dataset returns objects O8 and
O5. Other objects are not in 5-dominant skyline because they
are 5-dominated by O8. Similarly, 4-dominant skyline query
(i.e., k = 4) returns only one object, O8 is in 4-dominant
skyline. If we decrease the value of k by one, then the 3-
dominant skyline will retrieve empty result. Thus we see
that k-dominant skyline query for this dataset returns at

most two out of twelve objects (too few). Again, if we
apply proposed extended 5-dominant skyline query for this
dataset, then it will retrieves O4, O5, O8, and O9. That means
extended k-dominant skyline query for this dataset retrieves
four objects out of twelve (neither too large nor too few).

In this paper, we propose efficient algorithms to compute
k-dominant as well as extended k-dominant skyline. The
remainder of this paper is organized as follows. Section II
discusses related work. Section III presents the notions and
properties of k-dominant skyline computation and its
extension. We provide detailed examples and analysis of our
algorithms in Section IV. We experimentally evaluate
proposed algorithms in Section V under a variety of settings.
Finally, Section VI concludes the paper.

II. RELATED WORK

Previous studies about skyline query processing are re-
viewed in this section. The related work on skyline query
processing and k-dominant skyline query processing are
discussed in Section II-A and II-B, respectively.

A. Skyline Query Processing

Borzsonyi, et al. first introduce the skyline operator over
large datasets and proposed three algorithms: Block-
Nested-Loops (BNL), Divide-and-Conquer (D&C), and
B-tree- based schemes [2]. BNL compares each object of the
dataset with every other object, and reports it as a result only
if any other object does not dominate it. A window W is
allocated in main memory, and the input relation is
sequentially scanned. In this way, a block of skyline objects
is produced in every iteration. In case the window saturates, a
temporary file is used to store objects that cannot be placed in
W. This file is used as the input to the next pass. D&C divides
the dataset into several partitions such that each partition can
fit into memory. Skyline objects for each individual partition
are then computed by a main-memory skyline algorithm. The
final skyline is obtained by merging the skyline objects for
each partition. Chomicki, et al. improved BNL by presorting,
they proposed Sort-Filter-Skyline (SFS) as a variant of
BNL [4]. SFS requires the dataset to be pre-sorted
according to some monotone scoring function. Since the
order of the objects can guarantee that no object can
dominate objects before it in the order, the comparisons of
tuples are simplified.

Among index-based methods, Tan, et al. proposed two
progressive skyline computing methods Bitmap and Index
[7]. Both of them require preprocessing. In the Bitmap
approach, every dimension value of an object is
represented by a few bits. By applying bit-wise and
operation on these vectors, a given object can be checked if
it is in the skyline without referring to other objects. The
index method organizes a set of n-dimensional objects into
n lists such that an object O is assigned to list i if and only if

 TABLE I
 SYMBOLIC DATASET

Object D1 D2 D3 D4 D5 D6

O1
O2
O3
O4
O5
O6
O7
O8
O9
O10
O11
O12

7
7
2
3
4
2
3
1
5
2
1
3

7
6
2
3
4
5
2
1
6
6
2
6

4
5
3
4
1
2
2
6
4
4
6
5

5
6
4
5
2
4
4
3
3
5
5
2

4
3
5
1
6
3
6
1
3
2
4
4

2
2
6
2
3
4
5
1
1
3
4
5

ISSN : 0975-3397 1935

Md. Anisuzzaman Siddique et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No.05, 2010, 1934-1943

its value at attribute i is the best among all attributes of O.
Each list is indexed by a B-tree, and the skyline is computed
by scanning the B-tree until an object that dominates the
remaining entries in the B-trees is found. Kossmann, et al.
observed that the skyline problem is closely related to the
nearest neighbor (NN) search problem [3]. They proposed
an algorithm that returns skyline objects progressively by
applying nearest neighbor search on an R*-tree indexed
dataset recursively. The current most efficient method is
Branch-and-Bound Skyline(BBS), proposed by
Papadias, et al., which is a progressive algorithm based
on the best-first nearest neighbor (BF-NN) algorithm [5].
Instead of searching for nearest neighbor repeatedly, it di-
rectly prunes using the R*-tree structure. Balke, et al. show
how to efficiently perform distributed skyline queries and
thus essentially extend the expressiveness of querying current
Web information systems [8]. Kapoor studies the problem
of dynamically maintaining an effective data structure for an
incremental skyline computation in a 2-dimensional space
[9]. Tao and Papadias studied sliding window skylines,
focusing on data streaming environments [10]. Huang, et al.
studied continuous skyline queries for dynamic datasets
[11].

