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Abstract 

Text clustering methods can be used to group large sets of 
text documents. Most of the text clustering methods do not 
address the problems of text clustering such as very high 
dimensionality of the data and understandability of the 
clustering descriptions. In this paper, a frequent term based 
approach of clustering has been introduced; it provides a 
natural way of reducing a large dimensionality of the 
document vector space. This approach is based on clustering 
the low dimensionality frequent term sets and not on clustering 
high dimensionality vector space. Four algorithms for effective 
term based text clustering has been presented. An 
experimental evaluation on classical text documents as well as 
on web documents demonstrates that the proposed algorithms 
obtain clustering of comparable quality significantly more 
efficient than existing text clustering algorithms. 

Keywords: Frequent term sets, Document clustering, Text 
documents, Document mining, Text mining, Text clustering.   

I.  INTRODUCTION 

In every industry, almost all the documents on 
paper have their electronic copies. This is because, the 
electronic format provides safer storage and occupies much 
smaller space [6][12][10]. Also, the electronic files provide 
a quick access to these documents. The text database which 
consists of documents is usually very large and it becomes a 
huge challenge to understand hidden patterns or relations in 
the data [6][9]. As text data is not in numerical format, it 
cannot be analyzed with statistical methods. However, 
everyday, people encounter a large amount of information 
and store or represent it as data, for further analysis and 
management. 

Document clustering has been investigated in 
different areas of text mining and information retrieval. 
Document clustering has been studied intensively because 
of its wide application in areas such as Web Mining [17], 
Search Engine and Information Retrieval [6][12]. Document 
clustering is the automatic organization of documents into 
clusters or groups, so that, documents within a cluster have 
high similarity in comparison to one another, but are very 
dissimilar to documents in other clusters [9]. In other words, 
the grouping is based on the principle of maximizing intra-
cluster similarity and minimizing inter-cluster similarity 
[2][8][16]. The major challenge of clustering is to efficiently 
identify meaningful groups that are concisely annotated 
[5][14][16]. 

 In order to increase the precision of the retrieval 
result, many methods have been proposed [3][15]. By 
clustering the text documents, the documents sharing the 
same topic are grouped together. When the clusters are 
returned, the user can select the group that interests the user 
most. This method makes the search engine more efficient 
and accurate. 

II. REVIEW OF LITERATURE 

Fung B.C.M. (2003) addressed the problem of poor 
clustering accuracy due to the incorrect estimation of the 
number of clusters. An algorithm, namely, Frequent Item 
Set based Hierarchical Clustering (FIHC) proposed by Fung 
B.C.M. makes use of frequent item set and construction of a 
hierarchical topic tree from the clusters. A frequent item set 
is being used as preliminary step and the dimension of each 
document is drastically reduced, which in turn increases 
efficiency and scalability [4][7][16]. The author performed 
the experiment on a Pentium III 667 MHz PC with largest 
datasets (Reuters) and the proposed algorithm is more 
scalable because the experiment with 10000 documents 
shows that FIHC algorithm completes its whole process 
within two minutes while Unweighted Pair Group Method 
with Arithmetic Mean (UPGMA) and Hierarchical Frequent 
Term based Clustering (HFTC) could not even produce a 
clustering solution [4][15]. 

Bi-secting k-means generate relatively deep 
hierarchies. As a result, it is not suitable for browsing 
[4][15]. The other frequent item set based algorithm HFTC 
[4] provides a relatively flat hierarchy but its different 
branches of hierarchy decrease the accuracy. FIHC uses 
sibling merging method and overcomes the problem and it 
gets higher accuracy in browsing [7].    

