
P. Ponmuthuramalingam et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1665-1673

Effective Term Based Text Clustering Algorithms

P. Ponmuthuramalingam

Department of Computer Science,
Government Arts College, Coimbatore, India

T. Devi

School of Computer Science and Engineering
Bharathiar University, Coimbatore, India

Abstract

Text clustering methods can be used to group large sets of
text documents. Most of the text clustering methods do not
address the problems of text clustering such as very high
dimensionality of the data and understandability of the
clustering descriptions. In this paper, a frequent term based
approach of clustering has been introduced; it provides a
natural way of reducing a large dimensionality of the
document vector space. This approach is based on clustering
the low dimensionality frequent term sets and not on clustering
high dimensionality vector space. Four algorithms for effective
term based text clustering has been presented. An
experimental evaluation on classical text documents as well as
on web documents demonstrates that the proposed algorithms
obtain clustering of comparable quality significantly more
efficient than existing text clustering algorithms.

Keywords: Frequent term sets, Document clustering, Text
documents, Document mining, Text mining, Text clustering.

I. INTRODUCTION

In every industry, almost all the documents on
paper have their electronic copies. This is because, the
electronic format provides safer storage and occupies much
smaller space [6][12][10]. Also, the electronic files provide
a quick access to these documents. The text database which
consists of documents is usually very large and it becomes a
huge challenge to understand hidden patterns or relations in
the data [6][9]. As text data is not in numerical format, it
cannot be analyzed with statistical methods. However,
everyday, people encounter a large amount of information
and store or represent it as data, for further analysis and
management.

Document clustering has been investigated in
different areas of text mining and information retrieval.
Document clustering has been studied intensively because
of its wide application in areas such as Web Mining [17],
Search Engine and Information Retrieval [6][12]. Document
clustering is the automatic organization of documents into
clusters or groups, so that, documents within a cluster have
high similarity in comparison to one another, but are very
dissimilar to documents in other clusters [9]. In other words,
the grouping is based on the principle of maximizing intra-
cluster similarity and minimizing inter-cluster similarity
[2][8][16]. The major challenge of clustering is to efficiently
identify meaningful groups that are concisely annotated
[5][14][16].

 In order to increase the precision of the retrieval
result, many methods have been proposed [3][15]. By
clustering the text documents, the documents sharing the
same topic are grouped together. When the clusters are
returned, the user can select the group that interests the user
most. This method makes the search engine more efficient
and accurate.

II. REVIEW OF LITERATURE

Fung B.C.M. (2003) addressed the problem of poor
clustering accuracy due to the incorrect estimation of the
number of clusters. An algorithm, namely, Frequent Item
Set based Hierarchical Clustering (FIHC) proposed by Fung
B.C.M. makes use of frequent item set and construction of a
hierarchical topic tree from the clusters. A frequent item set
is being used as preliminary step and the dimension of each
document is drastically reduced, which in turn increases
efficiency and scalability [4][7][16]. The author performed
the experiment on a Pentium III 667 MHz PC with largest
datasets (Reuters) and the proposed algorithm is more
scalable because the experiment with 10000 documents
shows that FIHC algorithm completes its whole process
within two minutes while Unweighted Pair Group Method
with Arithmetic Mean (UPGMA) and Hierarchical Frequent
Term based Clustering (HFTC) could not even produce a
clustering solution [4][15].

Bi-secting k-means generate relatively deep
hierarchies. As a result, it is not suitable for browsing
[4][15]. The other frequent item set based algorithm HFTC
[4] provides a relatively flat hierarchy but its different
branches of hierarchy decrease the accuracy. FIHC uses
sibling merging method and overcomes the problem and it
gets higher accuracy in browsing [7].

Li and Chung (2008) addressed the problem to
improve the result of information retrieval for document
clustering and stated that the requirement [16] of
information retrieval is as follows: (1) The document model
preserves the sequential relationship between words in the
document, (2) Associating a meaningful label to each final
Cluster is essential, (3) Overlapping between documents
should be allowed, and (4) The high dimensionality of text
document should be reduced. The authors refer to Fung
B.C.M. et al. (2003) for the definition of document
clustering with unsupervised and automatic grouping [13]

ISSN : 0975-3397 1665

P. Ponmuthuramalingam et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1665-1673

and proposed text-clustering algorithm, Clustering Frequent
Word Sequences (CFWS) [16] where document is reduced
to compact document by keeping only the frequent words to
reduce high dimensionality. Experiment was conducted on a
SuSE Linux PC with a Celeron 500 MHz processor and 384
MB memory using C++ and stated that CFWS algorithm is
more efficient than the suffix tree clustering algorithm [17],
which clusters the documents by constructing the suffix tree
of all the sentences of the documents in the collection.