B. k-dominant Skyline Query Processing

Chan, et al. introduce k-dominant skyline query [6]. They
proposed three algorithms, namely, One-Scan Algorithm
(OSA), Two-Scan Algorithm (TSA), and Sorted Retrieval
Algorithm (SRA). OSA uses the property that a k-dominant
skyline objects cannot be worse than any skyline object on
more than k dimensions. This algorithm maintains the skyline
objects in a buffer during the scan of the dataset and uses them
to prune away objects that are k-dominated. TSA retrieves a
candidate set of dominant skyline objects in the first scan by
comparing every object with a set of candidates. The second
scan verifies whether these objects are truly dominant skyline
objects or not. This method turns out to be much more efficient
than the one-scan method. A theoretical analysis is provided to
show the reason for its superiority. The third algorithm, SRA
is motivated by the rank aggregation algorithm proposed by
Fagin, et al., which pre-sorts data objects separately according
to each dimension and then merges these ranked lists [12].

Another study on computing k-dominant skyline is k-Z
Search proposed by Lee, et al. [13]. They introduced a
concept called filter-and-reexamine approach. In the filtering
phase, it removes all k-dominant objects and retain possible
skyline candidates, which may contain false hits. In the re-
examination phase, all candidates are reexamined to eliminate
false hits.

Based on transitivity property of skyline objects most of
the above algorithms sort the whole tuples (objects) with a
monotonic scoring function sum. However, this assumption is
not true for k-dominant skyline computation due to the well-
known intransitivity of the k-dominance relation. Moreover,
there is an open issue that the efficiency of the most efficient

k-dominant skyline search algorithm TSA proposed in [6]
crucially depends on the pruning capability of non-dominant
skyline objects during the first scan. If the number of false
positives produced by the first scan is small, then the perfor-
mance of TSA will be good.

Recently, more aspects of skyline computation have been
explored. Vlachou, et al. introduce the concept of extended
skyline set, which contains all data elements that are necessary
to answer a skyline query in any arbitrary subspace [14].
Fotiadou, et al. mention about the efficient computation of
extended skylines using bitmaps in [15]. Chan, et al. introduce
the concept of skyline frequency to facilitate skyline retrieval
in high-dimensional spaces [16]. Tao, et al. discuss skyline
queries in arbitrary subspaces [17]. There exist more work
addressing spatial skyline [18], [19], skylines on partially-
ordered attributes [20], dada cube for analysis of dominance
relationships [21], probabilistic skyline [22], skyline search
over small domains [23], and reverse skyline [24].

III. PRELIMINARIES

This section discusses the k-dominant skyline problems
and associated properties. Assume there is an n-dimensional

dataset DB and D1, D2, ···, Dn be the n attributes of DB.
Let O1, O2, ···, Or be r objects of DB. We use Oi .Dj to
denote the j-th dimension value of Oi .

.k-dominance

An object Oi is said to dominate another object Oj,
which we denote as Oi ≤ Oj, if Oi .Ds ≤n Oj .Ds for all
dimensions Ds (s = 1, ···, n) and Oi .Dt < Oj .Dt for at
least one dimension Dt (1 ≤ t ≤ n). We call such Oi as
dominant object and such Oj as dominated object between
Oi and Oj .

By contrast, an object Oi is said to k-dominate another

object Oj, denoted as Oi ≤k Oj, if Oi.Ds ≤ Oj.Ds in k
dimensions among n dimensions and Oi .Dt < Oj .Dt in one
dimension among the k dimensions. We call such Oi as k-
dominant object and such Oj as k-dominated object
between Oi and Oj .

An object Oi is said to have δ-domination power if
there are δ dimensions in which Oi is better than or equal
to all other objects of DB.

k-dominant Skyline

An object Oi ∈ DB is said to be a skyline object of DB
if Oi is not dominated by any other object in DB. Similarly,

an object Oi ∈ DB is said to be a k-dominant skyline object
of DB if Oi is not k-dominated by any other object in DB.
We denote a set of all k-dominant skyline objects in DB as
Skyk(DB). Note that objects that have k-domination
power must be k-dominant skyline objects but not vice
versa.

