
T.S. Thangavel et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1846-1851

Efficient Secured Hash Based Password
Authentication in Multiple Websites

1T.S.Thangavel

AP/ Dept. of M.C.A,
K.S.Rangasamy College of Technology,
Tiruchengode 637215,Tamilnadu,India.

 2A. Krishnan

 Dean,
 K.S.Rangasamy College of Technology,
 Tiruchengode 637215,Tamilnadu,India.

Abstract

The most commercial web sites rely on a relatively
weak form of password authentication, the browser simply
sends a user’s plaintext password to a remote web server, often
using secure socket layer. Even when used over an encrypted
connection, this form of password authentication is vulnerable
to attack. In common password attacks, hackers exploit the
fact that web users often use the same password at many
different sites. This allows hackers to break into a low security
site that simply stores username/passwords in the clear and use
the retrieved passwords at a high security site. This work
developed an improved secure hash function, whose security is
directly related to the syndrome decoding problem from the
theory of error-correcting codes. The proposal design and
develop a user interface, and implementation of a browser
extension, password hash, that strengthens web password
authentication. Providing customized passwords, can reduce
the threat of password attacks with no server changes and little
or no change to the user experience. The proposed techniques
are designed to transparently provide novice users with the
benefits of password practices that are otherwise only feasible
for security experts. Experimentation are done with Internet
Explorer and Fire fox implementations.

Keywords: password authentication, password hash, multiple-
website password, pseudo random number, hash value, hash
function, Password phishing.

I. INTRODUCTION

A random password generator is software program

or hardware device that takes input from a random or
pseudo-random number generator and automatically
generates a password. Random passwords can be generated
manually, using simple sources of randomness such as dice
or coins, or they can be generated using a computer. While
there are many examples of "random" password generator
programs available on the Internet, generating randomness
can be tricky and many programs do not generate random
characters in a way that ensures strong security. A common
recommendation is to use open source security tools where
possible, since they allow independent checks on the quality
of the methods used. Note that simply generating a
password at random does not ensure the password is a

strong password, because it is possible, although highly
unlikely, to generate an easily guessed or cracked password.

A password generator can be part of a password

manager. When a password policy enforces complex rules,
it can be easier to use a password generator based on that set
of rules than to manually create passwords. In situations
where the attacker can obtain an encrypted version of the
password, such testing can be performed rapidly enough so
that a few million trial passwords can be checked in a matter
of seconds. The function rand presents another problem. All
pseudo-random number generators have an internal memory
or state. The size of that state determines the maximum
number of different values it can produce; an n-bit state can
produce at most 2n different values. On many systems rand
has a 31 or 32 bit state, which is already a significant
security limitation.

The main cryptographic hash function design in

use today iterates a so called compression function
according to Merle’s [10] and Damgard’s[11] constructions.
Classical compression functions are very fast but, in general,
cannot be proven secure. However, provable security may
be achieved with compression functions designed following
public key principles, at the cost of being less efficient. This
has been done for instance by Damgard, where he designed
a hash function based on the Knapsack problem.
Accordingly, this function has been broken by Granboulan
and Joux,[9] using lattice reduction algorithms. The present
paper contributes to the hash function family by designing
functions based on the syndrome decoding problem, which
is immune to lattice reduction based attacks.

Unlike most other public key cryptosystems, the

encryption function of the McEliece cryptosystem is nearly
as fast as a symmetric cipher. Using this function with a
random matrix instead of the usual parity check matrix of a
Goppa code, a provably secure one-way function has been
constructed since there is no trapdoor, its security can be
readily related to the difficulty of syndrome decoding.

The purpose of this paper is to improve updated

parameters for the hash function. Our paper analyzes
asymptotical behavior of their attack. We shall establish that

ISSN : 0975-3397 1846

T.S. Thangavel et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1846-1851

this attack is exponential, such that the design for the hash
function is sound.

II. LITERATURE REVIEW

Computer applications may require random

numbers in many contexts. Random numbers can be used to
simulate natural or artificial phenomena in computer
simulations, many algorithms that require randomness have
been developed that outperform deterministic algorithms for
the same problem, and random numbers can be used to
generate or verify passwords for cryptography-based
computer security systems. The present invention relates to
the use of random numbers in such security systems, called
as cryptographic applications. Specifically, the present
invention pertains to generating a random number in a
secure manner for such cryptographic applications. In the
context of cryptographic applications [1], there may be an
hostile trespasser or agent, who desires to infiltrate the
security of cryptographic security system in order to gain
access to sensitive, confidential, or valuable information
contained therein. For example, banks often encrypt their
transactions and accounts.