Li and Chung (2008) addressed the problem to 
improve the result of information retrieval for document 
clustering and stated that the requirement [16] of 
information retrieval is as follows: (1) The document model 
preserves the sequential relationship between words in the 
document, (2) Associating a meaningful label to each final 
Cluster is essential, (3) Overlapping between documents 
should be allowed, and (4) The high dimensionality of text 
document should be reduced. The authors refer to Fung 
B.C.M. et al. (2003) for the definition of document 
clustering with unsupervised and automatic grouping [13] 
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and proposed text-clustering algorithm, Clustering Frequent 
Word Sequences (CFWS) [16] where document is reduced 
to compact document by keeping only the frequent words to 
reduce high dimensionality. Experiment was conducted on a 
SuSE Linux PC with a Celeron 500 MHz processor and 384 
MB memory using C++ and stated that CFWS algorithm is 
more efficient than the suffix tree clustering algorithm [17], 
which clusters the documents by constructing the suffix tree 
of all the sentences of the documents in the collection. 

Frequent Term based Clustering (FTC) [4] is a text 
clustering technique, which uses frequent term sets and 
dramatically decreases the dimensionality of the document 
vector space [11], thus addressing itself to the problem of 
text clustering, namely, very high dimensionality of the data 
and very large size of the databases. The performance of the 
FTC algorithm is largely determined by the function overlap 
[4]. Beil F. et al. (2002) introduces two approaches, upon 
calculating the overlap namely, Standard overlap and 
Entropy overlap, and finally abandons Standard overlap due 
to its inherent deficiency [11]. The evaluation of FTC over 
bi-secting k-means and 9-secting k-means on the basis of 
experiments on both classical text documents and web 
documents shows that FTC is significantly more efficient 
[4]. However, FTC does not outperform other methods with 
respect to cluster quality [16]. 

III. DOCUMENT PREPROCESSING 

All text clustering methods require several steps of 
preprocessing of the data. First, any non-textual information 
such as HTML tags and punctuation is removed from the 
documents. In general the documents are clustered, based on 
context matching or similarity. Mostly, the contexts of 
documents are represented by nouns. Based on this, the 
following assumptions were made in document dimension 
reduction [13]: 

 Elimination of words which possess less than 3 
characters. 

 Elimination of general words 
 Elimination of adverbs and adjectives 
 Elimination of non-noun verbs  

The following assumptions have been made to achieve 
frequent term generation: 

 For small document, each line is treated as a 
record. 

 For large document, each paragraph is treated as a 
record. 

Dimension reduction improves the performance of 
text mining techniques to process the data with a reduced 
number of terms. Two improved dimension reduction 
algorithms namely, stemming and frequent term generations 
are used [13]. The morphological variant in the given 

document, stopping words and grammatical words are 
identified and removed by improved stemming algorithms 
[13]. The frequent term set generation algorithm generates 
frequent terms, which satisfy the given minimum support.   

IV. TEXT CLUSTERING ATTRIBUTES SELECTION 

 Generally, text clustering is performed in two 
stages, namely, frequent term set generation (dimension 
reduction) and grouping of frequent term documents. 
Frequent term set generation is characterised by the attribute 
minimum support threshold and grouping of frequent term 
documents are characterised by matching threshold.   
 
A.  Minimum Support Threshold  
 In the first stage, the document database is reduced, 
based on the value which was selected as minimum support 
for the terms called minimum support threshold [1][8]. If the 
minimum support takes less value, the dimension reduction 
is less. In order to get more reduction in size the value of 
minimum support should be high. Suppose, a maximum 
value of minimum support is chosen, then the theme of the 
document may be reduced. So, care must be given when 
selecting the minimum support threshold value. In clustering 
aspect, if the minimum support value is low, the numbers of 
frequent terms are more and clustering possibility is high. 
For high value, the number of frequent terms are less and 
the clustering possibility is low [4].  
 
B.  Matching Threshold 

In the second stage, the grouping of documents is 
carried out by finding the match of frequent terms between 
the documents which is measured by a value called 
matching threshold [8][10]. In general, matching is the ratio 
of number of common terms between documents to the total 
number of terms. For low matching threshold value, the 
grouping of document is more and the overlap of frequent 
term is more. For high matching threshold value, the 
grouping of document is less and the overlap of frequent 
term is less. The overlap of a cluster with the other clusters 
is the smaller for smaller value of frequent terms of its 
documents [4].  
 
