
Sobhan Babu.K et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1633-1640

A NEW APPROACH FOR VARIANT MULTI
ASSIGNMENT PROBLEM

1SOBHAN BABU.K 2CHANDRA KALA.K 3PURUSHOTTAM.S 4SUNDARA MURTHY.M
1Assistant Professor, Department of Mathematics, UCE, JNTUK, Kakinada, A.P., India.

2Assistant System Engineer, Tata Consultancy Services, Hyderabad, A.P., India.
3Research Scholar, Department of Mathematics, Sri Venkateswara University, Tirupati, A.P., India.

4Professor, Department of Mathematics, Sri Venkateswara University, Tirupati, A.P., India.

Abstract— A large number of real-world planning
problems called Combinatorial Optimization Problems share
the following properties: They are Optimization Problems,
are easy to state, and have a finite but usually very large
number of feasible solutions. Lexi-Search is by far the
mostly used tool for solving large scale NP-hard
Combinatorial Optimization problems. Lexi-Search is,
however, an algorithm paradigm, which has to be filled out
for each specific problem type, and numerous choices for
each of the components exist. Even then, principles for the
design of efficient Lexi-Search algorithms have emerged
over the years. Although Lexi-Search methods are among
the most widely used techniques for solving hard problems,
it is still a challenge to make these methods smarter. The
motivation of the calculation of the lower bounds is based
on ideas frequently used in solving problems.
Computationally, the algorithm extended the size of
problem and find better solution.

Keywords- Assignment Problem, Lexi-Search, Pattern
Recognition, Alphabet Table, Search Table.

I. INTRODUCTION

In this paper we study a problem called “Three Dimensional
Variant Multi Assignment Problem”. (TDVMAP). Let N =
(1,2, . . .,n) be the set of n persons/agents, J = (1,2, . . .,m) be
the set of m jobs/tasks and K= (1,2, . . ., k) be the set of k
facilities. In this problem we assign the set of jobs to the set
of persons under some restrictions. The subset of Ni ك N
persons will be assigned li jobs each where ܰ ൌ ܰ,
| ூܰ| ൌ ݊ , i = 1,2,…n. The objective is to find the total
minimum cost of assigning the jobs to the persons, with the
restriction that each job should be assigned to only one
person and if a person is assigned more than one job then
they should be at the same facility.

II. MATHEMATICAL FORMULATION

Minimize Z ൌ ∑ ∑ ∑ Cሺi, j, kሻ Xሺi, j, kሻ୩אK୨אJ୧אN
 ‐‐‐‐‐‐‐‐ (1)

 ,ሺܑ܆ ,ܒ ሻܓ
ܑۼא۸ܑאܒ۹אܓ

ൌ .ܑܖ ܑܔ

 i=1,2..p ‐‐‐‐‐‐‐‐‐ (2)

 ,ሺܑ܆ ,ܒ ሻܓ
ۼא۹ܑאܓ

ൌ א ܒ ۸

 ‐‐‐‐‐‐‐‐‐‐‐‐ (3)

,ሺࢄ , ሻ ൌ ‐‐‐‐‐‐‐‐‐‐‐‐‐ (4) ࢘

If X(i1,j1,k1) = X(i2,j2,k2) =1, i1 =i2 & j1 ≠ j2 then k1 =k2.
 ‐‐‐‐‐‐‐‐‐‐‐ (5)

Here | N | = n, | Ni | = ni , ∑

ୀ ൌ ∑ ,J | = m | ,

ୀ ൌ

Constraint (2) indicates that li jobs are assigned to the each
of ni persons and (3) represents each job is assigned to only
one person. The restriction (5) indicates that if a person is
assigned to different jobs it should be at the same facility.
The problem is to find the total minimum cost of assigning
the jobs to the persons with the required restrictions.

In the sequel we developed a Lexi-search algorithm
based on the “Pattern Recognition Technique” to solve this
problem which takes care of simple combinatorial structure
of the problem and computational results are reported.

III. NUMERICAL ILLUSTRATION

The concepts and the algorithm developed will be
illustrated by a numerical example for which
n=6(persons), m=10 (jobs), and k = 2(facilities) then the
matrix is given as follows. In this problem we have to
assign any one person (agent) can do any three jobs
(tasks), any two persons (agents) can do any two jobs
(tasks) and any three persons (agents) can do any one job
(task).