Frequent Term based Clustering (FTC) [4] is a text
clustering technique, which uses frequent term sets and
dramatically decreases the dimensionality of the document
vector space [11], thus addressing itself to the problem of
text clustering, namely, very high dimensionality of the data
and very large size of the databases. The performance of the
FTC algorithm is largely determined by the function overlap
[4]. Beil F. et al. (2002) introduces two approaches, upon
calculating the overlap namely, Standard overlap and
Entropy overlap, and finally abandons Standard overlap due
to its inherent deficiency [11]. The evaluation of FTC over
bi-secting k-means and 9-secting k-means on the basis of
experiments on both classical text documents and web
documents shows that FTC is significantly more efficient
[4]. However, FTC does not outperform other methods with
respect to cluster quality [16].

III. DOCUMENT PREPROCESSING

All text clustering methods require several steps of
preprocessing of the data. First, any non-textual information
such as HTML tags and punctuation is removed from the
documents. In general the documents are clustered, based on
context matching or similarity. Mostly, the contexts of
documents are represented by nouns. Based on this, the
following assumptions were made in document dimension
reduction [13]:

 Elimination of words which possess less than 3
characters.

 Elimination of general words
 Elimination of adverbs and adjectives
 Elimination of non-noun verbs

The following assumptions have been made to achieve
frequent term generation:

 For small document, each line is treated as a
record.

 For large document, each paragraph is treated as a
record.

Dimension reduction improves the performance of
text mining techniques to process the data with a reduced
number of terms. Two improved dimension reduction
algorithms namely, stemming and frequent term generations
are used [13]. The morphological variant in the given

document, stopping words and grammatical words are
identified and removed by improved stemming algorithms
[13]. The frequent term set generation algorithm generates
frequent terms, which satisfy the given minimum support.

IV. TEXT CLUSTERING ATTRIBUTES SELECTION

 Generally, text clustering is performed in two
stages, namely, frequent term set generation (dimension
reduction) and grouping of frequent term documents.
Frequent term set generation is characterised by the attribute
minimum support threshold and grouping of frequent term
documents are characterised by matching threshold.

A. Minimum Support Threshold
 In the first stage, the document database is reduced,
based on the value which was selected as minimum support
for the terms called minimum support threshold [1][8]. If the
minimum support takes less value, the dimension reduction
is less. In order to get more reduction in size the value of
minimum support should be high. Suppose, a maximum
value of minimum support is chosen, then the theme of the
document may be reduced. So, care must be given when
selecting the minimum support threshold value. In clustering
aspect, if the minimum support value is low, the numbers of
frequent terms are more and clustering possibility is high.
For high value, the number of frequent terms are less and
the clustering possibility is low [4].

B. Matching Threshold

In the second stage, the grouping of documents is
carried out by finding the match of frequent terms between
the documents which is measured by a value called
matching threshold [8][10]. In general, matching is the ratio
of number of common terms between documents to the total
number of terms. For low matching threshold value, the
grouping of document is more and the overlap of frequent
term is more. For high matching threshold value, the
grouping of document is less and the overlap of frequent
term is less. The overlap of a cluster with the other clusters
is the smaller for smaller value of frequent terms of its
documents [4].

Problem Definition
 Let D = {d1, d2, d3, . . . , dn} be a database of text
documents and T be the set of all terms occurring in the
documents of D. Each document di is represented by the set
of terms occurring in di, where d1 = {t11, t12, . . . , t1m}, d2 =
{t21, t22, . . . , t2m} be a set of frequent term scalar vector of
document d1 and d2 i.e., di ك D dj ك D and tij א D where i =
1. . . . n, and j = 1 . . . m. Let min-supp be a real
number, 0 ≤ min-supp ≤ 1. Let F = {f1, f2, f3, . . . , fk} be the
set of all frequent term sets in D with respect to min-supp,
the set of all term sets contained in atleast min-supp of the D
documents, i.e.,

