
R. Jayaprakash et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1627-1632

Decentralized Service Orchestration by Continuous
Message Passing

R.JAYAPRAKASH, M. SHANMUGAM , P.MANIKANDAN, and S. SHIVARAJ
Department of Computer Science

Pondicherry University
Puducherry, India.

Abstract— Decentralized service stands for distributing segments
of workflow among various workflow engines, and workflow has
set of activities responsible for invoking Web Services.
Decentralized Orchestration holds an upper hand over
Centralized Orchestration in producing optimal solutions in
terms of scalability and network traffic by overcoming inefficient
routing of messages. Although decentralized orchestration being
more optimal in scalability it lacks in very significant part of web
services and internet called reliability. So, we found a way out to
solve this issue by introducing a reliability phenomenon called
Continuous Message Passing. This Continuous Message passing
on merging with Decentralized Orchestration is believed to
deliver the most trusted web service and produce optimal
solutions. The combination of these two not only optimizes
reliability to greater extent but also produces substantial increase
in scalability which assures workflow enhancement. With
communication and processing being integral part of web
services, the model framed believed to convey greater
enhancement in both communication and processing of resources
which would make best use of workflow of Web services and
Internet.

Keywords- Decentralized Orchestration, Reliability, Continuous
Message Passing, Workflow, Web Services

I. INTRODUCTION

A web service is defined as “a software system designed to
support interoperable machine-to-machine interaction over a
network”. Web Service-oriented computing provides a
programming pattern for achieving and improving business
process. Business software assists business process to emerge.
Efficient business software relies on interoperability, which can
be achieved through Enterprise Application Integration (EAI).

Web services are one of the processes to attain EAI. Web
Service Description Language (WSDL) that is capable of being
accessed through standard network protocol is best related to
service that describes Web service and it can be accessed via
protocols such as SOAP over HTTP with an XML serialization
and other standards. We talked about achieving and improving
business process, it can be achieved by execution of workflow
to invoke web service. Different web service providers provide
different web services and it carries workflow which performs
activities in sequence or parallel. The workflow in web service
is of two types, Composite and Basic.

Basic web service is a web service that does not invoke
other web service where as composite web service invoke one
or more web services for combined processing. This
coordinated process of invoking a web services is achieved
through Orchestration. Web service Orchestration controls the
order of the condition for the web services invocation.
Orchestration web service invokes one or more web services
from different service provider in coordinated manner and
orchestration decides whether or not to invoke the web
services.

The Workflow execution can be achieved by Centralized
approach where workflow execution is carried out by only one
workflow engine placed on single server. This centralized
approach is not optimal in the process of controlling the correct
and reliable execution of activities, since it has to bare a larger
amount of resources on single engine. So centralized approach
faces huge problem in terms of communication and processing
which are core activities for business process.

Centralized workflow approach can be resolved by
allocating different segments of workflow among various
workflow engines. This way of approach is termed as
Decentralized workflow. In decentralized approach each
workflow engine communicates with other workflow engines
with out depending on single workflow engine. This approach
increase scalability to reasonable extent but this requires pre-
allocation of resources. With pre-allocation some resources
remain unused even after workflow execution has been
completed. So by pre-allocation the unused resources are
blocked, which otherwise might have come handy for other
purposes. This definitely is a big set back in terms of resource
allocation were it reflects negative effect on scalability.

Communication and processing through continuous
message passing is again a decentralized approach through
workflow enactment. Integrating continuous message passing
with decentralized approach would pre-allocate the resource
prior to the workflow execution and release the allocated
resource after execution is completed. This is only achieved by
interaction among the resources through continuous message
passing. Continuous message passing approach provides
optimal use of resources that speeds up communication and
processing.

ISSN : 0975-3397 1627

R. Jayaprakash et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1627-1632

II. RELATED WORK

When web services started emerging in the internet
scenario the most important feature called composition
techniques too started to get its phenomenal growth by many
contributors thought, by the way there are some major
composition techniques like Orchestration and Choreography
[1] that took web service composition to achieve successful
result. Even there was some research that went under the
environment that composition taking place. There the
centralized approach and decentralized approach both have
produced the result in optimal success and even have their own
drawback within.

Previously by a set of Input and output parameters some
experiments are undergone to clarify the best suite composition
technique using the decentralized workflow enactment, in that
research most of the results witnessed that Decentralized
Service Orchestration [2] sounds more than the Centralized one
in all aspects in especially overcoming the most important issue
called bottleneck problem and traffic over network, but still
some drawbacks that pulls decentralized back like
communication between the services that involved in the
composition. To execute the services with efficient way
Triggers are maintained in each web services and they used to
invoke and build the desired output. In this way of composition
the most expected limitation called enhancing triggers took
place and needed the additional burden to the developers to
involve the triggers in the each service which doesn’t make
feasible to all the global web service developers.