ISSN : 0975-3397 1633

Sobhan Babu.K et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1633-1640

TABLE-I

,ሺ݅ܥ ݆, 1ሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
10 2 14 9 6 7 21 32 18 11
7 12 9 3 5 6 9 16 54 12
4 8 6 12 21 9 21 14 45 13

21 9 12 9 32 10 19 25 16 10
10 12 30 15 12 17 30 12 12 9
15 7 34 17 7 16 14 17 9 5 ے

ۑ
ۑ
ۑ
ۑ
ې

,ሺ݅ܥ ݆, 2ሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
21 11 16 9 15 10 12 32 26 16
14 15 20 10 16 3 6 9 21 14
9 17 11 31 21 16 7 9 10 11

16 23 8 15 10 3 1 3 20 23
12 40 14 36 9 21 14 19 4 13
8 18 9 42 8 11 19 9 32 ے20

ۑ
ۑ
ۑ
ۑ
ې

IV. CONCEPTS & DEFINITIONS

A. Definition of a Pattern
 An indicator three-dimensional array which is
associated with an assignment is called a ’pattern’. A Pattern
is said to be feasible if X is a solution. The pattern
represented in the table-2 is a feasible pattern. Now T(X) the
value of the pattern X is defined as

ܶሺܺሻ ൌ
ݔܽ݉
݅ א ܫ

 ܶሺ݅, ݆, ݇ሻ ܺሺ݅, ݆, ݇ሻ
אא

The value T(X) gives the total time of the
assignment for the solution represented by X. Thus the value
of the feasible pattern gives the total time represented by it.
In the algorithm, which is developed in the sequel, a search
is made for a feasible pattern with the least value. Each
pattern of the solution X is represented by the set of ordered
triples [(i,j,k)] for which X(i,j,k)=1, with understanding that
the other X(i,j,k)’s are zeros.

The ordered triple set [(4,7,2), (1,2,1), (2,4,1),
(4,6,2), (4,8,2), (3,1,1), (5,9,2), (2,5,1),(6,10,1),(3,3,1))]
represents the pattern given in the table-2, which is a
feasible solution.

TABLE-II

ܺሺ݅, ݆, 1ሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 ے1

ۑ
ۑ
ۑ
ۑ
ې

ܺሺ݅, ݆, 2ሻ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 ے0

ۑ
ۑ
ۑ
ۑ
ې

There is M = m×n×p ordered triples in the three dimensional
array X. For convenience these are arranged in ascending
order of their corresponding times are adding indexed from
1 to M (Sundara Murthy M-1979). Let SN = (1, 2. . . M) be
the set of M indices. Let TD be the corresponding array of
times. If a, b א SN and a < b the TD (a) ≤ TD (b). Also let

the arrays R, C, F be the array or row, column and facility
indices of the ordered triples represented by SN and CT be
the array of cumulative sum of the elements of TD. The
arrays SN, TD, CT, R, C, F for the numerical example are
given in the table-3. If p א SN then (R (p), C (p), F (p)) is
the ordered triple and TD (a) = T(R (a), C (a), F (a)) is the
value of the ordered triple and CT (a) =∑ ሺ݅ሻܦܶ

ୀଵ .

TABLE-III (ALPHABET TABLE)

S.No TD CT R C F
1 1 1 4 7 2
2 2 3 1 2 1
3 3 6 2 4 1
4 3 9 2 6 2
5 3 12 4 6 2
6 3 15 4 8 2
7 4 19 3 1 1
8 4 23 5 9 2
9 5 28 2 5 1
10 5 33 6 10 1
11 6 39 1 5 1
12 6 45 2 6 1
13 6 51 3 3 1
14 6 57 2 7 2
15 7 64 1 6 1
16 7 71 2 1 1
17 7 78 6 2 1
18 7 85 6 5 1
19 7 92 3 7 2
20 8 100 3 2 1
21 8 108 4 3 2
22 8 116 6 1 2
23 8 124 6 5 2
24 9 133 1 4 1
25 9 142 2 3 1
26 9 151 2 7 1
27 9 160 3 6 1
28 9 169 4 2 1
29 9 178 4 4 1
30 9 187 5 10 1
31 9 196 6 9 1
32 9 205 1 4 2
33 9 214 2 8 2
34 9 223 3 1 2
35 9 231 3 8 2
36 9 240 5 5 2
37 9 249 6 3 2
38 9 258 6 8 2
39 10 268 1 1 1
40 10 278 4 6 1
41 10 288 4 10 1
42 10 298 5 1 1
43 10 308 1 6 2
44 10 318 2 4 2
45 10 328 3 9 2
46 10 338 4 5 2
47 11 349 1 10 1
48 11 360 1 2 2
49 11 371 3 3 2
50 11 382 3 10 2
51 11 393 6 6 2
52 12 405 2 2 1
53 12 417 2 10 1
54 12 429 3 4 1