Problem Definition 
 Let D = {d1, d2, d3, . . . , dn} be a database of text 
documents and T be the set of all terms occurring in the 
documents of D. Each document di is represented by the set 
of terms occurring in di, where d1 = {t11, t12, . . . , t1m},    d2 = 
{t21, t22, . . . , t2m} be a set of frequent term scalar vector of 
document d1 and d2 i.e., di ك D dj ك D and tij א D where i = 
1. . . . n, and             j = 1 . . . m. Let min-supp be a real 
number, 0 ≤ min-supp ≤ 1. Let  F = {f1, f2, f3, . . . , fk} be the 
set of all frequent term sets in D with respect to min-supp, 
the set of all term sets contained in atleast min-supp of the D 
documents, i.e., 

F= {fi ك T || cov (fi) | ≥ min-supp.|D|} 
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A frequent term set of cardinality k is called frequent k-term 
set. The cover of each element fi of F can be regarded as a 
cluster. Let the clustering of D in m sets be defined as R = 
{C1, C2, C3, . . . , Cm} such that, each cluster Ci contains 
atleast one document i.e. Ci ≠ ׎;           i= 1 . . . . , m. The 
union of all clusters is the set D: 
 ௜ୀଵ׫  

௠ ௜ܥ ൌ   ܦ
No two clusters have documents in common, i.e., 

Ci ∩ Cj  = ׎,    i ≠ j,    i, j = 1 . . . , m. 
An example represenatation of text document  database (D) 
in terms of frequent terms (t), the documents are denoted by 
d is given in Table 1. It consists of five documents each of 
which has its own frequent terms with respect to the given 
minimum support to a maximum of 4 terms.     

Table 1 Representation of Text Database (D) as Frequent Terms 

 

Documents 

Frequent Terms 

t1 t2 t3 t4 

 
d1 

d2 

d3 

d4 

d5 

 
A 
A 
F 
D 
A 

 
B 
C 
G 
L 
K 

 
C 
F 
I 
M 
X 

 
D 
G 
J 
- 
M 

 
V.  CLUSTERING ALGORITHM 

 
A.   Min-Match Cluster Algorithm 

Description 
 
 Let A and B be frequent term sets of two 
documents d1 and d2 represented as vectors. Then, the 
matching between the two vectors is characterized by using 
the assumption with reference to minimum vector, i.e., the 
matching is denoted by min (Vm) and is defined as the 
number of common elements between vector A and B to the 
number of elements in the minimum of the two sets, i.e., 

 min ሺ ௠ܸሻ ൌ  
௡ሺ஺ת஻ሻ

௡ሼ୫୧୬ሼ஺,஻ሽሽ
 

   or  min_matching = 
match term count

୫୧୬ ሺ௖௢௨௡௧ሼ஺,஻ሽሻ
 

Consider the following example:-  

Let X = {A, B, C, D} and  Y = {D, L, M}, 

then, min ( ௠ܸ) = 
1
3 

ൌ 0.3333 ሺ33.33 %ሻ 

In this example, the matching term is D and gives the count 
as 1 out of three terms in minimum vector.  

Algorithm 

In this algorithm, step 2 selects a vector as a 
comparable vector. Steps 5 to 7 are used to find out the 
minimum vector from the two input vectors specified in 
steps 2 and 5 and assign its length as minimum vector count. 
In step 8, the matching terms between two vectors are 
calculated by using binary search concept. In step 9, 
matching percentage between vectors is calculated using 
minimum vector count. In step 10, the highest matching 
vector between the two vectors is selected and updates the 
value of highest match vector. The above process (steps 5 to 
11) is repeated until the comparable vector selected in step 1 
has to compare all the remaining vectors. 