F= {fi ك T || cov (fi) | ≥ min-supp.|D|}

ISSN : 0975-3397 1666

P. Ponmuthuramalingam et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1665-1673

A frequent term set of cardinality k is called frequent k-term
set. The cover of each element fi of F can be regarded as a
cluster. Let the clustering of D in m sets be defined as R =
{C1, C2, C3, . . . , Cm} such that, each cluster Ci contains
atleast one document i.e. Ci ≠ ׎; i= 1 , m. The
union of all clusters is the set D:
 ௜ୀଵ׫

௠ ௜ܥ ൌ ܦ
No two clusters have documents in common, i.e.,

Ci ∩ Cj = ׎, i ≠ j, i, j = 1 . . . , m.
An example represenatation of text document database (D)
in terms of frequent terms (t), the documents are denoted by
d is given in Table 1. It consists of five documents each of
which has its own frequent terms with respect to the given
minimum support to a maximum of 4 terms.

Table 1 Representation of Text Database (D) as Frequent Terms

Documents

Frequent Terms

t1 t2 t3 t4

d1

d2

d3

d4

d5

A
A
F
D
A

B
C
G
L
K

C
F
I
M
X

D
G
J
-
M

V. CLUSTERING ALGORITHM

A. Min-Match Cluster Algorithm

Description

 Let A and B be frequent term sets of two
documents d1 and d2 represented as vectors. Then, the
matching between the two vectors is characterized by using
the assumption with reference to minimum vector, i.e., the
matching is denoted by min (Vm) and is defined as the
number of common elements between vector A and B to the
number of elements in the minimum of the two sets, i.e.,

 min ሺ ௠ܸሻ ൌ
௡ሺ஺ת஻ሻ

௡ሼ୫୧୬ሼ஺,஻ሽሽ

 or min_matching =
match term count

୫୧୬ ሺ௖௢௨௡௧ሼ஺,஻ሽሻ

Consider the following example:-

Let X = {A, B, C, D} and Y = {D, L, M},

then, min (௠ܸ) =
1
3

ൌ 0.3333 ሺ33.33 %ሻ

In this example, the matching term is D and gives the count
as 1 out of three terms in minimum vector.

Algorithm

In this algorithm, step 2 selects a vector as a
comparable vector. Steps 5 to 7 are used to find out the
minimum vector from the two input vectors specified in
steps 2 and 5 and assign its length as minimum vector count.
In step 8, the matching terms between two vectors are
calculated by using binary search concept. In step 9,
matching percentage between vectors is calculated using
minimum vector count. In step 10, the highest matching
vector between the two vectors is selected and updates the
value of highest match vector. The above process (steps 5 to
11) is repeated until the comparable vector selected in step 1
has to compare all the remaining vectors.

In steps 15 and 16, if the highest match vector is
found, then a) Its frequent terms are added to the terms of
comparable vector selected in step 2, and b) Add the highest
match cluster to the comparable cluster (step 16). In steps 17
and 18, remove the highest match cluster from the cluster
list (step 17). Remove the highest match cluster terms from
the frequent term list (step 18). The above process
(steps 2 to 19) is repeated until the vectors are compared to
all other vectors in the frequent vector list.

D: Document database
FTL: frequent_term_list
CL: Cluster list
FT: frequent_terms

Min-Cluster(CL,FTL,D)
1. For each FT i in FTL do
2. t1 = ith index frequent_terms
3. Initialise high_percent_matching = -1 and cluster_index= -1
4. For each FT j in FTL do
5. if (i≠ j) then
 t2 = jth index_frequent words
6. if (t1.length < t2.length) then
 total_terms = t1.length
7. Else
 total_terms=t2.length
 End if
8. match= Calculate matching terms between vector i and j using
Binary Search
9. matching_percent = match * 100 / total_terms
10. if (matching_percent > matching_threshold) and
 (high_percent_matching < matching_percent) then
 high_percent_matching = matching_percent and
cluster_index = j
11. End if
12. End if
13. Next loop (j)
14. if (cluster_index ≠ -1) then
15. Add frequent_term_list(cluster_index) to frequent_term_list(i)
16. Add Cluster_list(cluster_index) to Cluster_list(i)
17. Remove Cluster_list(cluster_index)from Cluster_list
18. Remove frequent_term_list(cluster_index)from frequent_term_list
19. End if
20. Next loop (i)