Extended k-dominant Skyline

ISSN : 0975-3397 1936

Md. Anisuzzaman Siddique et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No.05, 2010, 1934-1943

Object D1 D2 D3 D4 D5 D6 DP Sum
O8

O5

O4

O9

O11

O12

O6

O3

O10

O7

O1

O2

1
4
3
5
1
3
2
2
2
3
7
7

1
4
3
6
2
6
5
2
6
2
7
6

6
1
4
4
6
5
2
3
4
2
4
5

3
2
5
3
5
2
4
4
5
4
5
6

1
6
1
3
4
4
3
5
2
6
4
3

1
3
2
1
4
5
4
6
3
5
2
2

4
2
1
1
1
1
0
0
0
0
0
0

13
20
18
22
22
25
20
22
22
23
29
29

An object Oi is said to extended k-dominate another object
Oj, denoted as Oi <ext-k Oj, if Oi.Ds < Oj.Ds in k
dimensions among n dimensions. We call such Oi as extended
k-dominant object and such Oj as extended k-dominated
object between Oi and Oj .

An object Oi ∈ DB is said to be a extended k-dominant
skyline object of DB if Oi is not extended k-dominated by
any other object in DB. We denote a set of all extended k-
dominant skyline objects in DB as Skyext−k(DB).

Theorem 1: Every object that belongs to the k-dominant

skyline also belongs to the extended k-dominant skyline, i.e.,

Skyk(DB) ⊆ Skyext−k(DB).

Proof: Let O1 ∈ Skyk(DB) and O1 ∈/ Skyext−k(DB). It
follows that there is an another object O2 that extended k-
dominates the objects O1. Based on the definition of
extended k-dominant skyline ∀Dk (k = 1,···, n): O2.Dk <
O1.Dk. Therefore, based on the k-dominant skyline
definition we find that O1 ∈/ Skyk(DB), which leads to a

contradiction. ♦

The following theorem 2 [6] shows that there may not
be any k-dominant skyline object in a dataset for any k <
n.

Theorem 2: For any k < n (k ≥2) and a n-dimensional

space, there exist a dataset DBI with size |DBI | ≥ n such
that Skyk(DBI) = ø.

Table II shows an example dataset that exhibits the cyclic

dominance relationship when k = 3. Specifically, we have

Oi 3-dominates Oi+1, ∀i ∈ [1, 3], and O4 in turn 3-dominates

O1. In any cyclic dominance relationship, if two objects have
same domain value in any attribute. Then according to
extended k-dominant skyline definition, the cyclic
dominance does not no longer exist. From Table II we
see that object O4 fails to become the extended k-dominant
of object O1 . Thus, the extended 3-dominant query on Table
II will retrieve O1 as a result.

IV. ALGORITHMS
In this section, we present our algorithms for computing k-

dominant and extended k-dominant skyline in n-dimensional
dataset DB. We use filter based technique to compute
Skyk(DB) and Skyext−k(DB), efficiently. For both types
is discusses in Section IV-A. We discuss about k-dominant
skyline and extended k-dominant skyline computation in
Section IV-B and Section IV-C, respectively.

A. Domination Power Calculation

Chan, et al. sort the whole tuples (objects) with a
monotonic scoring function sum in their OSA algorithm for
k-dominant query [6]. By using the ordered tuples, we can
eliminate some of non-skyline objects easily. However, this
ordered tuples is not effective for k-dominant query

computation especially when values of each attribute is not

TABLE III

SO RT E D DATA S E T

normalized. For example, assume Oi = (1, 2, 3, 3, 3, 2) and
Oj = (7, 1, 3, 2, 3, 1) are two objects in 6-dimensional space.
Although sum of Oi ’s values is smaller than that of Oj’s, Oi

does not 5-dominant of Oj. Instead, Oi is 5-dominated by Oj.
In order to prune unnecessary objects efficiently in the k-

dominant skyline computation, we consider a new type
statistics of each object which we called domination power.
An object is said to have δ-domination power if there are
δ minimal values in which it is better or equal to all other
objects of DB. We sort objects in descending order by their
values of domination power (δ). If more than one objects have
same domination power then sort those objects in ascending
order of the sum value. This order reflects how likely to k-
dominate other objects. Higher objects in the sorted sequence
are likely to dominate other objects. Thus this preprocessing
helps to reduce the computational cost of k-dominant skyline.
However, sometimes, lower object can k-dominate higher
object. Experiments show that our estimation is robust over
various distributions. Moreover, it also works well when data
values are correlated, independent or anti-correlated.
Algorithm 1 represents the domination power statistics
calculation procedure.