In steps 15 and 16, if the highest match vector is 
found, then a) Its frequent terms are added to the terms of 
comparable vector selected in step 2, and b) Add the highest 
match cluster to the comparable cluster (step 16). In steps 17 
and 18, remove the highest match cluster from the cluster 
list (step 17). Remove the highest match cluster terms from 
the frequent term list        (step 18). The above process 
(steps 2 to 19) is repeated until the vectors are compared to 
all other vectors in the frequent vector list.  

  

 
D: Document database 
FTL: frequent_term_list 
CL: Cluster list 
FT: frequent_terms 
 
Min-Cluster(CL,FTL,D) 
1. For each FT i in FTL do 
2.     t1 =  ith index frequent_terms 
3.     Initialise high_percent_matching = -1 and cluster_index= -1 
4. For each FT j in FTL do  
5.   if (i≠ j) then  
                 t2 =  jth  index_frequent words 
6.     if (t1.length < t2.length) then  
                     total_terms = t1.length 
7.     Else 
              total_terms=t2.length 
           End if 
8.    match= Calculate matching terms between vector i and j using 
Binary Search 
9.    matching_percent = match * 100 / total_terms 
10.          if (matching_percent > matching_threshold) and  
                            ( high_percent_matching <  matching_percent) then 
                                high_percent_matching = matching_percent and 
cluster_index = j 
11.         End if 
12. End if 
13. Next loop (j) 
14. if (cluster_index ≠ -1) then 
15.    Add frequent_term_list(cluster_index) to frequent_term_list(i) 
16.   Add Cluster_list(cluster_index) to Cluster_list(i) 
17.   Remove Cluster_list(cluster_index)from Cluster_list 
18.   Remove frequent_term_list(cluster_index)from frequent_term_list 
19. End if 
20. Next loop (i) 

    Figure 1 Min-Match Cluster Algorithm 
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B.    Max-Match Cluster Algorithm 

Description 

Let A and B be two frequent term sets of two 
documents d1 and d2 represented as vectors. Then, the 
matching between these two vectors is characterized by 
using the assumption with reference to the maximum vector, 
i.e., the matching is denoted by max (Vm) and is defined as 
the number of common elements between vector A and B to 
the number of elements in the maximum of two sets, i.e., 

max ሺ ௠ܸሻ ൌ  
݊ሺܣ ת ሻܤ

݊ሼmaxሼܣ, ሽሽܤ
 

or  max_matching = 
match term count

୫ୟ୶ ሺ௖௢௨௡௧ሼ஺,஻ሽሻ
 

Consider the following example:-  

Let X = {A, B, C, D} and  Y = {D, L, M}, 

 then, max ( ௠ܸ) = 
ଵ

ସ
ൌ 0.25 ሺ25 %ሻ 

In this example, the matching term is D and gives the count 
as 1, out of the 4 terms in maximum vector. 

Algorithm 

In this algorithm, step 2 selects a vector as a 
comparable vector. Steps 5 to 7 are used to find out the 
maximum vector from the two input vectors specified in 
step 2 and 5 and assign its length as maximum vector count. 
In step 8, the matching terms between two vectors are 
calculated by using binary search concept. In step 9, 
matching percentage between vectors is calculated using 
maximum vector count. 

In step 10, the highest matching vector between the 
two vectors is selected and the value of highest match vector 
is updated. The above process (steps 5 to 11) is repeated 
until the comparable vector selected in step 1 has to 
compare all the remaining vectors. In steps 15 and 16, if the 
highest match vector found, then, a) Its frequent terms are 
added to the terms of comparable vector selected in step 2, 
and b) Add the highest match cluster to the comparable 
cluster (step 16). In steps 17 and 18, remove the highest 
match cluster from the cluster list (step 17). Remove the 
highest match cluster terms from the frequent term list (step 
18). The above process (steps 2 to 19) is repeated until the 
vectors are compared to all other vectors in the frequent 
vector list. 