 Figure 1 Min-Match Cluster Algorithm

ISSN : 0975-3397 1667

P. Ponmuthuramalingam et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1665-1673

B. Max-Match Cluster Algorithm

Description

Let A and B be two frequent term sets of two
documents d1 and d2 represented as vectors. Then, the
matching between these two vectors is characterized by
using the assumption with reference to the maximum vector,
i.e., the matching is denoted by max (Vm) and is defined as
the number of common elements between vector A and B to
the number of elements in the maximum of two sets, i.e.,

max ሺ ௠ܸሻ ൌ
݊ሺܣ ת ሻܤ

݊ሼmaxሼܣ, ሽሽܤ

or max_matching =
match term count

୫ୟ୶ ሺ௖௢௨௡௧ሼ஺,஻ሽሻ

Consider the following example:-

Let X = {A, B, C, D} and Y = {D, L, M},

 then, max (௠ܸ) =
ଵ

ସ
ൌ 0.25 ሺ25 %ሻ

In this example, the matching term is D and gives the count
as 1, out of the 4 terms in maximum vector.

Algorithm

In this algorithm, step 2 selects a vector as a
comparable vector. Steps 5 to 7 are used to find out the
maximum vector from the two input vectors specified in
step 2 and 5 and assign its length as maximum vector count.
In step 8, the matching terms between two vectors are
calculated by using binary search concept. In step 9,
matching percentage between vectors is calculated using
maximum vector count.

In step 10, the highest matching vector between the
two vectors is selected and the value of highest match vector
is updated. The above process (steps 5 to 11) is repeated
until the comparable vector selected in step 1 has to
compare all the remaining vectors. In steps 15 and 16, if the
highest match vector found, then, a) Its frequent terms are
added to the terms of comparable vector selected in step 2,
and b) Add the highest match cluster to the comparable
cluster (step 16). In steps 17 and 18, remove the highest
match cluster from the cluster list (step 17). Remove the
highest match cluster terms from the frequent term list (step
18). The above process (steps 2 to 19) is repeated until the
vectors are compared to all other vectors in the frequent
vector list.

D: document database
FTL: frequent_term_list
CL: Cluster list
FT: frequent_terms

Max-Cluster(CL,FTL,D)
1. For each FT i in FTL do
2. t1 = ith index frequent_words
3. Initialise high_percent_matching = -1 and cluster_index= -1
4. For each FT j in FTL do
5. if (i≠ j) then
 t2 = jth index_frequent words
6. if (t1.length < t2.length) then
 total_terms = t2.length
7. Else
 total_terms=t1.length
 End if
8. match= Calculate matching terms between vector i and j using
Binary Search
9. matching_percent = match * 100 / total_terms
10. if (matching_percent > matching_threshold) and
 (high_percent_matching < matching_percent) then
 high_percent_matching = matching_percent and
cluster_index = j
11. End if
12. End if
13. Next loop (j)
14. if (cluster_index ≠ -1) then
15. Add frequent_term_list(cluster_index) to frequent_term_list(i)
16. Add Cluster_list(cluster_index) to Cluster_list(i)
17. Remove Cluster_list(cluster_index)from Cluster_list
18. Remove frequent_term_list(cluster_index)from frequent_term_list
19. End if
20. Next loop (i)

 Figure 2 Max-Match Cluster Algorithm

C. Min-Max Match Cluster Algorithm

Description

Let A and B be two frequent term sets of two
documents d1 and d2 represented as vectors. Then the
matching between these two vectors is characterized by
using the assumption with reference to the maximum vector,
i.e., the matching is denoted by min_max (Vm) and is
defined as the number of matching terms multiplied by 2 to
the number of elements of two sets, i.e.,

min _max ሺ ௠ܸሻ ൌ
݊ሺܣ ת ሻܤ
݊ሼܣ, ሽܤ

or min _max_matching =
match term count * no. of vector

 ሺ௖௢௨௡௧ሼ஺,஻ሽሻ

Consider the following example:-

Let X = {A, B, C, D} and Y = {D, L, M},

then, max (௠ܸ) =
1 כ 2

7
ൌ

2
7

ൌ 0.285 ሺ28.5 %ሻ

ISSN : 0975-3397 1668

P. Ponmuthuramalingam et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1665-1673

In this example, the matching term D gives the count as 1 in
both vectors out of 7 terms, the total count of the two
vectors.