Table III is the example of sorted dataset DB. In the
sorted dataset, object O8 has the highest domination power 4.
Note that object O8 dominates all objects lie below it in four
attributes D1, D2, D5, and D6.

B. k-dominant Skyline Algorithm
To determine whether an object O is k-dominant or not,

we need to compare it against k-dominant skyline objects as
well as non-k-dominant skyline objects. This is because
O can be k-dominated by any non-k-dominant skyline objects
even though O is not k-dominated by any of the k-dominant

 TABLE II
CY C L I C D O M I NA N C E R E L AT I O N S H I P

Object D1 D2 D3 D4

O1

O2

O3

O4

6
2
3
4

6
7
2
3

6
7
8
6

6
7
8
9

ISSN : 0975-3397 1937

Md. Anisuzzaman Siddique et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No.05, 2010, 1934-1943

objects. To eliminate non-k-dominant skyline objects, one set
of objects are maintained as Skyk(DB). Similar as TSA
we also need two scan for k-dominant skyline computation.
But the dataset sorted by domination power can reduce many
pairwise comparisons between the objects of Skyk(DB) and
DB. Algorithm 2 shows our proposed algorithm for k-
dominant skyline computation.

Algorithm 1: Compute Domination Power, DP
1. For each attribute Di (i = 1 to n) do
2. Initialize minValue = 0
3. For each object Oj (j = 1 to r) do
4. Initialize DP of object Oj , Oj .DP = 0
5. If (minValue < Oj .Di) then
6. minValue = minValue
7. Else
8. minValue = Oj .Di

9. For each object Oj (j = 1 to r) do

10. If (minValue == Oj .Di) then
11. Increase DP of Oj , Oj .DP by 1
12. Sort dataset, DB in ascending order by DP
13. If (more than one objects have same DP) then
14. Sort those objects in ascending order of SUM
13. Return the sorted DB

During the k-dominant evaluation initially Sky5(DB) is
empty and O8 is added in Sky5(DB) as a 5-dominant object
without any comparison. Since O8 and O5 fails to become
5-dominant of each other, after one comparison O5 is added
in Sky5(DB). Next, after compare with O8 we see that O4 is
not in Sky5(DB). In this way objects O9, O11, O12, O6,
O3, O10, O7, O1, and O2 are not in Sky5(DB). At the end of
the first scan Sky5(DB)={O8, O5}. After second scan we
confirm that there exist no false positive object. Next,
using Sky5(DB) objects, we get Sky4(DB)={O8}.

Algorithm 2: k-dominant Skyline

1. Sort DB by domination power and sum
2. Initialize Skyk(DB) = 0
3. For each object O ∈ DB do
4. Initialize isDominant = true
5. For each object OI ∈ Skyk(DB) do
6. If (OI ≤n O or OI ≤k O) then
7. isDominant = f alse
8. break
9. If (O ≤n O

I or O ≤k O
I) then

10. Remove OI from Skyk(DB)
11. If (isDominant) then
12. insert O into Skyk(DB)

13. For each object O ∈ DB do
14. For each object OI ∈ Skyk(DB), do
15. If ((O ≤n O

I or O ≤k O
I) and OI = O) then

16. Remove OI from Skyk(DB)
17. Return Skyk(DB)

C. Extended k-dominant Skyline Algorithm

This section introduces how to calculate extended k-
dominant skyline of sorted dataset DB. The algorithm (shown
in algorithm 3) is based on the following key properties.

Lemma 1: Consider an object O ∈ DB that is not a n
extended k-dominant skyline object. Then it is possible for O
not to be extended k-dominated by any extended k-dominant
skyline object.