When web services are increased in large scale sure it going
to dominate the software industries very soon, when
composition techniques of these web services are reliable and
makes the user’s be comfort in the consuming and get expected
result it would lead to achieve the expected success ratio. From
various self-contained algorithm, some algorithms are mostly
based on the current existing standards. In [8], a BPEL-based
Web service composition using high-level Petri-Nets (HPN)
approach is proposed.

III. DECENTRALIZED WORKFLOW ORCHESTRATION

Decentralized workflow is derived from Centralized
workflow. In a centralized workflow, workflow engine is
placed on a single server which is responsible in controlling
entire workflow activities. Model has been framed to show the
workflow execution is illustrated in figure: In the figure
sequence of three work items are named as A, B and C for
workflow execution. Here single workflow engine handles all
the three resource a, b, and c by sending and receiving the work
item before and after processing. Resource ‘a’ after completing
the process sends back the result to workflow engine, only then
work item for the resource ‘b’ is sent. So each and every
resource has to wait for the other resource to complete their
process and get result.

Figure 1: workflow execution

So the problem with this centralized workflow approach is
communication and processing which is an integral part of
failure.

In the Decentralized approach the resources are pre-
allocated. Decentralized approach model has been illustrated in
figure Here work items a, b, c are handled by three different
work engines namely w1, w2 and w3. Each work engine is
dedicated to its work item.

Where work engine ‘w1’ is dedicated to work item ‘a’,
work engine ‘w2’ is dedicated to work item ‘b’, and w3 is
dedicated to ‘c’. This approach definitely gives faster
execution but problem arises at resource pre-allocation. All the
work items are pre-allocated by the work engines before the
execution. So all the resources that are necessary for the
workflow execution are allocated. If this resources are not
blocked it would have been used for other purpose.

IV. CONTINUOUS MESSAGE PASSING

Continuous message passing is again a decentralized
approach through workflow enactment. Continuous message
passing would pre-allocate the resource prior to the workflow
execution and release the allocated resource after execution is
completed.

In the Continuous Message Passing approach the processed
resources would be freed for other purpose. Continuous
Message Passing model has been illustrated in figure 2. Here
work items a, b, c are handled by three different work engines
namely w1, w2 and w3.

S (a)

S (b)

S (c)

I (a)
I (b)

I (c)

C

ISSN : 0975-3397 1628

R. Jayaprakash et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1627-1632

Figure 2: Continuous Message Passing model

Workflow engine w1 after processing resource ‘a’ the

resource is released. Similarly workflow engine w2 and w3
after processing resource ‘b’ and ‘c’ release it. So the overall
work shows that after one workflow engine has completed its
work, then continuation is passed on to the next workflow
engine. This approach definitely gives faster execution and
increases scalability and reliability.

V. WORKFLOW

The key abstraction in the workflow model is flow, in
which the term flow corresponds to workflow. Flow is defined
as follows,

Flow::== Empty Flow | Activity | Blackbox Flow |
seq(Flow*) | fork(join-agent, Flow*) | or(Flow*) | if(Condition,
Flow, Flow) | loop(Condition, Flow*)

The flow deals three more important flows,

Empty Flow: Empty Flow is used to indicate the
completion of the execution.

Activity: Activity is an agent that is responsible for its
execution of the program, composition of program, the input
and output data, etc.

Black-box Flow: Blackbox Flow is a flow whose internal
structure is only known by its own agent, and it can be
combined by a central workflow engine.

Some of the more complicated flows can be described as
follows:

seq: seq defines a sequence of sub-flows.

fork: fork spawns multiple parallel branches of sub-flows.
Join agent combines parallel branches, and it can be
automatically picked during the time of execution of a
workflow.

or: or enables execution from multiple alternative sub-
flows.

if: if chooses a flow by determining if a condition is true or
false. A condition is defined on either flow-relevant data or
execution status of the flow.

loop: Loop defines a sub-flow that is repeated until the
condition is evaluated to be false.

An example of a flow specification can look like the
following:

 seq(Aa, fork(e, or(Bb, Cc), Dd), Ee)

Aa, Bb, Cc, Dd and Ee denote activities to be executed by
agents at the sites a, b, c, d and e, respectively. A compensating
activity for Aa would then look like Aa-1.

Figure 3: Structure of Message Container

S
(b)

S
(c)

S
(a) I (a)

I (b)

I (c)

C
(b)

C
(c)

C

ISSN : 0975-3397 1629

R. Jayaprakash et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1627-1632

VI. PERFORMANCE RESULTS

CEKK is an abstract state machine for distributed and
recoverable flow enactment, where C, E and K represent
control, environment and continuation, respectively [13].
According to [13], the CEKK machine can be looked at from
two angles:

Local CEKK machine: A local CEKK machine defines
possible states and their possible transitions locally at an agent.