ISSN : 0975-3397 1634

Sobhan Babu.K et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1633-1640

55 12 441 4 3 1
56 12 453 5 2 1
57 12 465 5 5 1
58 12 477 5 8 1
59 12 489 5 9 1
60 12 501 1 7 2
61 12 513 5 1 2
62 13 526 3 10 1
63 13 539 5 10 2
64 14 553 1 3 1
65 14 567 3 8 1
66 14 581 6 7 1
67 14 595 2 1 2
68 14 609 2 10 2
69 14 623 5 3 2
70 14 637 5 7 2
71 15 652 5 4 1
72 15 667 6 1 1
73 15 682 1 5 2
74 15 697 2 2 2
75 15 712 4 4 2
76 16 728 2 8 1
77 16 744 4 9 1
78 16 760 6 6 1
79 16 776 1 3 2
80 16 792 1 10 2
81 16 808 2 5 2
82 16 824 3 6 2
83 16 840 4 1 2
84 17 857 5 6 1
85 17 874 6 4 1
86 17 891 6 8 1
87 17 908 3 2 2
88 18 926 1 9 1
89 18 944 6 2 2
90 19 963 4 7 1
91 19 982 5 8 2
92 19 1001 6 7 2
93 20 1021 2 3 2
94 20 1041 4 9 2
95 20 1061 6 10 2
96 21 1082 1 7 1
97 21 1103 3 5 1
98 21 1124 3 7 1
99 21 1145 4 1 1

100 21 1166 1 1 2
101 21 1187 2 9 2
102 21 1208 3 5 2
103 21 1229 5 6 2
104 23 1252 4 2 2
105 23 1275 4 10 2
106 25 1300 4 8 1
107 26 1326 1 9 2
108 30 1356 5 3 1
109 30 1386 5 7 1
110 31 1417 3 4 2
111 32 1449 1 8 1
112 32 1481 4 5 1
113 32 1513 1 8 2
114 32 1545 6 9 2
115 34 1579 6 3 1
116 36 1615 5 4 2
117 40 1655 5 2 2
118 42 1697 6 4 2
119 45 1742 3 9 1
120 54 1796 2 9 1

Let us consider 21 א SN. It represents that the ordered triple
(R (21), C (21), F (21)) = (4, 3, 2). Then TD (21) = T (4, 3,
2) = 8 and CT (21) = 108.

B.Definition of Alphabet Table and Word

Let SN = (1,2,…) be the set of indices, TD be an array of
corresponding costs of the ordered triples and CT be the
array of cumulative sums of elements in TD. Let arrays R, C
and F be respectively, the row, column and facility indices
of the ordered triples. Let Lk = {a1, a2, - - -- - , ak}, ai א SN
be an ordered sequence of k indices from SN. The pattern
represented by the ordered triples whose indices are given
by Lk is independent of the order of ai in the sequence.
Hence for uniqueness the indices are arranged in the
increasing order such that ai < ai+1, i = 1, 2, - - - -, k-1. The
set SN is defined as the "Alphabet-Table" with alphabetic
order as (1, 2, - - - -, n3) and the ordered sequence Lk is
defined as a "word" of length k. A word Lk is called a
"sensible word". If ai < ai+1, for i =1,2, - - - -, k-1 and if this
condition is not met it is called a "insensible word". A word
Lk is said to be feasible if the corresponding pattern X is
feasible and same is with the case of infeasible and partial
feasible pattern. A Partial word Lk is said to be feasible if
the block of words represented by Lk has at least one
feasible word or, equivalently the partial pattern represented
by Lk should not have any inconsistency.