Our algorithm takes as input a n-dimensional dataset DB
and a parameter k, and outputs the set of extended k-dominant
skyline objects in DB. To compute extended k-dominant
skyline (i.e., Skyext−k(DB)) proposed method scan the
dataset DB twice. In the first scan of DB (steps 1 to 12), a
set of candidate extended k-dominant skyline objects,
Skyext−k(DB) is computed progressively by comparing each

object O ∈ DB against the computed objects in
Skyext−k(DB). If an object is extended k-dominated, then it
is removed from Skyext−k(DB). During this scan we ignore
non-skyline objects that are all dominated (i.e., n-dominated)
by Skyext−k(DB) objects. This is because according to
theorem 1 non-skyline object cannot become an extended k-
dominant skyline. Although it has same domain value in some
attributes compare with other objects in Skyext−k(DB). Note
that false positives can exist in Skyext−k(DB) due to property
in lemma 1.

To eliminate the false positives produced by the first scan,
a second scan of DB (step 13 to 17) is necessary. During the
second scan we can exclude all Skyext−k(DB) as well as non-
skyline objects for further extended k-dominant checking. The
efficiency of our approach depends on the pruning capability
of non-skyline objects during the first scan. If the number
of false positives produced by the first scan is small, then the
performance of the second scan and hence the overall approach
will be good.

Algorithm 3: Extended k-dominant Skyline

1. Sort DB by domination power and sum

2. Initialize Skyext−k(DB) = 0
3. For each object O ∈ DB do
4. Initialize isDominant = true
5. For each object OI ∈ Skyext−k(DB) do
6. If (OI ≤n O or OI <k O) then
7. isDominant = f alse
8. break
9. If (O ≤n O

I or O <k OI) then
10. Remove OI from Skyext−k(DB)
11. If (isDominant) then
12. Insert O into Skyext−k(DB)

13. For each object O ∈ DB do
14. For each object OI ∈ Skyext−k(DB), do
15. If ((O ≤n O

I or O <k OI) and OI = O) then
16. Remove

17. Return Skyext−k(DB)

Assume k = 5, then applying the proposed algorithm on

ISSN : 0975-3397 1938

Md. Anisuzzaman Siddique et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No.05, 2010, 1934-1943

Table III, we note that at the end of first scan objects O8, O5,

O4, O9, and O12 will be inserted into Skyext−5(DB). This
example demonstrates the effective pruning ability of the
extended k-dominant skyline objects in eliminating non-
extended k-dominant skyline objects. However, there exists
a false positive object, O12. During the second scan O12 is
extended 5-dominated by O6. That means after the
completion of second scan our method give Skyext−5(DB)

= {O8,O5,O4,O9} as a result. Next, using Skyext−5(DB)

objects, we get Skyext−4(DB) = {O8}.

V. PERFORM ANCE EVALUATION

We conduct a series of experiments to evaluate the effec-
tiveness and efficiency of proposed methods. In this
paper, we compare our proposed approach for k-dominant
skyline against TSA, which is the most efficient k-dominant
skyline search algorithm proposed in Ref. 6). On the other
hand in lack of techniques dealing directly with the
problem of extended k-dominant skyline, we cannot
compare our proposed method against other methods.
However, we conduct simulation experiments on a PC
running on MS Windows XP professional. The PC has an
Intel(R) Core2 Duo 2GHz CPU and 3GB main memory. All
experiments were coded in Java J2SE V6.0. Each experiment
is repeated five times and the average result is considered for
performance evaluation.

A. Performance on Synthetic Datasets

As benchmark datasets, we use the datasets proposed
in Ref. 2). Objects are generated using one of the following
three value distributions:
Anti-Correlated: an anti-correlated dataset represents an en-
vironment in which, if an object has a small coordinate on
some dimension, it tends to have a large coordinate on at
least another dimension. As a result, the total number of non-
dominating objects of an anti-correlated dataset is typically
quite large.
Correlated: a correlated dataset represents an environment in
which objects with large coordinate in one dimension are also
have large coordinate in the other dimensions. In a correlated
dataset, few objects dominate many other objects.
Independent: for this type of dataset, all attribute values are
generated independently using uniform distribution. Under this

distribution, the total number of non-dominating objects is

between that of the correlated and the anti-correlated datasets.

The generation of the synthetic datasets is controlled by
three parameters, n, “Size”, and “Dist”, where n is the number
of attributes, “Size” is the total number of objects in the
dataset, and “Dist” can be the any of the three distributions.