Global CEKK machine: A global CEKK machine defines
the possible global states of a flow and the possible transitions
among them. It consists of a number of local CEKK machines.
The global state of the flow is the aggregation of the local
states and the global state transitions are defined solely by the
local state transitions.

A state of a local CEKK machine at agent p is a quadruple
< c; e; ks; kf >p, where c is called a control expression, e an
environment, ks is called a success continuation and kf is called
a failure continuation [13]. According to [13], they can be
defined as follows:

Control expression: control expression represents the next
flow to be enacted immediately.

Environment: environment is the runtime context of the
flow.

Success continuation: success continuation is the
continuation towards the successful end of the flow.

Failure continuation: failure continuation is the
continuation towards the compensated end of the flow.

Transition rules: According to [13], the state transition
appears in one of four forms as follows:

Local ongoing: Local state transition performed by agent p.

 < c0, e0, ks0, kf0 >p→< c1, e1, ks1, kf1 >p

Remote forwarding: Send state information from agent p to
agent q.

 < c, e, ks, kf >p→< c, e, ks, kf >q

 Local divergence: Agent p spawns multiple parallel
branches, where each branch is independent from the other
branches.

 < c0, e0, ks0, kf0 >p→

{<c1, e1, ks1, kf1 >p,< c2, e2, ks2, kf2 >p, . . . ,< cn, en, ksn, kfn
>p}

 Local convergence: Agent p joins spawned branches.

{< c1, e1, ks1, kf1 >p,< c2, e2, ks2, kf2 >p, . . . ,<cn, en, ksn, kfn
>p}→ < cu, eu, ksu, kfu >p

Remote forwarding is asynchronous message passing
between agents. In all other cases, state transitions are carried
out locally at individual agents. This explains why global co-
ordination is not needed among the agents [13].

The names of the transition rules have insight meaning. For
example, the transition rules named A1 and S1 refers to an
activity and a sequence, respectively. According to [13], the
transition rules named A1, A2, A3, S1 and S2 can be listed as
follows:

A1: A1 represents an agent q that is sending state
information to another agent p.

 < Ap, e, ks, kf >q→ < Ap, e, ks, kf >p if p ≠ q

A2: A2 represents a successful execution of an activity at
an agent p where a compensation activity is added to the failure
continuation.

< Ap, e, ks, kf >p→ < ks:head, succ (Ap) : e, ks:tail,A-1
p : kf

>p if succ(Ap)

A3: A3 represents a failed execution of an activity at an
agent p, which means that the failure continuation is enacted.

 < Ap, e, ks, kf >p< kf:head, fail (Ap) : e, kf:tail, kf
>p if fail(Ap)

S1: S1 represents the last sub-flow to be enacted in a flow
sequence, which means that nothing is pushed to the success
continuation.

 seq(fs), e, ks, kf >p→< fs:head, e, ks, kf >p if |fs| = 1

S2: S2 represents a flow sequence with multiple sub-flows,
which means that the first sub-flow is enacted. The other sub-
ows are pushed to the success continuation.

 < seq(fs), e, ks, kf >p→< fs:head, e, seq (fs:tail) : ks,
kf >p if |fs| ≠ 1

The next transition rules named F1 and J1 are somewhat
complicated, therefore a state initially represented as < c, e, ks,
kf > will be shortened to < c, ks >. A reason for doing this is
because recoverable flow enactment is not a goal for this thesis.
The modified transition rules can be defined as follows:

F1: F1 represents agent p which spawns multiple parallel
branches.

 < fork(q, f1, f2, : : : , fn), ks >p→

 {< f1, join_succ , ks >p,< f2, join_succ : ks >p,…,< fn,
join_succ : ks >p}

ISSN : 0975-3397 1630

R. Jayaprakash et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1627-1632

Where

join_succ = join(q, and(succ(f1), succ(f2), : : : , succ(fn)))

J1: J1 represents joining spawned branches.

 {< join_succ, ks >q,….,< join_succ, ks >q} → <
ks:head, ks:tail >q

The transition rules A1, A2, A3, S1 and S2 are valid for an
abstract CEKK engine, while the transition rules F1 and J1 are
valid for an abstract CK engine, where C stands for control and
K stands for continuation.

Figure 4: Performance Evaluation

The performance evaluation of 50 and 100 service sites for
processes with the 4x4 structure is shown in figure 4. When

there are 50 service sites, the centralized approach outperforms
the continuation-passing one, both in total throughput and in
process response time. However, when there are 100 service
sites, the central engine gets congested, whereas with
continuation passing, the system throughput still grows with
the increase of the system load.