Algorithm

In this algorithm, step 2 selects a vector as a
comparable vector. Steps 5 to 7 are used to find out the total
length of the two input vectors specified in steps 2 and 5 to
assign as min-max vector count. In step 8, the matching
terms between two vectors are calculated by using binary
search concept. In step 9, matching percentage between
vectors is calculated, using min-max vector count. In step
10, the highest matching vector between the two vectors is
selected and updates the value of highest match vector. The
above process (steps 5 to 11) is repeated until the
comparable vector selected in step 1 has to compare all the
remaining vectors.

D: document database
FTL: frequent_term_list (set contains set of Frequent Terms)
CL: Cluster list (set contains set of Input Files Names)
FT: frequent_terms
t1, t2: Frequent Term Set

Min-MaxCluster (CL,FTL,D)

1. For each FT i in FTL do

2. t1 = ith index frequent_words

3. Initialise high_percent_matching = -1 and cluster_index= -1

4. For each FT j in FTL do

5. if (i≠ j) then

 t2 = jth index_frequent words

6. t3 = ith FTL UNION jth FTL

7. total_terms = t3.length

8. match= Calculate matching terms between vector i and j using Binary Search

9. matching_percent = match * 2* 100 / total_terms

10. if (matching_percent > matching_threshold) and

 (high_percent_matching < matching_percent) then

 high_percent_matching = matching_percent and cluster_index = j

11. End if

12. End if

13. Next loop (j)

14. if (cluster_index ≠ -1) then

15. Add frequent_term_list(cluster_index) to frequent_term_list(i)

16. Add Cluster_list(cluster_index) to Cluster_list(i)

17. End if

18. Remove Cluster_list(cluster_index)from Cluster_list

19. Remove frequent_term_list(cluster_index)from frequent_term_list

20. Next loop (i)

 Figure 3: Min-Max-Match Cluster Algorithm

In steps 15 and 16, if the highest match vector
found then a) Its frequent terms are added to the terms of

comparable vector selected in step 2, and b) Add the highest
match cluster to the comparable cluster (step 16). In steps 17
and 18, remove the highest match cluster from the cluster
list (step 17). Remove the highest match cluster terms from
the frequent term list (step 18). The above process (steps 2
to 19) is repeated until the vectors are compared to all other
vectors in the frequent vector list.

D. Cosine Similarity Cluster Algorithm

Description

Let A and B be two frequent term sets of two
documents A and B represented in the vector space model.
Then the matching between these two vectors is
characterized by using the concept with reference to the
cosine angle between the two vectors. The matching is
denoted by cosine (Vm). The cosine similarity is defined by
the cosine angle between the two vectors, i.e.,

ሺ ௠ܸሻ ݁݊݅ݏ݋ܥ ൌ
ሺ஺.஻ሻ

ห|஺|ห.||஻||

where . denotes the vector dot product and || denotes the
length of vector

 Table 2 gives an example of representation of text
document database D in terms of vector space model (t) and
the documents are denoted by d. In this model, the terms are
denoted by a binary value 0 and 1. A 0 indicates that the
term is infrequent and a 1 indicates that the term is frequent.

Table 2 Representation of Text Database D as Frequent Vector Space
 Model

Documents
Frequent Terms

t1 t2 t3 t4 t5 t6

d1

d2

d3

d4

d5

1
0
1
1
0

1
0
0
1
0

1
1
0
0
1

0
1
1
0
1

1
0
0
1
1

0
1
1
0
1

Consider the following example

Let X = {A, B, C, D} and Y = {D, L, M}

The corresponding vector space representation is

X = {1, 1, 1, 1, 0, 0} and Y = {0, 0, 0, 1, 1, 1}

 then Cosine (௠ܸ) =
ଵ

଺
ൌ 0.166 ሺ16.6 %ሻ

In this example, the dot product of the two vectors gives the
count as 1, out of the vector length 6.

ISSN : 0975-3397 1669

P. Ponmuthuramalingam et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1665-1673

Algorithm

In this algorithm steps 4 to 6 are used to find out
the total terms of the similarity vector generated from the
given two input vectors. In step 5, the similarity vector is
formed by taking the union of the two given vectors. The
steps 7 and 8 are used to generate binary vector for the input
vectors respectively. In step 9, the matching between the
two vectors is calculated by taking the dot product of vector
1 and vector 2. In step 10, the matching percentage is
calculated using cosine similarity formula. In step 11, the
highest matching vector is selected and updates the value of
high match vector. The above process (steps 4 to 14) is
repeated until the comparable vector has to compare with all
the remaining vectors.