Table IV shows the returned objects comparison between
skyline, k-dominant skyline, and extended k-dominant skyline.
For this experiment, we vary data cardinality from 100k
to 500k, set n to 13, and k to 12. We use SFS method
proposed in Ref. 4) to compute skyline objects and TSA
method proposed in Ref. 6) to compute k-dominant skyline
computation. Table IV shows that number of skyline objects
for all distribution is much larger than that in the k-dominant
skyline and extended k-dominant skyline. However, the
returned objects set size of the extended k-dominant skyline is
between that of the skyline and the k-dominant skyline.

In the following sections, we will examined the effect of
cardinality and dimensionality. In each experiment, we
evaluate total time to compute extended k-dominant skyline.
Similar to most of the related work in the literature, we employ
the elapsed time as the performance metric.

Effect of Cardinality

For k-dominant skyline experiment, we vary dataset cardi-
nality ranges from 100k to 500k, set the values of n to 15
and k to 13. Figure 2(a), (b), and (c) shows that when the
size of the dataset increases from 100k to 500k, the
computation time of both algorithms maintain a positive
correlation. Notice that our proposed method performs better
than TSA.

For extended k-dominant skyline experiment, we vary dataset
cardinality ranges from 100k to 500k, set the value of n to
13, and k to 12. Figure 3(a), (b), and (c) shows the time to
compute extended k-dominant skyline. For all distributions,
the time of proposed method is increases if the data
cardinality increases. The result shows that it takes highest
time for anti-correlated datasets then for independent
datasets. This is because for anti-correlated distribution, if an
object has a small coordinate on some dimension, it tends to
have a large coordinate on other dimensions. As a result, the

TABLE IV
NO. OF R E T U R N E D OB J E C T

Size Anti-Correlated Correlated Independent

Skyline
Objects

k-dom.
Objects

Ext. k-dom.
Objects

Skyline
Objects

k-dom.
Objects

Ext. k-dom.
Objects

Skyline
Objects

k-dom.
Objects

Ext. k-dom.
Objects

100k
200k
300k
400k
500k

57686
108150
158570
211558
258507

16745
33178
47693
69613
87432

22896
42698
62500
85392

105454

7857
15578
23415
30513
38312

1254
2542
3849
5047
6265

2594
4708
5257
8758
10123

36651
70516

110782
143165
180156

10728
23287
32872
48827
58253

17411
30540
45156
65045
72854

ISSN : 0975-3397 1939

Md. Anisuzzaman Siddique et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No.05, 2010, 1934-1943

total number of non-dominating objects set size is large.

Fig. 2. k-dom. skyline computation for different datasize

Effect of Dimensionality

For k-dominant skyline experiment, we vary dataset di-
mensionality n ranges from 10 to 20 and k from 6 to 19.
Figure 4(a), (b), and (c) represents the effect of dimensionality.
For all distributions, the response time of the proposed
method is better than TSA approach and it increases if the
data dimensionality n increases.

Again for extended k-dominant skyline experiment, we
vary dataset dimensionality n ranges from 7 to 13 and
k from 6 to 12. Figure 5(a), (b), and (c) represents the
effect of dimensionality. For all distributions, the response
time of the proposed method is increases if the data
dimensionality n increases. This is because by increasing the
number of dimensions, the probability that an object

dominates another one is reduced significantly.

Fig. 3. Ext. k-dom. skyline computation for different datasize

B. Performance on Real Datasets

To evaluate the performance for real dataset, we study two
different real datasets. The first dataset is NBA statistics. It is
extracted from “www.nba.com”. The dataset contains 17k
13-dimensional data objects, which correspond to the
statistics of an NBA players’ performance in 13 aspects
(such as points scored, rebounds, assists, etc.) and domain
have range [0, 4000]. The dataset approximates a correlated
data distribution. The second dataset is FUEL dataset and
extracted from “www.fueleconomy.gov”. FUEL dataset
is 24k 6-dimensional objects, in which each object stands for
the performance of a vehicle (such as mileage per gallon of
gasoline in city and highway, etc.). For this dataset attribute
domain range is [8, 89]. Using both datasets we conduct the
following experiment.

