
M. Munawwar Iqbal Ch et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1580-1587

Abstract – Emerging dimensions of scientific computing have
changed the structural requirements of the under laying
hardware and software resources. The growing scientific
applications are demanding for the high speed computing
platforms having the capability of the run time architectural
updation. The conventional computing approaches using
application specific integrated circuits and programmable
general purpose processors are still suffering with the lack of
architectural modifications for demanded updation and
computing speed respectively, during the life of running
applications. The reconfigurable computing is becoming the next
generation computing approach as it promises the high level
integration of hardware speed and software flexibility at one
platform. The reconfigurable computing is intended to fill the
gape between the high speed computing platforms like
application specific integrated circuits and the highly flexible
computing platform like programmable general purpose
processors. This research paper briefly investigates the roll of
reconfigurable computing systems in the emerging scientific
applications.

Keywords - Reconfigurable Processors, Reconfigurable Computing,
Reconfigurable Logic, FPGAs, RISPs

I. CONVENTIONAL COMPUTING APPROACHES

In conventional computing paradigm there are two distinct

approaches being used for the execution of the algorithms. One
conventional approach being used is based on computing using
Application Specific Integrated Circuits (ASICs) while the
second conventional approach being used is based on
computing using General Purpose Processors (GPPs) as
shown in Fig. 1.

A. Computing Using ASICs

The primary conventional computing approach is to use

hardwired circuits such as Application Specific Integrated
Circuits (ASICs) to execute the operations in hardware. A kind
of customized hardware is specially designed to support and
execute an application. The highly specialization of hardwired
circuit will result in fast and efficient execution for the
designed task. Also this kind of the dedication approach
demonstrates the minimal power consumption overhead as the
designers avoid unnecessary contemporary logic modules.
However, huge amount of development work is required to

achieve extreme efficiency. Also, the hardwired circuit cannot
be altered after fabrication. Any changes, modifications, or
updates to the circuit require a redesign and re-fabrication of
the chip. This is an expensive process in effort, time, and cost
for maintaining hardwired technology as shown in Fig. 2.

.
B. Computing Using GPPs

The secondary conventional computing approach for the

execution of the algorithms is fully based on the use of
software dependant programmable processors. The concerned
algorithm is represented in the form of sequential program
codes. The processor executes this program code which is in
fact in the form of instructions, to perform the required
computation. Instruction Set architecture (ISA) interfaces
between the program instructions for the algorithm and the
executing hardware. Changes in the either end will not affect
the functionality of the other side as long as the instruction set
architecture specifications were followed. Therefore the
changes in software instructions can modify the functionality of
an operation without the need to change any part or module of
the hardware resources. This gives great flexibility to designers
to freely modify the software code. This great flexibility is in
tradeoff by large performance overhead. During the process of
program or application execution the processor fetches each
instruction from memory, decodes its meaning and then
performs the operation of the instruction. These overheads
result in degraded performance and greater power consumption
as a whole execution process as shown in Fig. 2.

While instruction set architecture serves as an interface

between the software and the hardware, it also limits the
potential growth of the under laying system. After the chip
fabrication, any operations to be implemented must be built
based on the instruction set architecture specifications.
Improvements in the hardware must maintain the full ISA
specification, even obsolete ones, to be backward compatible
with existing software programs. The software based solution
of any algorithm demonstrates a temporal execution flow but
the ASIC based solution demonstrates a spatial flow.