 

 
D: document database 
FTL: frequent_term_list 
CL: Cluster list 
FT: frequent_terms 
 
Max-Cluster(CL,FTL,D) 
1. For each FT i in FTL do 
2.     t1 =  ith index frequent_words 
3.     Initialise high_percent_matching = -1 and cluster_index= -1 
4. For each FT j in FTL do  
5.   if (i≠ j) then  
                             t2 =  jth  index_frequent words 
6.     if (t1.length < t2.length) then  
                             total_terms = t2.length 
7.     Else 
                       total_terms=t1.length 
               End if 
8. match= Calculate matching terms between vector i and j using 
Binary Search 
9. matching_percent = match * 100 / total_terms 
10.          if (matching_percent > matching_threshold) and  
                            ( high_percent_matching <  matching_percent) then 
                                high_percent_matching = matching_percent and 
cluster_index = j 
11.         End if 
12. End if 
13. Next loop (j) 
14.  if (cluster_index ≠ -1) then 
15.    Add frequent_term_list(cluster_index) to frequent_term_list(i) 
16.   Add Cluster_list(cluster_index) to Cluster_list(i) 
17.   Remove Cluster_list(cluster_index)from Cluster_list 
18.   Remove frequent_term_list(cluster_index)from frequent_term_list 
19. End if 
20. Next loop (i) 

 
       Figure 2 Max-Match Cluster Algorithm 

 

C.   Min-Max Match Cluster Algorithm 

Description 

Let A and B be two frequent term sets of two 
documents d1 and d2 represented as vectors. Then the 
matching between these two vectors is characterized by 
using the assumption with reference to the maximum vector, 
i.e., the matching is denoted by min_max (Vm) and is 
defined as the number of matching terms multiplied by 2 to 
the number of elements of two sets, i.e., 

min _max ሺ ௠ܸሻ ൌ  
݊ሺܣ ת ሻܤ
݊ሼܣ, ሽܤ

 

or min _max_matching = 
match term count * no. of vector

 ሺ௖௢௨௡௧ሼ஺,஻ሽሻ
 

Consider the following example:-  

Let X = {A, B, C, D}  and Y = {D, L, M}, 

then, max ( ௠ܸ) = 
1 כ 2

7
ൌ  

2
7

ൌ 0.285 ሺ28.5 %ሻ 

ISSN : 0975-3397 1668



P. Ponmuthuramalingam et. al. / (IJCSE) International Journal on Computer Science and Engineering 
Vol. 02, No. 05, 2010, 1665-1673 

 

In this example, the matching term D gives the count as 1 in 
both vectors out of 7 terms, the total count of the two 
vectors.     

Algorithm 

In this algorithm, step 2 selects a vector as a 
comparable vector. Steps 5 to 7 are used to find out the total 
length of the two input vectors specified in steps 2 and 5 to 
assign as min-max vector count. In step 8, the matching 
terms between two vectors are calculated by using binary 
search concept. In step 9, matching percentage between 
vectors is calculated, using min-max vector count. In step 
10, the highest matching vector between the two vectors is 
selected and updates the value of highest match vector. The 
above process (steps 5 to 11) is repeated until the 
comparable vector selected in step 1 has to compare all the 
remaining vectors. 

 
 
 
 
 

D: document database 
FTL: frequent_term_list (set contains set of Frequent Terms) 
CL: Cluster list (set contains set of Input Files Names) 
FT: frequent_terms 
t1, t2: Frequent Term Set 
 
Min-MaxCluster (CL,FTL,D) 
 
1.   For each FT i in FTL do 

2.       t1 =  ith index frequent_words 

3.       Initialise high_percent_matching = -1 and cluster_index= -1 

4.     For each FT j in FTL do  

5.        if (i≠ j) then  

                               t2 =  jth  index_frequent words 

6.            t3 = ith FTL  UNION  jth FTL 

7.            total_terms = t3.length  

8.            match= Calculate matching terms between vector i and j using Binary Search 