 Any of the letters in SN can occupy the first place
in the partial word Lk. Our interest is only in set of words of
length atmost equation, since the words of length greater
than n are necessarily infeasible, as any feasible pattern can
have only n unit entries in it. If k < n, Lk is called a partial
word and if k = n, it is a full length word or simply a word.
A partial word Lk represents, a block of words with Lk as a
leader i.e. as its first k letters. A leader is said to be feasible,
if the block of word, defined by it has at least one feasible
word.

C.Value of the Word

The value of the (partial) word Lk, V (Lk) is defined
recursively as V (Lk) = V (Lk-1) + TD (ak) with V (Lo) = 0
where TD (ak) is the cost array arranged such that TD (ak) <
TD (ak+1). V (Lk) and V(x) the values of the pattern X will
be the same. Since X is the (partial) pattern represented by
Lk, (Sundara Murthy – 1979).

D.Search-Table

The working details of getting an optimal word using the
above algorithm for the illustrative numerical example is
given in the Table-4. The columns named (1), (2), (3),…,
gives the letters in the first, second, third and so on places
respectively. The columns R, C and F give the row,
column and facility indices of the letter. The last column
gives the remarks regarding the acceptability of the partial
words. In the following table A indicates ACCEPT and R
indicates REJECT.

ISSN : 0975-3397 1635

Sobhan Babu.K et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1633-1640

TABLE-IV (SEARCH-TABLE)

At the end of search table the trail value is 36. The partial
word is L10 = (1, 2, 3, 5, 6, 7, 8, 9, 10, 13) is a feasible
partial word. For this partial word the array IR, IC, IT, LW
are given in the following Table – 5.

 1 2 3 4 5 6 7 8 9 10

LN 1 2 2 3 1 1 - - - -

K 1 1 1 2 2 1 - - - -

In this numerical example first, fifth & sixth
persons/agents done only one different job/task, second &
third persons/agents done two different jobs/tasks, fourth
person/agent done three different jobs/tasks.

TABLE-V

 1 2 3 4 5 6 7 8 9 10

IR 4 1 2 4 4 3 5 2 6 3

IC 7 2 4 6 8 1 9 5 10 3

IF 2 1 1 2 2 1 2 1 1 1

LW 1 2 3 5 6 7 8 9 10 13

At the end of the search the current value of VT is 36 and it
is the value of optimal feasible word. L10 = (1, 2, 3, 5, 6, 7,
8, 9, 10, 13). At the end of the search table the solution is 36
and the assignment schedule represented by 7th job done by
4th person by using facility 2, 2nd job done by 1st person by
using facility 1, 4th job done by 2nd person by using facility
1, 6th job done by 4th person by using facility 2, 8th job

done by 4th person by using facility 2, 1st job done by 3rd
person by using facility 1, 9th job done by 5th person by
using facility 2, 5th job done by 2nd person by using facility
1, 10th job done by 6th person by using facility 1, 3rd job
done by 3rd person by using facility 1.

V. COMPUTATIONAL EXPERIENCE

Ross & Soland have developed the branch and bound
algorithm conventional to that of Dakin, calculating bound
in part by solving binary knapsack problems. They observed
that the bound so calculated is identical to the one provided
by the Lagrangian relaxation for the two dimensional
assignment problem. While Fisher & Jaikumar have
provided the bounds dominating the Ross & Soland bounds,
Mortello & Toth have proved that their algorithm MTG is
faster than both the above. Ravikumar has formulated Lexi-
Search Data Guided Algorithm and showed that his
algorithm is faster than MTG in many cases. Ramana.V.V.V
& Umashankar have considered the GAP as it was
considered by Ross & Soland and developed the Lexi-
Search algorithm using Pattern Recognition Approach.
Except Ramana .V.V.V & Umashankar and Ross & Soland
algorithms, all the others considered the maximization
version of the problem, with the direct reference to knapsack
problems, using profit and weights. The constraint that all
agents are to be assigned is relaxed by all of them including
Ross & Soland. Ramana & Umashankar have tested the
Lexi-Search algorithm considering this constraint and also
relaxing it. Ramana & Umashankar have tested the
algorithm MTG of Martello & Toth for the same set of
problems, with and without backtracking. Ramana &
Umashankar have formulated the Lexi-Search Algorithm
and showed that their algorithm is faster than the above
cases. Around 60 randomly formulated problems of varying
sizes are tested with these algorithms on a core 2 duo. We
have tested our algorithm with Ramana & Umashankar for
the same set of problems, with and with out backtracking.
The results are tabulated in tables 6 – 14