 D: document database

FTL: frequent_term_list
CL: Cluster list
FT: frequent_terms

COSINE-SIMILARITY Cluster(CL,FTL,D)
1. For each FT i in FTL do
2. Initialise high_percent_matching = -1 and cluster_index= -1
3. For each FT j in FTL do
4. if (i≠ j) then
5. Similarity_Vector = ith FTL UNION jth FTL
6. total_terms = Similarity_Vector. length;
7. Vector1 = GetVector (Similarity_Vector, ith cluster FTL)
8. Vector2 = GetVector (Similarity_Vector, jth cluster FTL)
9. Match = dot product of vector 1. Vector2
10. Matching_percent = No_of_Matching / total_terms
11. if (Matching_percent > matching_threshold) and
 (high_percent_matching < Matching_percent) then
 high_percent_matching = Matching_percent and cluster_index = j
12. End if
13. Next loop (j)
14. End if
15. if (cluster_index ≠ -1) then
16. Add frequent_term_list (cluster_index) to frequent_term_list (i)
17. Add Cluster_list (cluster_index) to Cluster_list (i)
18. Remove Cluster_list (cluster_index) from Cluster_list
19. Remove frequent_term_list (cluster_index) from frequent_term_list
20. End if
21. Next loop (i)

GetVector(Similarity_Vector, FTL)
1. Vector.length = Similarity_Vector.length
2. For each TERM in Similarity_Vector
3. if (Frequent_word_list contains TERM)
4. Add 1 to vector
5. Else Add 0 to vector
6. return vector

 Figure 4: Cosine Similarity Cluster Algorithm

In steps 16 and 17, if the highest matching vector is
found, then a) Its frequent terms are added to the terms of
comparable vector, and b) Add the highest match cluster to
the comparable cluster (step 17). In steps 18 and 19, remove
the highest match cluster from the cluster list (step 18).
Remove the highest match cluster terms from frequent term
list (step 19). The above process (steps 2 to 20) is repeated
until the vectors are compared to all other vectors in the
frequent vector list.

The getvector() procedure is used to generate
binary vector from a given vector. Step 1 is used to
determine the binary vector length. In steps 3 to 5, binary
value 1 or 0 is added to the vector depends on the matching
of the term with the frequent word list. Add 1 to the vector if
matched (step 4) or else add 0 to the vector (step 5). The
above process is repeated to add binary value for all the
terms in the given frequent term vector.

VI. RESULTS AND DISCUSSIONS

Table 3 represents the combined F-measures of
FTC algorithm along with the proposed four algorithms for
Reuters Transcribed Subset (RTS) - 200 documents-249
KB. The F-measure chart for five algorithms of Reuters
Transcribed subset in Figure 5 shows that the proposed four
algorithms show better cluster quality than FTC.
The minimum support of frequent terms is usually in the
range of 5-15%. When the minimum support is too large,
the total number of frequent terms would be very small, so
that the resulting document would not have enough
information about the original data set. But this may depend
on data set.

Table 3 F-measure Value for Reuters Transcribed Subset

M
in

im
u

m

S
u

p
p

or
t

F
T

C

M
in

-M
at

ch

M
ax

-M
at

ch

M
in

-M
ax

-
M

at
ch

C
os

in
e

S
im

il
ar

it
y

5 0.327 0.585 0.779 0.747 0.821

15 0.399 0.606 0.779 0.754 0.821

25 0.404 0.622 0.779 0.744 0.817

35 0.427 0.634 0.779 0.744 0.818

45 0.497 0.627 0.795 0.745 0.833

55 0.548 0.627 0.800 0.750 0.823

65 0.646 0.690 0.800 0.780 0.832

75 0.756 0.728 0.829 0.807 0.840

85 0.782 0.762 0.861 0.832 0.865

95 0.782 0.786 0.900 0.845 0.875

ISSN : 0975-3397 1670

P. Ponmuthuramalingam et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1665-1673

 Figure 5 F-measure Chart for Reuters Transcribed Subset

 Regarding cluster quality, among the four algorithms,
Cosine Similarity algorithm is first, Max-Match algorithm is
second, Min-Max-Match algorithm is third and Min-Match
algorithm is fourth.