VII. CONCLUSION

Main Objective of our proposed work is to overcome the
listed drawbacks of the existing centralized and decentralized
approach, even they sounds well in flexibility and scalability
they stands a step back in the aspects of reliability factor. Our
approach that to contribute in the aspect of reliability that
makes the co-ordination between the services and provides the
resultant value to the client. In Continuation message passing
the messages carry the continuation result, it is also called the
partial result or intermediate result, and these results are
orchestrated to produce desired output. All the above the
resource pre-allocation problem completely vanished and
dynamic allocation of the resource comes into picture to
provide the ultimate scalability.

REFERENCES

[1] Adam Barker, Christopher D. Walton, and David Robertson,

“Choreographing Web Services”, In IEEE TRANSACTIONS ON
SERVICES COMPUTING, VOL. 2, NO. 2, APRIL-JUNE 2009.

[2] Walter Binder, Ion Constantinescu, Boi Faltings, “Decentralized
Orchestration of Composite Web Services” In IEEE International
Conference on Web Services (ICWS'06).

[3] Nancy Cova Suazo, José Oscar Olmedo Aguirre, “Aspect-Oriented Web
Services Orchestration”, In 2nd International Conference on Electrical
and Electronics Engineering (ICEEE) and XI Conference on Electrical
Engineering (CIE 2005).

[4] Daniel Martin Daniel Wutke Frank Leymann, “A Novel Approach to
Decentralized Workflow Enactment” In 12th International IEEE
Enterprise Distributed Object Computing Conference.

[5] Ustun Yildiz and Claude Godart, “Information Flow Control with
Decentralized Service Compositions” In 2007 IEEE International
Conference on Web Services (ICWS 2007).

[6] Saayan Mitra, Ratnesh Kumar, Samik Basu “Optimum Decentralized
Choreography for Web Services Composition” In 2008 IEEE
International Conference on Services Computing.

[7] Walter Binder, Ion Constantinescu, Boi Faltings “Decentralized
Orchestration of Composite Web Services” In IEEE International
Conference on Web Services (ICWS'06).

[8] W.-L. Dong, H. Yu, and Y.-B. Zhang. “Testing bpel-based web service
composition using high-level Petri nets”. In Proc. of the 10th IEEE
International Enterprise Distributed Object Computing Conference
(EDOC ’06), pages 441–444, Oct. 2006.

[9] Esin Gokkoca, Mehmet Altinel, Ibrahim Cingil, E.Nesime Tatbul, Pinar
Koksal, Asuman Dogac “Design and Implementation of a Distributed
Workflow Enactment Service”.

[10] Walter Binder, Ion Constantinescu, Boi Faltings “Service Invocation
Triggers: A Lightweight Routing Infrastructure for Decentralized
Workflow Orchestration” Proceedings of the 20th International
Conference on Advanced Information Networking and Applications
(AINA’06).

[11] Ustun YILDIZ and Claude GODART “Synchronization Solutions for
Decentralized Service Orchestrations” Second International Conference
on Internet and Web Applications and Services (ICIW'07)

ISSN : 0975-3397 1631

R. Jayaprakash et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1627-1632

[12] Zaharina Velikova, Julian Schütte, Nicolai Kuntze “Security in
Decentralized Workflows”

[13] Yu and Yang. “Continuation-passing enactment of distributed
recoverable workflows”. In Proceedings of ACM SAC'07.

[14] Weihai Yu “Scalable Services Orchestration with Continuation-Passing
Messaging” 2009 First International Conference on Intensive
Applications and Services.

[15] Yajuan Song , Lei Liu ,Ping Ren “Web Service Composition Based on
the Annotated Ontology” 2009 First International Workshop on
Education Technology and Computer Science.

[16] Mark Wiley Aihua Wu Jianwen Su WSDL-D: “A Flexible Web Service
Invocation Mechanism for Large Datasets” 10th IEEE Conference on E-

Commerce Technology and the Fifth IEEE Conference on Enterprise
Computing, E-Commerce and E-Services.

[17] Mohamad EL Falou, Maroua Bouzid, Abdel-Illah Mouaddib ,Thierry
Vidal “Automated Web Services Composition : A Decentralised Multi-
Agent Approach” 2009 IEEE/WIC/ACM International Conference on
Web Intelligence and Intelligent Agent Technology – Workshops.

[18] Ustun Yildiz and Claude Godart “Centralized versus Decentralized
Conversation-based Orchestrations” The 9th IEEE International
Conference on E-Commerce Technology and The 4th IEEE International
Conference on Enterprise Computing, E-Commerce and E-
Services(CEC-EEE 2007).

ISSN : 0975-3397 1632