And the results are tabulated in Table. Table 6
gives the CPU times for Martello & Toth’s MTG with and
without backtracking. Table 8 gives the CPU time taken by
Ramana & Umashankar Lexi-Search algorithm for two
dimensional problems with the constraint on agents in the
GAP problem, while table 7 gives the CPU times taken
when the constraint is relaxed (equivalent to MTG). Values
in the brackets against in each problem set indicate the times
taken for solving the problem. After excluding the time
taken for sorting the cost array. From table 6 and 7, it can be
clearly seen that the time taken by Lexi-Search algorithm is
less as compared to the taken by MTG, in most of the cases.
Further, from table 7, it is clear that the time taken by Lexi-
Search algorithm falls down significantly, when the sort
time is excluded. Further 12 & 14 clearly show that the
change in alphabet arrangement (primarily the sort
procedure adopted by LEXI2) brings down the times

SN 1 2 3 4 5 6 7 8 9 10 R C F REM
1 1 4 7 2 A

2 2 1 2 1 A

3 3 2 4 1 A

4 4 2 6 2 R

5 5 4 6 2 A

6 6 4 8 2 A

7 7 3 1 1 A

8 8 5 9 2 A

9 9 2 5 1 A

10 10 6 10 1 A

11 11 1 5 1 R

12 12 2 6 1 R

13 13 3 3 1 A=VT(36)

14 11 1 5 1 R > VT

15 10 6 10 1 R > VT

16 9 2 5 1 R > VT

17 8 5 9 2 R > VT

18 7 3 1 1 R > VT

19 6 4 8 2 R > VT

20 4 2 6 2 R = VT

21 3 2 4 1 R > VT

22 2 1 2 1 R > VT

ISSN : 0975-3397 1636

Sobhan Babu.K et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1633-1640

further. When the restriction (that all agents are to be
assigned) is considered, the time taken by the problem
increased slightly for problems of smaller sizes and when
the numbers of tasks are more, the algorithm takes more
time. For each type, three data sets are tested. It is seen that
time required for the search of execution time of the optimal
solution is fairly less.

TABLE-VI

TIME TAKEN BY THE ALGORITHM MTG OF MARTELLO & TOTH

No. of Total time taken (in sec)

Agents Tasks Problem No-backtracking backtracking

 Min. Max. Avg. Min. Max. Avg.

4 6 6 .001 .001 .0010 .001 .005 .0030

5 5 6 .001 .006 .0035 .004 .10 .0070

5 10 6 .007 .013 .0100 .007 .014 .0105

5 20 6 .014 .026 .0200 .014 .026 .0200

10 10 6 .014 .014 .0140 .014 .015 .0145

TABLE-VII

TIME TAKEN BY THE LEX1 ALGORITHM OF RAMANA & UMASANKAR WITH OUT

CONSTRAINTS ON AGENTS

o.of Total Time Taken (in Sec)

A

G

E

N

TS

T

A

S

K

S

PR

OB

LE

MS

1st Solution Total Time Taken

 Min Mac Avg, Min Max Avg.

4 6 12 .001

(.000)

.002

(.001)

.0015

(.005)

.001

(.000)

.002

(.001)

.0015

(.0005)

5 5 12 .001

(.000)

.002

(.001)

.0015

(.0005)

.001

(.001)

.002

(.001)

.0015

(.0010)

5 10 6 .003

(.000)

.005

(.001)

.004

(.0005)

.003

(.000)

.005

(.001)

.0040

(.0005)

5 20 6 .014

(.000)

.018

(.001)

.0160

(.0005)

.014

(.000)

.020

(.004)

.0170

(.0025)

10 10 6 .015

(.000)

.18

(.001)

0.0165

(0.000)

.015

(.000)

.019

(.001)

.0170

(.0005)

TABLE-VIII

TIME TAKEN BY THE LEX1 ALGORITHM OF RAMANA & UMASANKAR WITH

CONSTRAINTS ON AGENTS

No.of Total Time Taken (in Sec)

A

G

E

N

TS

T

A

S

K

S

PR

OB

LE

MS

1st Solution Total Time Taken

 Min Mac Avg, Min Max Avg.