Paired t-test is employed to compare the FTC
algorithm and the developed four algorithms based on F-
measure value with respect to minimum support. FTC
algorithm and each of the developed clustering algorithms
have been tested by applying paired t-test to find out the
significant difference in F-measures between FTC and the
developed algorithms. The results are shown in the Table 4.
It is observed the t-value indicates that there is a difference
between FTC and Max-Match, Min-Max-Match and Cosine
Similarity clustering algorithms based on F-measure with
respect to minimum support is significant at 5% level and
Min-Match clustering algorithm is significant at 1% level.

Table 4 Paired t-test between Algorithms based on F-measure for RTS
 Sample

C
om

p
ar

is
on

 o
f

A
lg

or
it

h
m

s

M
et

h
od

M
ea

n

S
ta

n
d

ar
d

D
ev

ia
ti

on

M
ea

n
 D

if
fe

re
n

ce

t-
va

lu
e

S
ig

n
if

ic
an

ce

FTC Vs

Min

FTC 0.557 0.173
0.110 3.213 *

Min 0.667 0.070

FTC Vs

Max

FTC 0.557 0.173
0.253 5.775 **

Max 0.810 0.041

FTC Vs

Min-

Max

FTC 0.557 0.173

0.218 4.978 ** Min-

Max
0.775 0.039

FTC Vs

Similari

ty

FTC 0.557 0.173

0.278 5.615 ** Simila

rity
0.835 0.020

*- Significant at 5% level
** - Significant at 1% level

Table 5 represents the performance evaluation of
FTC algorithm and the proposed Min-Match, Max-Match,
Min-Max-Match and Cosine Similarity algorithms for the
different data sets, where S1 denotes Reuters Transcribed
subset(RTS)- 200 documents-249 KB, S2 denotes Mini-
News Group- 200 documents-547 KB, S3 denotes Mini-
News Group-700 documents-1915 KB, S4 denotes Mini-
News Group-1000 documents- 2591 KB, S5 denotes PDF-
54 documentss-2999 KB, and S6 denotes Reuters-21578-22
files-20275 KB.

Table 5 Performance of Developed Algorithms for Different Data Sets

D
at

a
se

ts

F
il

e
S

iz
e

(K
B

)
Execution Time in Seconds

F
T

C

M
in

-M
at

ch

M
ax

-M
at

ch

M
in

-M
ax

-
M

at
ch

C
os

in
e

S
im

il
ar

it
y

S1 249 13.25 12.44 12.36 12.08 12.07

S2 547 127.41 38.39 67.49 38.38 37.30

S3 1915 222.43 195.59 157.81 163.14 155.77

S4 2591 426.47 233.41 260.70 195.80 153.72

S5 2999 1698.72 404.92 468.83 392.75 236.37

S6 20275 2354.88 796.42 795.58 810.17 611.97

Figure 6 shows the performance of developed
algorithms for six different data sets and shows that
execution time increases as and when the document data
size increases. It is observed that the execution time of FTC
algorithm is higher than the other four developed
algorithms.

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

5 15 25 35 45 55 65 75 85 95

F
-M

ea
su

re

Minimum Support Threshold Value

FTC

Min-Match

Max-Match

Min-Max-Match

Cosine Similarity

ISSN : 0975-3397 1671

P. Ponmuthuramalingam et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1665-1673

Figure 6 Performance of Developed Algorithms for Different Data Sets

VII. CONCLUSIONS

In this paper, the significance of text clustering
attributes namely minimum support threshold and matching
threshold are discussed. For effective text clustering, four
new clustering algorithms were proposed. All the four
algorithms are compared with the standard FTC algorithm to
show their competency. The F-measure chart of clustering
algorithm for RTS sample and the corresponding table show
that the developed four algorithms have higher F-measure
value and perform better cluster quality than FTC algorithm.
The performance of algorithms for six different data sets
shows that the developed algorithms perform better than
FTC. In the entire newly developed and implemented
clustering algorithm, the performance results are
encouraging.

REFERENCES

[1] Agrawal R., and Srikant R., “Fast algorithm for mining association
rules,” Proceedings of 20th International Conference on Very Large
Data Bases, VLDB 94, Santiago de Chile, Chile, 1994, pp.487-499.