9.            matching_percent = match * 2* 100 / total_terms 

10.            if (matching_percent > matching_threshold) and  

                              ( high_percent_matching <  matching_percent) then 

                                  high_percent_matching = matching_percent and cluster_index = j 

11.           End if 

12.       End if 

13.    Next loop (j) 

14.     if (cluster_index ≠ -1) then 

15.      Add frequent_term_list(cluster_index) to frequent_term_list(i) 

16.     Add Cluster_list(cluster_index) to Cluster_list(i) 

17.       End if 

18.     Remove Cluster_list(cluster_index)from Cluster_list 

19.     Remove frequent_term_list(cluster_index)from frequent_term_list 

20.   Next loop (i) 
 

   Figure 3:  Min-Max-Match Cluster Algorithm 

In steps 15 and 16, if the highest match vector 
found then a) Its frequent terms are added to the terms of 

comparable vector selected in step 2, and b) Add the highest 
match cluster to the comparable cluster (step 16). In steps 17 
and 18, remove the highest match cluster from the cluster 
list (step 17). Remove the highest match cluster terms from 
the frequent term list (step 18). The above process (steps 2 
to 19) is repeated until the vectors are compared to all other 
vectors in the frequent vector list. 

 

D.    Cosine Similarity Cluster Algorithm 

Description 

Let A and B be two frequent term sets of two 
documents A and B represented in the vector space model. 
Then the matching between these two vectors is 
characterized by using the concept with reference to the 
cosine angle between the two vectors. The matching is 
denoted by cosine (Vm). The cosine similarity is defined by 
the cosine angle between the two vectors, i.e., 

ሺ ௠ܸሻ ݁݊݅ݏ݋ܥ    ൌ  
ሺ஺.஻ሻ

ห|஺|ห.||஻||
 

where . denotes the vector dot product and || denotes the 
length of vector 

 Table 2 gives an example of representation of text 
document database D in terms of vector space model (t) and 
the documents are denoted by d. In this model, the terms are 
denoted by a binary value 0 and 1. A 0 indicates that the 
term is infrequent and a 1 indicates that the term is frequent.    

Table 2 Representation of Text Database D as Frequent Vector Space  
             Model 

 

Documents 
Frequent Terms 

t1 t2 t3 t4 t5 t6 

 
d1 

d2 

d3 

d4 

d5 

 
1 
0 
1 
1 
0 

 
1 
0 
0 
1 
0 

 
1 
1 
0 
0 
1 

 
0 
1 
1 
0 
1 

 
1 
0 
0 
1 
1 

 
0 
1 
1 
0 
1 

 
Consider the following example  

Let X = {A, B, C, D} and Y = {D, L, M}  

The corresponding vector space representation is 

X = {1, 1, 1, 1, 0, 0} and Y = {0, 0, 0, 1, 1, 1} 

 then Cosine ( ௠ܸ) = 
ଵ

଺
ൌ 0.166 ሺ16.6 %ሻ 

In this example, the dot product of the two vectors gives the 
count as 1, out of the vector length 6.  

ISSN : 0975-3397 1669



P. Ponmuthuramalingam et. al. / (IJCSE) International Journal on Computer Science and Engineering 
Vol. 02, No. 05, 2010, 1665-1673 

 

Algorithm 

In this algorithm steps 4 to 6 are used to find out 
the total terms of the similarity vector generated from the 
given two input vectors. In step 5, the similarity vector is 
formed by taking the union of the two given vectors. The 
steps 7 and 8 are used to generate binary vector for the input 
vectors respectively. In step 9, the matching between the 
two vectors is calculated by taking the dot product of vector 
1 and vector 2. In step 10, the matching percentage is 
calculated using cosine similarity formula. In step 11, the 
highest matching vector is selected and updates the value of 
high match vector. The above process (steps 4 to 14) is 
repeated until the comparable vector has to compare with all 
the remaining vectors. 