4 6 12 .001

(.000)

.003

(.002)

.0020

(.001)

.001

(.001)

.004

(.003)

.0025

(.0015)

5 5 12 .001

(.000)

.004

(.003)

.0025

(.0015)

.001

(.001)

.006

(.005)

.0035

(.0030)

5 10 6 .004

(.000)

.030

(.025)

.0170

(.0125)

.004

(.000)

.555

(.550)

.2795

(.2250)

5 20 6 .015

(.000)

.023

(.007)

.0190

(.0035)

.015

(.000)

20.81

(20.78)

10.41

(10.39)

10 10 6 ---- (----- ---- .129

(.111)

.174

(.156)

.0150*

(.133)*

(* NO FEASIBLE SOLUTION FOUND)

TABLE-IX

TIME TAKEN BY THE LEX2 ALGORITHM OF RAMANA & UMASANKAR WITH OUT

CONSTRAINTS ON AGENTS

No.of Total Time Taken (in Sec)

A

G

E

N

TS

T

A

S

K

S

PR

OB

LE

MS

1st Solution Total Time Taken

 Min Mac Avg, Min Max Avg.

4 6 12 .000

(.000)

.001

(.000)

.0005

(.000)

.000

(.000)

.001

(.001)

.0005

(.0000)

5 5 12 .001

(.000)

.002

(.000)

.0010

(.0000)

.001

(.001)

.001

(.000)

.0010

(.0000)

5 10 6 .003

(.000)

.004

(.000)

.0035

(.0000)

.003

(.000)

.004

(0.000)

.0035

(.0000)

5 20 6 .011

(.000)

.015

(.001)

.0130

(.0005)

.012

(.000)

.018

(.004)

.0150

(.0020)

10 10 6 .011

(.000)

.015

(.000)

.0135

(.000)

.012

(.000)

.015

(.000)

.0135

(.000)

TABLE-X

TIME TAKEN BY THE LEX2 ALGORITHM OF RAMANA & UMASANKAR WITH

CONSTRAINTS ON AGENTS

No.of Total Time Taken (in Sec)

A

G

E

N

TS

T

A

S

K

S

PR

OB

LE

MS

1st Solution Total Time Taken

 Min Mac Avg, Min Max Avg.

4 6 12 .000

(.000)

.002

(.000)

.0010

(.0000)

.000

(.000)

.002

(.000)

.0010

(.0000)

5 5 12 .001

(.000)

.003

(.000)

.0020

(.0000)

.001

(.001)

.006

(.004)

.0030

(.0025)

5 10 6 .003

(.000)

.029

(.025)

.0160

(.0125)

.004

(.000)

.356

(.350)

.1800

(.1700)

5 20 6 .012

(.000)

.020

(.007)

.0170

(.0035)

.014

(.000)

20.72

(20.08)

10.367

(10.33)

10 10 6 ---- ---- ----- .125

(.108)

.163

(.147)

.0144*

(.127)*

(* NO FEASIBLE SOLUTION FOUND)

ISSN : 0975-3397 1637

Sobhan Babu.K et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1633-1640

TABLE-XI

TIME TAKEN BY THE LEX1 OUR PROPOSED ALGORITHM WITH OUT CONSTRAINTS

ON AGENTS

o.of Total Time Taken (in Sec)

A

G

E

N

TS

T

A

S

K

S

PR

OB

LE

MS

1st Solution Total Time Taken

 Min Max Avg. Min Max Avg.

8 12 12 .000

(.000)

.002

(.001)

.001

(.005)

.001

(.000)

.002

(.001)

.0015

(.0005)

10 10 12 .000

(.000)

.002

(.001)

.001

(.0005)

.001

(.001)

.002

(.001)

.0015

(.0010)

10 20 6 .000

(.000)

.005

(.001)

.0025

(.0005)

.005

(.002)

.007

(.004)

.006

(.003)

10 30 6 .008

(.000)

.0010

(.001)

.009

(.0005)

.012

(.001)

.016

(.004)

.014

(.0025)

20 20 6 .010

(.000)

.012

(.001)

0.011

(0.000)

.015

(.000)

.019

(.001)

.0170

(.0005)

TABLE-XII

TIME TAKEN BY THE LEX1 OUR PROPOSED ALGORITHM WITH CONSTRAINTS ON

AGENTS

No.of Total Time Taken (in Sec)

A

G

E

N

TS

T

A

S

K

S

PR

OB

LE

MS

1st Solution Total Time Taken

 Min Mac Avg, Min Max Avg.