[2] Ahonen H., Myka H.,” Mining all Maximal Frequent Word Sequences
in a Set of Sentences,” Proceedings of the 14th ACM International
Conference on Information and Knowledge Management, 255-256,
2005.

[3] Allan J., “HARD Track Overview in TREC High Accuracy, Retrieval
from Documents, “ Proceedings of the 12th Text Retrieval
Conference, 2003, pp. 24-37.

[4] Beil F., Ester M. and Xu X., “Frequent Term-based Text Clustering,”
Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2002, 436-442.

[5] Dubes R. C. and Jain A. K., “Algorithms for Clustering Data,”
Prentice Hall, Englewood Cliffs NJ, U.S.A, 1988.

[6] Frakes B. and Baeza-Yates R.,” Information Retrieval: Data Structures
and Algorithms,” Englewood Cliffs, N.J.: Prentice Hall, 1992.

[7] Fung B.C.M., Wang K. and Ester M., “Hierarchical Document
Clustering using Frequent Item sets.“ Proceedings of SIAM
International Conference on Data Mining, 2003, 180-304.

[8] Han J., Kamber M.,”Data Mining: Concepts and Techniques,” Morgan
Kaufmann (Elsevier), 2006.

[9] Kaufman L. and Rousseeuw P.J., “Finding Groups in Data: An
Introduction to Cluster Analysis,” John wiley and Sons, March 1990.

[10] Khaled B. Shaban.,” A Semantic Approach for Document
Clustering,” Journal of software. VOL 4. NO 5, July 2009.

[11] Liu X., He P. and Wang H., “The Research of Text Clustering
Algorithms based on Frequent Term Sets,” Proceedings of the 4th
International Conference on Machine Learning and Cybernetics, pp.
2352- 2356, August 2005.

[12]Manning C.D., Raghavan P. and Schutze H., “Introduction to
Information Retrieval,” Cambridge University Press, Cambridge,
UK, 2008.

[13]Ponmuthuramalingam.P. and Devi.D., “Effective Dimension
Reduction Techniques for Text Documents,” International Journal
on Computer Science and Network Security(ICSNS), Vol 10, No. 7,
2010.

[14]Sebastiani F., “Machine Learning in Automated Text Categorization,”
ACM Computing Surveys, Vol. 34, No. 1, pp. 1-47, 2002.

[15] Steinbach M., Karypsis G. and Kumar V., “A Comparison of
Document Clustering Techniques, “KDD-2000 Workshop on Text
Mining, 2000, 203-215.

[16]Yanjun Li, Soon M. Chung, John D. Holt,” Text Document clustering
based on frequent word meaning sequences,” In Data & Knowledge
Engineering 2008 pp. 381-404.

[17] Zamir O. and Etzioni O., “Web Document Clustering: A Feasibility
Demonstration,” Proceedings of Annual ACM SIGIR Conference on
Research and Development in Information Retrieval, 1998, 46-54.

P.Ponmuthuramalingam received his Masters
Degree in Computer Science from Alagappa
University,Karaikudi in 1988 and the M.Phil in
Computer Science from Bharathidasan University,
Tiruchirapalli. He is working as Associate
Professor in Computer Science, Government Arts
College, Coimbatore since 1989. His research
interest includes Text mining, Semantic Web,

Network Security and Parallel Algorithms .

T.Devi received the Master of Computer
Applications from P.S.G. College of Technology,
Coimbatore in 1987 and Ph.D from the
University of Warwick, United Kingdom in 1998.
She is presently heading Department of Computer
Application, School of Computer Science
Engineering,Bharathiar University, Coimbatore.
Prior to joining Bharathiar University, she was an
Associate Professor in Indian Institute of Foreign

Trade, New Delhi. Her current research centered on the Software
Engineering, Product Introduction, Technical Process Management and
Concurrent Engineering. She has contributed more than 60 papers in
various National / International / conference/ Seminars /Symposia.

0

500

1000

1500

2000

2500

1 2 3 4 5 6

E
xe

cu
ti

on
 T

im
e

(i
n

 s
ec

)

Data sets (KB)

FTC

Min-Match

Max-Match

Min-Max-Match

Cosine
Similarity

ISSN : 0975-3397 1672

P. Ponmuthuramalingam et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1665-1673

This page is left blank intentionally

ISSN : 0975-3397 1673