Reconfigurable Computing Systems Used To Support
Next Generation High Speed Applications

M. Munawwar Iqbal Ch, Muhammad Younus Javed and M. Aqeel Iqbal

Department of Computer Engineering
College of Electrical and Mechanical Engineering

National University of Sciences and Technology (NUST), Islamabad, Pakistan

ISSN : 0975-3397 1580

M. Munawwar Iqbal Ch et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1580-1587

II. RECONFIGURABLE COMPUTING

The reconfigurable computing (RC) is an emerging

engineering paradigm that bridges up this gap of algorithmic
flexibility and speed, and hence allowing a processor to be
optimized to the task at hand as shown in Fig. 1. So the
designer is not forced to achieve a trades-off between the
performance gain on a narrow area and the versatility [1].
Reconfigurable computing provides the technology to
implement a processing unit that can be dynamically optimized
for the algorithm it is implementing. Field Programmable Gate
Arrays (FPGAs) have an architectural tendency to provide such
a kind of innovative computational concept where it can ideally
be reused and re-optimized for any number of times for
multiple algorithms simply by reprogramming it [1].

The FPGA consists of reconfigurable logic that can be

reprogrammed to compute applications ranging from very fine-
grained, highly repetitive to coarse-grained, general purpose
computational tasks. SRAM-based FPGAs can be used to
create processors and co-processors whose internal
architectures as well as interconnections can be reconfigured to
match the needs of a given applications. Computing circuits
built from FPGAs can obtain the true goal of parallel
processing. They execute algorithms in-circuit with the
inherent parallelism of hardware, while avoiding the instruction
fetch and load/store bottlenecks of traditional von Neumann
architectures as shown in Fig. 2.

The recent idea of reconfigurable computing applications

and system designs has been a subject of research since few
decades, but most of the existing projects have demonstrated
the potential of connecting one or more commercially available
FPGAs to an on shelf existing processor via a standard external
bus such as the IO/PCI bus [2]. If reconfigurable computing is
really intended to become the computing paradigm of the
future applications, then the main parts must be brought closer
together. Only a few studies have considered integrating a
processor and FPGA core into a single device as shown in the
Fig. 3. With the two tailored to cooperate closely with each
other; and so there remain important questions about how such
a device might be built and programmed, and how it would fit
within an existing general-purpose computing framework [2].

Recently it has been observed that the reconfigurable

computing is really becoming an important part of the research
in the field of computer architectures and software based
systems. By placing computationally intensive parts of an
algorithm onto the reconfigurable logic, the performance gain
of the overall application can be drastically accelerated. This is
in fact mainly due to the reason that because the reconfigurable
computing combines benefits of both software and ASIC
implementations. Like software, the mapped circuit is flexible,
and can be changed over the lifetime or life cycle of the
system. Similar to an ASIC, reconfigurable systems provide a
method to map circuits into hardware, achieving far greater

performance than software as a result of bypassing the fetch-
decode-execute cycle of traditional microprocessors, and
parallel execution of multiple operations. Even due to all of
these technological advancements, the reconfigurable
computing is still at the depth of microcode stage and hence
requiring programmers of the applications to have a
considerably deep knowledge about low level circuit design in
order to create an application. A large number of the C-based
languages exist that map to Hardware Description Languages
(HDLs); however those languages still need the programmer to
think on scale of low hardware circuits [3]. As seen in
software, major productivity gains will not occur unless the
level of reasoning about problems changes.

A program implemented on a circuit that takes advantage of

the parallelism offered by hardware is much more difficult to
create than a sequence of instructions to run on a processor. In
order to make gains in productivity, the abstraction level at
which engineers and scientists create reconfigurable computing
programs further needs to be elevated. Along the way, some
optimizations may be given up but that will allow for the
development of larger and more complex systems that could
not be feasibly created otherwise. Several attempts are being
made at doing this through developing higher level languages
for programming hardware in a C-like manner. Many of these
approaches present a small step forward in raising the level of
abstraction but still it requires a significant knowledge of
reconfigurable computing programming to create systems.

III. RISPS AND RECONFIGURABLE COMPUTING

Today the embedded systems are composed of many hardware

and software based components which are interacting with each
other during the execution of the application programs. In fact the
balance between these used components will determine the
success of the concerned system.