ISSN : 0975-3397 1940

Md. Anisuzzaman Siddique et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No.05, 2010, 1934-1943

Fig. 4. k-dom. skyline computation for different dimension

Experiments on Real Dataset for k-dominant Skyline

We performed two experiments on NBA dataset. In the first
experiment, we study the effect of dimensionality when n
varies from 5 to 13 and k from 4 to 12. Figure 6(a) shows
the result. NBA dataset exhibits similar result to synthetic
dataset, if the number of dimension increases the performance
of both algorithms becomes slower. Figure 6(a) represents that
proposed method is faster than TSA.

For FUEL dataset, we performed similar experiment like
NBA dataset. For this experiment, n varies from 3 to 6
and k varies from 2 to 5. Result is shown in Figure 6(b). For
this experiment with FUEL dataset, we obtain similar result
like NBA dataset that represents the scalability of the
proposed method.

Fig. 5. Ext. k-dom. skyline computation for different dimension

Experiments on Real Dataset for Extended k-dominant
Skyline

We performed an experiment on NBA dataset. In this
experiment, we study the effect of dimensionality when n
varies from 7 to 13 and k from 6 to 12. Figure 7(a) shows
the result. NBA dataset exhibits similar result to synthetic
dataset, if the number of dimension increases the
performance of proposed algorithm becomes slower.

For FUEL dataset, we performed similar experiment like
NBA dataset. For this experiment, n varies from 3 to 6
and k varies from 2 to 5. Result is shown in Figure 7(b). For
this experiment with FUEL dataset, we obtain similar result
like NBA dataset that represents the scalability of the
extended k-dominant skyline computation technique.

ISSN : 0975-3397 1941

Md. Anisuzzaman Siddique et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No.05, 2010, 1934-1943

 Fig. 6. k-dom. experiments on NBA and FUEL dataset

VI. CONCLUSION

In this paper, we consider k-dominant skyline query prob-
lem and present a method for computing the query result. By
applying domination power statistics, we can compute the k-
dominant skyline query result efficiently. Using real and
synthetic datasets, we demonstrate the efficiency and
scalability of our proposed method. However, a skyline has a
side effect of retrieving too many objects and a k-dominant
skyline query retrieves too few objects to analyze. To
solve this problem, we consider extended k-dominant
skyline query problem and present a method for computing
the query result. Using real and synthetic datasets, we
demonstrate the efficiency and scalability of our proposed
method.

However, proposed methods performance are efficient to
compute k-dominant and extended k-dominant skyline, but
those methods are designed only for static datasets. They
may not efficient for frequently updated datasets. Future
works need to study techniques to facilitate incremental
updates. Develop algorithms on k-dominant as well as
extended k-dominant skyline integrating with ranking the
usefulness of query results would be desirable.

ACKNOW LEDGEMENTS

This work was supported by KAKENHI (19500123) and Md.
Anisuzzaman Siddique was supported by the scholarship of

MEXT Japan.

Fig. 7. Ext. k-dom. experiments on NBA and FUEL dataset

REFERENCES

[1] T. Xia, D. Zhang, and Y. Tao, “On Skylining with Flexible Dominance
Relation”, in Proceedings of ICDE, 2008, pp. 1397-1399.

[2] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator”, in
Proceedings of ICDE, 2001, pp. 421-430.

[3] D. Kossmann, F. Ramsak, and S. Rost, “Shooting stars in the sky: An
online algorithm for skyline queries”, in Proceedings of VLDB, 2002,
pp. 275-286.

[4] J. Chomicki, P. Godfrey, J. Gryz, and D. Liang, “Skyline with
Presorting”, in Proceedings of ICDE, 2003, pp. 717-719.

[5] D. Papadias, Y. Tao, G. Fu, and B. Seeger, “Progressive skyline
computation in database systems”, in ACM Trans- actions on Database
Systems, vol. 30(1), pp. 41-82, March 2005.

[6] C. Y. Chan, H. V. Jagadish, K-L. Tan, A-K. H. Tung, and Z.
Zhang, “Finding k-Dominant Skyline in High
Dimensional Space”, in Proceedings of ACM SIGMOD, 2006, pp.
503-514.

[7] K.-L. Tan, P.-K. Eng, and B. C. Ooi, “Efficient Progressive Skyline
Computation”, in Proceedings of VLDB, 2001, pp. 301-310.

[8] W. T. Balke, U. Guntzer, and J. X. Zheng, “Efficient distributed
skylining for web information systems”, in Proceedings of EDBT,
2004, pp. 256-273.