8 12 12 .003

(.001)

.006

(.003)

.0045

(.002)

.003

(.002)

.008

(.004)

.0055

(.003)

10 10 12 .001

(.000)

.004

(.003)

.0025

(.0015)

.002

(.003)

.009

(.005)

.0055

(.004)

10 20 6 .004

(.000)

.030

(.025)

.0170

(.0125)

.004

(.000)

.796

(.550)

.400

(.2250)

10 30 6 .018

(.002)

.024

(.007)

.021

(.0045)

.015

(.000)

20.81

(20.78)

10.41

(10.39)

TABLE-XIII

TIME TAKEN BY THE LEX2 OUR PROPOSED ALGORITHM WITH OUT CONSTRAINTS

ON AGENTS

No.of Total Time Taken (in Sec)

A

G

E

N

TS

T

A

S

K

S

PR

OB

LE

MS

1st Solution Total Time Taken

 Min Mac Avg, Min Max Avg.

8 12 12 .001

(.000)

.001

(.000)

.001

(.000)

.001

(.000)

.002

(.001)

.0015

(.0000)

10 10 12 .001

(.000)

.002

(.000)

.0010

(.0000)

.001

(.001)

.001

(.000)

.0010

(.0000)

10 20 6 .006

(.000)

.007

(.000)

.0065

(.0000)

.005

(.000)

.008

(0.000)

.0065

(.0000)

10 30 6 .014

(.000)

.019

(.001)

.0165

(.0005)

.018

(.000)

.020

(.004)

.019

(.0020)

20 20 6 .014

(.000)

.016

(.000)

.015

(.000)

.012

(.000)

.015

(.000)

.0135

(.000)

TABLE-XIV

TIME TAKEN BY THE LEX2 OUR PROPOSED ALGORITHM WITH CONSTRAINTS ON

AGENTS

No.of Total Time Taken (in Sec)

A

G

E

N

TS

T

A

S

K

S

PR

OB

LE

MS

1st Solution Total Time Taken

 Min Max Avg. Min Max Avg.

8 12 12 .002

(.000)

.004

(.000)

.003

(.0000)

.002

(.000)

.004

(.000)

.003

(.0000)

10 10 12 .002

(.000)

.005

(.000)

.0035

(.0000)

.004

(.001)

.006

(.004)

.0050

(.0025)

10 20 6 .012

(.000)

.018

(.025)

.015

(.0125)

.004

(.000)

.356

(.350)

.1800

(.1700)

10 30 6 .012

(.000)

.020

(.007)

.0170

(.0035)

.014

(.000)

20.72

(20.08)

10.367

(10.33)

VI. CONCLUSION

The problems are solved by using the Lexi-Search algorithm
based on the Pattern Recognition Technique, with and
without the restriction on agents considered in the GAP and
studied further by excluding the sort times taken by the
respective problems (with backtracking in all the cases). The
same problems have been tested with the MTG algorithm of
Martello & Toth as well as Ramana & Umashankar, with
and without backtracking. Our algorithm is faster than the
MTG and Ramana & Umashankar Lexi-Search algorithm in
most of the cases. Even with the restriction imposed, the
Lexi-Search algorithm takes reasonably less time. Further it
is observed that with the modification of the sort procedure
while arranging the alphabet table in LEXI 1, the Lexi-
Search algorithm LEXI 2 is becoming more efficient. On the
whole, it is felt that Our Lexi-Search algorithm is faster than
the MTG algorithm as well as Ramana & Umashankar’s
Lexi-Search algorithm.

ACKNOWLEDGEMENTS

The authors are very much thankful to the referees for their
suggestions & useful comments.

ISSN : 0975-3397 1638

Sobhan Babu.K et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1633-1640

REFERENCES

[1] Balachandran, V.“An Integer Generalized Transportation Model for
Optimal Job Assignment in Computer Network,” Operations
Research, 24, 1976, pp. 742-759.

[2] Cattrysee, D.G. & Wassenhove, L.N.V. “A Survey of Algorithms for
the Generalized Assignment Problems,” Euro.J.O.R. 60, 1992,
pp.260-272.

[3] Dakin, R. “A Tree Search Algorithm for Mixed Integer Programming
Problems,” Computer Journal 8, 1965, pp. 250-255.