 Fig. 1 Computing Systems

ISSN : 0975-3397 1581

M. Munawwar Iqbal Ch et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1580-1587

Due to the surprising nature of software technology, the
software components are extremely easier to modify or update as
compared to the hardware based components. Due to this
dramatic flexibility nature, the software components being
running on programmable general purpose processors provide an
easy way to eliminate the bugs, to change the application, to reuse
components, to differentiate a product or to reduce the more
important time to market. However, when compared to pure
hardware based solutions, the software components are slower
and consume more power. Hardware components are used when
speed and power consumption are very critical in the prescribed
task. Unfortunately, hardware components require a lengthy and
very expensive design process. Typical hardware components
cannot be modified after they have been fabricated. The task of
the system designer is to find an adequate balance between these
components which interact very closely.

The interaction between software and hardware components
of a system is very tight and closely coupled, especially in the
case of embedded systems, where cost efficient solutions are a
must. Application Specific Instruction Set Processors (ASIPs) and
Reconfigurable Instruction Set Processors (RISPs) are most
prominent examples of the interaction of the hardware and
software components since they contain very specialized
hardware and software components interacting very closely in the
form of a single integrated chip [4] as shown in Fig. 3.
Conventional programmable general purpose processors do not
have this type of interaction due to the generic nature of the
processors. As the processor becomes more and more specialized,
so does the interaction between hardware and software. Designing
a system with such a type of processors requires a methodology
that encompasses both software and hardware aspects.

A. Computing Using ASIPs.

An ASIP is a kind of the hybrid architecture between a

programmable processor and an integrated custom logic. Non
critical parts of the running application are implemented using the
standard instruction set or hardware core while the critical parts
are implemented using a specialized instruction set, typically
using one or more specialized functional units that have been
customized for the running application [4]. Thus these functional
units implement a specialized instruction set architecture. This
specialization in fact permits reduced code size, reduced power
consumption and higher processing power. The Implementation
of an application on an ASIP system involves the design of the
customized functional units and the mapping of the software
algorithms to these customized units. Both must be done
concurrently in order to obtain a good solution, but due to the
nature of hardware and software development this is not always
possible.

B. Computing Using RISPs.

A RISP consists of an integrated processor core that has been

extended with reconfigurable logic as shown in Fig. 3. It is quite
similar to an ASIP but instead of having Specialized Functional
Units (SFUs), it contains the Reconfigurable Functional Units
(RFUs). The reconfigurable functional units in fact provide this
adaptation of the processor to the application, while the standard
processor core provides software programmability. As a concept;
the RISPs execute instructions just as standard processors and
ASIPs, though the main difference is that the instruction set of
RISPs is divided into two main sets. The first set includes the
fixed instruction set, which is implemented in fixed hardware and
the second set is reconfigurable instruction set, which is
implemented in the reconfigurable logic and can be changed
during runtime of the active application [4]. This reconfigurable
instruction set is equivalent to the specialized instruction set of
the ASIP but with the ability to be modified after the processor
has been manufactured.

The cost of designing a processor core is drastically reduced
by reusing it in many different applications by running a large
number of different software programs. In ASIPs, the cost for
every new kind of generation comes from the redesign of their

Fig. 2 Characteristics of Computing Systems

Fig. 3 Evolution of Reconfigurable Systems

ISSN : 0975-3397 1582

M. Munawwar Iqbal Ch et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1580-1587

specialized functional units, which can be quite high as compared
to programmable processors. The rapidly emerging prototyping
techniques are essential for reducing the cost and time
benchmarks required for the redesign. A RISP can be used as a
best prototyping device for a family of ASIP processors that share
the same basic core having fixed instruction set. In this sense, it
can be viewed as a Field Programmable Gate Array (FPGA)
specialized for ASIP design. In fact the RISPs provide a better
prototyping platform than a pure FPGA, for a set of ASIP cores
due to the specialized elements which it contains. The RISP
already contains data and program memory; one or more register
files, control logic and other processor specific elements. These
elements are optimized for a processor implementation, which is
not the case for FPGA technology. The RISP programming tools
can also help in the design of new ASIPs. The required new
specialized functional units must be designed for an ASIP. The
RISP programming tools should do this automatically. These
tools can also be used to instantiate an ASIP, which can be
viewed as the non reconfigurable version of a RISP.