 
 D: document database 

FTL: frequent_term_list  
CL: Cluster list  
FT: frequent_terms  
 
COSINE-SIMILARITY Cluster(CL,FTL,D) 
1. For each FT i in FTL do 
2.     Initialise high_percent_matching = -1 and cluster_index= -1 
3.    For each FT j in FTL do  
4.       if (i≠ j) then  
5.           Similarity_Vector = ith FTL  UNION  jth FTL 
6.           total_terms = Similarity_Vector. length;  
7.           Vector1 = GetVector (Similarity_Vector, ith cluster FTL) 
8.           Vector2 = GetVector (Similarity_Vector, jth cluster FTL) 
9.         Match = dot product of vector 1.  Vector2 
10.         Matching_percent = No_of_Matching / total_terms 
11.          if (Matching_percent > matching_threshold) and  
                           (high_percent_matching < Matching_percent) then 
                                high_percent_matching = Matching_percent and cluster_index = j 
12.         End if 
13.       Next loop (j) 
14.    End if 
15. if (cluster_index ≠ -1) then 
16.    Add frequent_term_list (cluster_index) to frequent_term_list (i) 
17.    Add Cluster_list (cluster_index) to Cluster_list (i) 
18.    Remove Cluster_list (cluster_index) from Cluster_list 
19.    Remove frequent_term_list (cluster_index) from frequent_term_list 
20. End if 
21. Next loop (i) 
 
GetVector(Similarity_Vector, FTL) 
1. Vector.length = Similarity_Vector.length 
2. For each TERM in Similarity_Vector 
3. if (Frequent_word_list contains TERM) 
4.     Add 1 to vector 
5. Else  Add 0 to vector 
6. return vector 

  
    Figure 4: Cosine Similarity Cluster Algorithm 

In steps 16 and 17, if the highest matching vector is 
found, then a) Its frequent terms are added to the terms of 
comparable vector, and b) Add the highest match cluster to 
the comparable cluster (step 17). In steps 18 and 19, remove 
the highest match cluster from the cluster list (step 18). 
Remove the highest match cluster terms from frequent term 
list (step 19). The above process (steps 2 to 20) is repeated 
until the vectors are compared to all other vectors in the 
frequent vector list.    

The getvector( ) procedure is used to generate 
binary vector from a given vector. Step 1 is used to 
determine the binary vector length. In steps 3 to 5, binary 
value 1 or 0 is added to the vector depends on the matching 
of the term with the frequent word list. Add 1 to the vector if 
matched (step 4) or else add 0 to the vector (step 5). The 
above process is repeated to add binary value for all the 
terms in the given frequent term vector. 

VI.   RESULTS AND DISCUSSIONS 

Table 3 represents the combined F-measures of 
FTC algorithm along with the proposed four algorithms for 
Reuters Transcribed Subset (RTS) - 200 documents-249 
KB. The F-measure chart for five algorithms of Reuters 
Transcribed subset in Figure 5 shows that the proposed four 
algorithms show better cluster quality than FTC.  
The minimum support of frequent terms is usually in the 
range of 5-15%. When the minimum support is too large, 
the total number of frequent terms would be very small, so 
that the resulting document would not have enough 
information about the original data set. But this may depend 
on data set.  

Table 3 F-measure Value for Reuters Transcribed Subset 
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5 0.327 0.585 0.779 0.747 0.821 

15 0.399 0.606 0.779 0.754 0.821 

25 0.404 0.622 0.779 0.744 0.817 

35 0.427 0.634 0.779 0.744 0.818 

45 0.497 0.627 0.795 0.745 0.833 

55 0.548 0.627 0.800 0.750 0.823 

65 0.646 0.690 0.800 0.780 0.832 

75 0.756 0.728 0.829 0.807 0.840 

85 0.782 0.762 0.861 0.832 0.865 

95 0.782 0.786 0.900 0.845 0.875 
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 Figure 5 F-measure Chart for Reuters Transcribed Subset  
 
      Regarding cluster quality, among the four algorithms, 
Cosine Similarity algorithm is first, Max-Match algorithm is 
second, Min-Max-Match algorithm is third and Min-Match 
algorithm is fourth. 