[4] Devaio & Roved. “An All Zero-One Algorithm for A class of
Transportation Problem,” Operations Research, 19, 1971, pp.1406-
1418.

[5] Fisher, M.L., Jaikumar, R. & Luk N.Van.Wassenhove., “A Multiplier
Adjustment Method for the Generalized Assignment Problem,”
Management Science, 32, 1986, pp.1095-1103.

[6] Geoffrion, A.M., & Graves, G.W. “Multi Commodity Distribution
System Design by Benders Decomposition,” Management Science,
20, 1974, pp.822-844.

[7] Kuhn, H. “Variants of the Hungarian Method for Assignment
Problems,” Naval Research Logistics, Qtrly., 3, 1956, pp.253-258.

[8] Martello, S. & Toth, P. “An algorithm for the Generalized
Assignment Problem,” in J.P.BRANS(ed.), Operations Research,
81,1981, North Holland, pp. 589-603.

[9] Ross, G.T. & Soland, R.M. “A Branch and Bound Algorithm for
Generalized Assignment Problem,” Mathematical Programming,
1975, pp.91-103.

[10] Ross, G.T. & Soland, R.M. “Modelling Facility Location Problems as
Generalized Assignment Problems,” Management Science, 24, 1977,
pp.345-357.

[11] Ravi Kumar, M. “Data Guided Algorithm in Combinatorial
Optimization,” 1994, A Ph.D. Thesis, Osmania University,
Hyderabad.

[12] Sobhan Babu, K. & Sundara Murthy, M. “An efficient algorithm for
Variant Bulk Transportation Problem” International Journal of
Engineering Science and Technology, 2010, Vol.2(7), pp.2595-2600.

[13] Srinivasan, V. & Thompson, G.L. “An Algorithm for Assigning uses
to Sources in a special class of Transportation Problems,” Operations
Research, 21, 1973, pp.284-295.

[14] Sundara Murthy, M. “Combinatorial Programming: A Pattern
Recognition Approach,” A Ph.D. Thesis, REC, Warangal. 1979.

 [15] Venkata Ramana, V.V. & Umasankar, C. “On a Class of Assignment
Problems,” Opsearch, 1998, Vol.35, No.2. pp.127-138.

AUTHORS PROFILE

Mr.K.SOBHAN BABU is presently
working as a Assistant Professor in the
Department of Mathematics, University
College of Engineering, JNTUK,
KAKINADA, Andhra Pradesh, INDIA.

Dr.M.SUNDARA MURTHY is presently
working as a Professor in the Department
of Mathematics, Sri Venkateswara
University, Tirupati, Chittor (Dt) Andhra
Pradesh, India.

Mrs.K.CHANDRA KALA is presently
working as a Assistant System Engineer
in Tata Consultancy Services, Hyderabad,
Andhra Pradesh, INDIA.

Mr.S.PURUSHOTTAM is a Research
Scholar in the Department of
Mathematics, Sri Venkateswara
University, Tirupati, Chittor (Dt), Andhra
Pradesh, INDIA.

ISSN : 0975-3397 1639

Sobhan Babu.K et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1633-1640

Flow chart for MAP

 No Yes

 No

 Yes
 No

 Yes

 No Yes

 No
 Yes
 No
 Yes

 No
 Yes

Cost Matrix (C (i, j, k))

START

Alphabet Table

Initialize
IC, RX, LW=0; V, LB=0; I=1, J=0, VT=99999

V (I) =D (J)

L (I) =J;

IS I=1

J=J+1

V (I) =V (I-1) +D (J)

 LB (I) =V (I-1) +DC (J+N-I)-DC (J)

IS LB (I)≥VT

 IS I=1

TR=R (J)
TC=C (J)
TK= K(J)

LN(TR)≤Ni

IS
IC(TC)=1

IS I=N

Partial word
Feasible

Partial word
not feasible

L (I) =J; IC (CA) =1
RX (RA) =RX (RA) +DR (CA)

I=I+1 Record the solution
L (I) =J; VT=V (I)

I=I-1
J=L (I)
TC=C (J)

 TR=R (J); TK=K (J)
 IC (TC) =0
 LN (TR) = LN (TR)+1

STOP

SI (TR)=K IS K=TK
LN (TR) =
LN (TR)+1

LN (TR) =
LN (TR)-1

ISSN : 0975-3397 1640