The RISPs not only provide the benefits in field of
prototyping but in fact, the first models of a product can use a
RISP instead of a more expensive ASIP. As the product matures,
transition to an ASIP can be done in a convenient manner without
taking any design risk. This allows the product to evolve
technically without a significant risk and also allows a smaller
time to market and hence reduces development cost rapidly [4].
We can observe a quit similar kind of trend in the ASIC and
FPGA markets. Also in many cases it is now more cost effective
to use FPGAs instead of ASICs. Furthermore, in some scientific
user applications, more preferably the RISPs would be the
processor of choice. Evolving scientific standards, unknown
demanded applications and a broad diversity of algorithms are
cases where a fixed solution will eventually fail to deliver the
required high performance and computational power. Evolving
scientific standards and unknown applications make it very
difficult to create specialized hardware for them. Applications
with a broad diversity of algorithms require much specialized
hardware which may be more expensive than a reconfigurable
solution. The RISPs offer this kind of computation platform
flexibility that ASIPs lack.

Many features of a typical RISP depend on the availability of

good programming tools optimized in order to obtain good
results. More importantly, it is necessary to design the processor
and these programming tools simultaneously and check regularly
that one does not impose any severe restrictions on the other. The
basic element of a RISP code generation tool or suite is a high
level language compiler that performs the automatic
hardware/software partitioning. In some cases, such a type of
complex compiler might not be needed or might not be
technically feasible. A normal compiler can also be used and then
the code is modified to include reconfigurability. The compilation
process is quite complex and introduces many new concepts to
compiler designers. The initial compilation phases are typical of
high level language compilers. The source code is analyzed and
an internal representation is obtained, normally in the form of
some sort of control and data flow graph. The graph is composed
of basic building blocks, hyper building blocks, regions or any

other constructs that facilitates compilation. The size of the blocks
depends on the technical design of the processor architecture.
High level optimizing transformations are also done during these
compiling stages of the code.

The Reconfigurable Processors (RPs) are the new types of
processor which combines a microprocessor core with
reconfigurable logic. The objective of this design approach is
to add the benefits from microprocessors and reconfigurable
logic both at the same time. The Fig.4 shows the brief
comparison of a microprocessor (μP) and a reconfigurable
processor (RP) in the form of a table showing different
Synergism characteristics of both of them. The reconfigurable
logic will provide hardware specialization to the application
being under execution [4]. It will also provide quite similar
benefits to those offered by the application specific instruction
set processors. ASIPs have been integrated with the
specialized hardware that accelerates the execution of the
applications it was designed for. A reconfigurable processor
would have this same benefit but without having to commit
the hardware solution into silicon. Reconfigurable processors
can be adapted after design, in the same way as that of the
programmable processors can adapt to application changes.
Reconfigurable instructions set processors are in fact a subset
of reconfigurable processors.

Many systems have been designed with very different
characteristics and the research on this type of processors has
been quite active since the last few years. The essential
enabler of this has been the fast growth of FPGA capacity.
There have been many reconfigurable processors, especially
before the year 1994. Most of these processors are in fact of
the attached processor type. The design of a reconfigurable
processor can technically be divided into two main tasks. The
first one is the interfacing between the microprocessor and the
reconfigurable logic. This includes all the issues related to
how data is transferred to and from the reconfigurable logic, as
well as synchronization between the two elements. The second
task is the design of the reconfigurable logic itself.

Fig. 4 Synergism between µP and RPs

ISSN : 0975-3397 1583

M. Munawwar Iqbal Ch et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1580-1587

Granularity, reconfigurability and interconnections are issues
included in this task. The Fig. 5 shows the working
mechanism of a typical RISP. This flow chart is showing the
different steps being involved during the execution of an
application program on a typical RISP.