[9] S. Kapoor, “Dynamic Maintenance of Maxima of 2-d Point Sets”, in
SIAM Journal on Computing, vol. 29(6), pp. 1858-1877, April 2000.

[10] Y. Tao and D. Papadias, “Maintaining Sliding Window Skylines on
Data Streams”, in IEEE Transactions on
Knowledge and Data Engineering, vol. 18(3), pp. 377-391, March 2006.

[11] Z. Huang, H. Lu, B. Ooi, and A. Tung, “Continuous skyline queries
for moving objects”, in IEEE Transactions on Knowledge and Data
Engineering, vol. 18(12), 1645-1658, Dec. 2006.

[12] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms
for middleware”, in Proceedings of ACM PODS,

ISSN : 0975-3397 1942

Md. Anisuzzaman Siddique et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No.05, 2010, 1934-1943

2001, pp. 102-113.
[13] K. C. K. Lee, B. Zheng, H. Li, and W. C. Lee, “Approaching the

Skyline in Z Order”, in Proceedings of VLDB, 2007, pp. 279-290.
[14] A. Vlachou, C. Doulkeridis, Y. Kotidis, and M. Vazirgiannis,

“SKYPEER: Efficient Subspace Skyline Computation over Distributed
Data”, in Proceedings of ICDE, 2007, pp. 416-425.

[15] K. Fotiadou and E. Pitoura, “BITPEER: C ontinuous
Subspace Skyline Computation with Distributed Bitmap Indexes”, in
Proceedings of DaAMaP, 2008, pp. 35-42.

[16] C. Y. Chan, H. V. Jagadish, K-L. Tan, A-K. H. Tung, and Z.
Zhang, “On High Dimensional Skylines”, in Proceedings of EDBT,
2006, pp. 478-495.

[17] Y. Tao, X. Xiao, and J. Pei, “Subsky: Efficient Computation of
Skylines in Subspaces”, in Proceedings of ICDE, 2006, pp. 65-65.

[18] K. Deng, X. Zhou, and H. T. Shen, “Multi-source Skyline Query
Processing in Road Networks”, in Proceedings of ICDE, 2007, pp.
796-805.

[19] M. Sharifzadeh and C. Shahabi, “The Spatial Skyline Query”, in
Proceedings of VLDB, 2006, pp. 751-762.

[20] C.-Y. Chan, P.-K. Eng, and K.-L. Tan, “Stratified Com- putation of
Skylines with Partially-Ordered Domains”, in Proceedings of ACM
SIGMOD, 2005, pp. 203-214.

[21] C. Li, B. C. Ooi, A-K. H. Tung, and S. Wang, “DADA: A Data Cube
for Dominant Relationship Analysis”, in Proceedings of ACM
SIGMOD, 2006, pp. 659-670.

[22] J. Pei, B. Jiang, X. Lin, and Y. Yuan, “Probabilistic Skylines on
Uncertain Data”, in Proceedings of VLDB, 2007, pp. 15-26.

[23] M. Morse, J. M. Patel, and H. V. Jagadish, “Efficient Skyline
Computation over Low-Cardinality Domains”, in Proceedings of VLDB,
2007, pp. 267-278.

[24] E. Dellis and B. Seeger, “Efficient Computation of Reverse Skyline
Queries”, in Proceedings of VLDB, 2007, pp. 291-302.

AUTHORS PROFILE

interests include data mining, machine learning, geographic
information system, and privacy preserving information
retrieval.

Md. Anisuzzaman Siddique
received the B.Sc. and M.Sc. degrees
in Computer Science and Technology
from University of Rajshahi (RU),
Bangladesh in 2000 and 2002,
respectively. Since 2002 present he is
a faculty member in RU. He is a
Ph.D. candidate at Hiroshima
University. His research interests
include skyline evaluation, data
mining, and privacy preserving
information retrieval.

Yasuhiko Morimoto is an Associate
Professor at Hiroshima University.
He received B.E., M.E., and Ph.D.
from Hiroshima University in 1989,
1991, and 2002, respectively. From
1991 to 2002, he had been with IBM
Tokyo Research Laboratory where he
worked for data mining project and
multimedia database project. Since
2002, he has been with Hiroshima
University. His current research

ISSN : 0975-3397 1943