Paired t-test is employed to compare the FTC 
algorithm and the developed four algorithms based on F-
measure value with respect to minimum support. FTC 
algorithm and each of the developed clustering algorithms 
have been tested by applying paired t-test to find out the 
significant difference in F-measures between FTC and the 
developed algorithms. The results are shown in the Table 4. 
It is observed the t-value indicates that there is a difference 
between FTC and Max-Match, Min-Max-Match and Cosine 
Similarity clustering algorithms based on F-measure with 
respect to minimum support is significant at 5% level and 
Min-Match clustering algorithm is significant at 1% level.  

Table 4 Paired t-test between Algorithms based on F-measure for RTS  
            Sample    
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FTC Vs 

Min 

FTC 0.557 0.173 
0.110 3.213 * 

Min 0.667 0.070 

FTC Vs 

Max 

FTC 0.557 0.173 
0.253 5.775 ** 

Max 0.810 0.041 

FTC Vs 

Min-

Max 

FTC 0.557 0.173 

0.218 4.978 ** Min-

Max 
0.775 0.039 

FTC Vs 

Similari

ty 

FTC 0.557 0.173 

0.278 5.615 ** Simila

rity 
0.835 0.020 

 

*- Significant at 5% level 
** - Significant at 1% level 

Table 5 represents the performance evaluation of 
FTC algorithm and the proposed Min-Match, Max-Match, 
Min-Max-Match and Cosine Similarity algorithms for the 
different data sets, where S1 denotes Reuters Transcribed 
subset(RTS)- 200 documents-249 KB, S2 denotes Mini-
News Group- 200 documents-547 KB, S3 denotes Mini-
News Group-700 documents-1915 KB, S4 denotes Mini-
News Group-1000 documents- 2591 KB, S5 denotes PDF-
54 documentss-2999 KB,  and S6 denotes Reuters-21578-22 
files-20275 KB.  

Table 5 Performance of Developed Algorithms for Different Data Sets 
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S1 249 13.25 12.44 12.36 12.08 12.07 

S2 547 127.41 38.39 67.49 38.38 37.30 

S3 1915 222.43 195.59 157.81 163.14 155.77 

S4 2591 426.47 233.41 260.70 195.80 153.72 

S5 2999 1698.72 404.92 468.83 392.75 236.37 

S6 20275 2354.88 796.42 795.58 810.17 611.97 

 

Figure 6 shows the performance of developed 
algorithms for six different data sets and shows that 
execution time increases as and when the document data 
size increases. It is observed that the execution time of FTC 
algorithm is higher than the other four developed 
algorithms.  

 

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

5 15 25 35 45 55 65 75 85 95

F
-M

ea
su

re

Minimum Support Threshold Value

FTC

Min-Match

Max-Match

Min-Max-Match

Cosine Similarity

ISSN : 0975-3397 1671



P. Ponmuthuramalingam et. al. / (IJCSE) International Journal on Computer Science and Engineering 
Vol. 02, No. 05, 2010, 1665-1673 

 

 

Figure 6 Performance of Developed Algorithms for Different Data Sets 
 

VII. CONCLUSIONS 

In this paper, the significance of text clustering 
attributes namely minimum support threshold and matching 
threshold are discussed. For effective text clustering, four 
new clustering algorithms were proposed. All the four 
algorithms are compared with the standard FTC algorithm to 
show their competency. The F-measure chart of clustering 
algorithm for RTS sample and the corresponding table show 
that the developed four algorithms have higher F-measure 
value and perform better cluster quality than FTC algorithm. 
The performance of algorithms for six different data sets 
shows that the developed algorithms perform better than 
FTC. In the entire newly developed and implemented 
clustering algorithm, the performance results are 
encouraging. 
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