IV. RECONFIGURABLE COMPUTING DEVICES

As a concept the reconfigurable computing has been in
existence since the last few decades. Even general-purpose
processors use some sort of the same basic ideas, such as
reusing computational components for independent
computations and using multiplexers to control the routing
structures between these components. However, the term
reconfigurable computing, as it is used in current research,
refers to systems incorporating some form of hardware
programmability by customizing the hardware being used
using a large number of physical control points. These control
points can then be changed or updated periodically in order to
execute a different class of applications using the same
hardware. Reconfigurable computing devices have emerged as
most flexible and high performance computing devices in
computing systems. We have been observing various examples
of computing systems that are fully reconfigurable at the fine
grain logic level as well as such devices that are reconfigurable
at coarse grain architectural level. In addition we have been
seeing the increased use of reconfigurable cores as fundamental

computing components in emerging embedded systems micro-
processors coupled with a reconfigurable component as well as
the application specific integrated circuits coupled with a
reconfigurable component. Reconfigurable devices initially
emerged as fast prototyping devices for application specific
integrated circuits designers. It allowed the designers to
compile the application to reconfigurable hardware to
determine that the application exhibited the correct
functionality. The prototyping removed the costly step of
fabricating the application, especially when fabrication yielded
a device it exhibited incorrect functionality. Additionally, the
rapid prototyping concept has demonstrated the need for
intensive simulation to verify correctness.

The power of reconfigurable computing devices lays the

immense amount of its inner computational flexibility that it
provides. In fact the computational flexibility allows run-time
reconfiguration or modification and on-the-fly reorganization
of the circuit based on the input parameters. Due to the ability
to customize to the input data, many user and scientific
applications show drastic speed-ups when implementing them
on reconfigurable computing systems. The familiar 90-10 rule
asserts that 90% of execution time is consumed by about 10%
of a program's code and that 10% generally being inner loops
of computational algorithm. Reconfigurable devices excel in
those cases where computation represented by a configuration
is repeated many times so that the time required to load a
configuration can be amortized over a long execution time
and/or overlapped with other execution. When all of an
application's important loop bodies can be configured to it
within the reconfigurable logic or reconfigurable computing
machine (one at a time), there would seem to be no need for the
overhead of a fully dynamic instruction fetch and issue
mechanism and hence allowing the machine to be more leaner
and efficient.

The most recent advances in reconfigurable computing

domain are for the most part derived from the technologies
developed for FPGAs in the mid-1980s. FPGAs were

Fig. 5 Working Flow of a Typical RISP

Fig. 6 Basic FPGA Block Diagram

ISSN : 0975-3397 1584

M. Munawwar Iqbal Ch et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1580-1587

originally developed to serve as a hybrid device between
Programmable Array Logics (PALs) and Mask Programmable
Gate Arrays (MPGAs). Like PALs, FPGAs are fully
electrically programmable or customizable, meaning that the
physical design costs are amortized over multiple application
circuit implementations on the same chip and the hardware
can be customized nearly instantaneously [5]. Like MPGAs,
they can implement very complex computations and
algorithms on a single chip, with devices currently in
production containing equivalent of millions of logic gates [5].
Because of these features, FPGAs had been primarily viewed
as a glue logic replacement and low cost rapid-prototyping
vehicles. However the flexibility, capacity and performance of
these devices have opened up the completely new avenues in
high-performance computing and hence forming the basis of
reconfigurable computing [5]. Consider the Fig. 6 and Fig. 7
which are showing the internal architecture of a basic FPGA.

A Field Programmable Gate Array (FPGA) is a silicon chip

containing an array of configurable logic blocks (CLBs) and a
network of programmable routing resources that are spread
throughout the device as shown in Fig. 8. Mainly FPGAs have
been provided by the companies like Xilinx [6] and Altera
Corporations [7]. Unlike an Application Specific Integrated
Circuit (ASIC) which can perform a single specific function for
the lifetime of the chip; a field programmable gate array can be
reprogrammed to perform a different function in a matter of
microseconds. FPGAs have been involved in two major fields
of computing including one as a prototyping platform and other
as a low cost, small volume alternative to ASICs.

The configurable logic blocks are the functional units and
are individually quite small. Between the configurable logic
blocks there is a reconfigurable routing network, connecting
the different configurable logic blocks with one another as
shown in Fig. 8. Configurable logic blocks consists of one or
two four-way look-up tables (LUTs) taking four bits inputs and
generating one bit output as shown in Fig. 9. By filling the
look-up tables, configuring the multiplexers and setting all
other control bits the behavior of the configurable logic block is
defined. There are long and short wires connected to each other
in switch matrixes and to the configurable logic blocks through
switch nodes. Consider the Fig. 10 which shows the
architecture of I/O block of basic FPGA.

V. SYSTEM LEVEL COUPLING

Programmable logic tends to be inefficient at implementing

certain types of operations, such as loops and branch control.
In order to run an application most efficiently in a
reconfigurable computing system, the areas of the active
program that cannot be easily mapped to the reconfigurable
logic are executed on a host micro-processor. Meanwhile, the
areas with a high density of computation that can benefit from
implementation in hardware are mapped to the reconfigurable
logic [8]. For the systems that use a micro-processor in
conjunction with reconfigurable logic, there are several ways
in which these two structures can be coupled [8]. Four main
options that have been used for the coupling of reconfigurable
logic within the computing system have the following
characteristics.

A. Tightly Coupled Unit Approach.

In first coupling approach the reconfigurable logic

hardware can be used solely to provide reconfigurable
functional units within a host processor. This allows for a
traditional programming environment with the addition of
custom instructions that may change over time. Here the

Fig. 8 CLB Interconnections

Fig. 7 FPGA Internal Design Concept

ISSN : 0975-3397 1585

M. Munawwar Iqbal Ch et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1580-1587

reconfigurable units execute as functional units on the main
microprocessor data path, with registers used to hold the input
and output operands. This type of coupling approach is used in
reconfigurable instruction set processors (RISPs) also known
as reconfigurable processors.

B. Co-processor Unit Approach.

In second coupling approach a reconfigurable unit may be
used as a coprocessor. A coprocessor is in general larger than
a functional unit, and is able to perform computations without
the constant supervision of the host processor. Instead, the
processor initializes the reconfigurable hardware and either

sends the necessary data to the logic or provides information
on where this data might be found in memory.

C. Attached Processor Unit Approach.

In third coupling approach the attached reconfigurable

processing unit behaves as if it is an additional processor in a
multiprocessor system. The host processor's data cache is not
visible to the attached reconfigurable processing unit. There is,
therefore a higher delay in communication between the host
processor and the reconfigurable hardware such as when
communicating configuration information, input data and
results. However, this type of reconfigurable hardware allows
for a great deal of computation independence by shifting large
chunks of a computation over to the reconfigurable hardware.

D. Loosely Coupled Unit Approach.

In fourth coupling approach the most loosely coupled form

of reconfigurable hardware is that of an external standalone
processing unit. This type of reconfigurable hardware
communicates infrequently with a host processor. This model
is similar to that of networked workstations, where processing
may occur for very long periods of time without a great deal of
communication.

VI. CONCLUSION

The emerging scientific computations are requiring the
extended data bandwidth with the dynamic behavior for their
absolute execution flows. This is all due to the growing
demands of the computing applications. The use of application
specific integrated circuits and general purpose processors for

Fig. 9 Basic CLB Internal Architecture

Fig. 10 FPGA I/O Structure

ISSN : 0975-3397 1586

M. Munawwar Iqbal Ch et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1580-1587

the solution of such type of applications is suffering with the
lack of flexibility and speed respectively. The scientists were
looking for a new type of computing platform having the
tendency of merging the flexibility like general purpose
processors and speed like application specific integrated
circuits. Reconfigurable computing is now playing a vital role
to enhance the computational powers of the existing systems.
Field programmable gate arrays have been selected as a device
for providing the reconfigurable computing behavior of the
systems. The performance of a reconfigurable computing
system is greatly dependant on the type of the coupling
approaches being used for the integration of the reconfigurable
logic with the standard processing unit. Still reconfigurable
computing is suffering with many potential drawbacks that can
be addressed for future high speed computations.

REFERENCES

[1]. K. Compton and S. Hauck, “Reconfigurable computing: a survey of
systems and software,” ACM Computing Surveys, vol. 34, no. 2, pp.
171–210, 2002.

[2]. R. Hartenstein, “Trends in reconfigurable logic and reconfigurable
computing,” in Proceedings of the 9th IEEE International Conference on
Electronics, Circuits, and Systems (ICECS ’02), pp. 801–808,
Dubrovnik, Croatia, September 2002.

[3]. Bondalapati, K., and Prasanna, V.K.: ‘Reconfigurable computing
systems’, Proc. IEEE, 2002, 90, (7), pp. 1201–1217

[4]. Francisco Barat, R. Lauwereins, G. Deconinck, “Reconfigurable
Instruction Set Processors from a Hardware/Software Perspective”;
IEEE Transactions on Software Engineering, Vol. 28, No.9, pp. 847–
862, Sept., 2002.

[5]. P. Garcia, K. Compton, M. Schulte, E. Blem, and W. Fu. An overview
of reconfigurable hardware in embedded systems. EURASIP Journal on
Embedded Systems, 2006: pp. 1–19, 2006.

[6]. Xilinx Inc., UG071,”Virtex-4 Configuration Guide”, v. 1.9, October,
2007.

[7]. Altera Corporation Products. 2008; http://www.altera.com/products/prd-
index.html

[8]. Compton K. and Hauck S. An introduction to reconfigurable computing.
IEEE Computer, April 2000.

AUTHORS PROFILES

M. Munawwar Iqbal Ch

Dr. Muhammad Younus Javed

M. Aqeel Iqbal

M. Aqeel Iqbal Is An Assistant Professor
In The Department Of Software Engineering,
Faculty Of Engineering And Information
Technology, Foundation University, Institute
Of Engineering And Management Sciences,
Rawalpindi, Pakistan. As A Researcher He
Has A Deep Affiliation With The College of
E & ME, National University Of Sciences
And Technology (NUST), Rawalpindi,
Pakistan.

M. Munawwar Iqbal Ch Received His M.Sc.
Degree In Computer Science In 1996 From
Quaid-I-Azam University Islamabad, Pakistan.
Then He Earned His Ms Degree In Computer
Software Engineering In 2005 From National
University Of Science And Technology, Nust,
Islamabad, Pakistan. Currently He Is Pursuing
His Phd Research At Department Of Computer
Engineering, College Of E & ME, NUST,
Under The Supervision Of Dr Muhammad
Younus Javed.

Dr Muhammad Younus Javed did his PhD
(Adaptive Communication Interfaces) from
University of Dundee, United Kingdom in
1991 and MS (Disambiguation Systems) from
the same university in 1988. He completed BE
Electrical Engineering from UET Lahore in
1982. He is serving in the College of Electrical
and Mechanical Engineering since 1991 and
has taught a number of courses at
undergraduate and postgraduate level. He is
currently Associate Dean (Academics &
Evaluation) at College of E & ME, National
University of Sciences & Technology (NUST),
Rawalpindi. Five PhD scholars are working
under his supervision. He is recipient of ORS
Award from the University of Dundee for his
outstanding PhD research work. His areas of
interest are Digital Image Processing,
Operating Systems, Design and Theory of
Algorithmics. He has 190 national/
international publications to his credit.

ISSN : 0975-3397 1587