In order to ensure the utmost security [5], it is

essential that the security system implements a method for
generating a random number that appears completely
random. In this manner, a completely random password or
cryptographic key presents no opening or prior knowledge
that can be exploited by an hostile agent. [2].

Many prior art methods exist for generating

random numbers. These prior art methods typically involve
the use of some type of chaotic system. A chaotic system is
one with a state that changes over time in a largely
unpredictable manner. To use the chaotic system [4] to
generate a random number, there is some means of
converting the state of the system into a sequence of bits
(i.e., a binary number). In the past, chaotic systems were
based on various sources, such as the sound of radio static,
the output of a noisy diode, output of a Geiger counter, or
even the motion of clouds. These chaotic systems can be
converted to produce binary numbers by using standard
techniques.

For instance, a pseudo-random binary string can be

generated from the digital recording of static noise via a
digital microphone. Alternatively, a noisy diode can be
sampled at a suitable frequency and converted into a digital
signal, or a picture of an area of the sky can be taken and
subsequently scanned and digitized. These resulting binary
strings that are generated over time are generally random in
nature. However, there are several problems associated with
simply using a chaotic system as a source of random
numbers.[3] First, chaotic systems can be completely or
partially predicted over small amounts of time. For example,

the position of clouds in some area of the sky at some time
can be used to achieve reasonably accurate predictions of
the position of clouds in the same area a short time into the
future.

Furthermore, the behavior of chaotic systems [6]

can be far from completely random. For instance, a digitized
picture of a cloud formation will not look like a picture of
random information, but instead, will look like a cloud
formation. Moreover, chaotic systems may be biased by
outside sources which may be predictable. As an example, a
radio signal can be affected by a strong external signal, or
the behavior of a noisy diode can be changed by the
surrounding temperature. All of the above problems arise
because the behavior of a chaotic system may not be
completely random [8]. More specifically, an adversary
observing or wishing to affect the random number source
can take advantage of certain localities that may be inherent
in chaotic systems. These localities can occur either in space
or time.

Finally, a number of existing applications including

Mozilla Fire fox provide convenient password management
by storing the user’s web passwords on disk, encrypted
under some master password. When the user tries to log in
to a site, the application asks for the master password and
then releases the user’s password for that site. Thus, the user
need only remember the master password. The main
drawback compared to PwdHash is that the user can only
use the web on the machine that stores his passwords. On
the plus side, password management systems do provide
stronger protection against dictionary attacks when the user
chooses a unique, high entropy password for each site.
However, many users may fail to do this.

III. SECURED HASH BASED PSEUDO RANDOM
PASSWORD SCHEME

The proposed methodology of the secure hash
password system contains one-way hash functions that can
process a message to produce a condensed representation
called a message digest. This algorithm enables the
determination of a message’s integrity, any change to the
message will, with a very high probability, results in a
different message digest. This property is useful in the
generation and verification of digital signatures and message
authentication codes, and in the generation of random
numbers. The algorithm is described in two stages,
preprocessing and hash computation. Preprocessing involves
padding a message, parsing the padded message into m-bit
blocks, and setting initialization values to be used in the
hash computation. The hash computation generates a
message schedule from the padded message and uses that
schedule, along with functions, constants, and word
operations to iteratively generate a series of hash values.

ISSN : 0975-3397 1847

T.S. Thangavel et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1846-1851

The final hash value generated by the hash computation is
used to determine the message digest. The design principle
of hash functions is iterating a compression function (here
denoted F), which takes as input s bits and returns r bits
(with s > r). The resulting function is then chained to
operate on strings of arbitrary length (Fig 1). The validity of
such a design has been established and its security is proven
not worse than the security of the compression function.

Fig 1: Iterative hash function structure

Compression Hash function Algorithm

Input: s bits of data.

1. Split the S input bits in w pars S1 Sw of

2log
n

w

 bits.

2. Convert each Si to an integer between 1 and
n

w
.

3. Choose the corresponding column in each iH ;

4. Add the w chosen columns to obtain a binary string of
length r.
Output: r bits of hash.

The core of the compression function is a random
binary matrix H of size r×n. The parameters for the hash
function are n the number of columns of H, r the number of
rows of H and the size in bits of the function output, and w
the number of columns of H added at each round. Random
password generators normally output a string of symbols of
specified length. These can be individual characters from
some character set, syllables designed to form

pronounceable passwords, or words from some word list to
form a pass phrase. The program can be customized to
ensure the resulting password complies with the local
password policy, say by always producing a mix of letters,
numbers and special characters. The strength of a random
password can be calculated by computing the information
entropy of the random process that produced it. If each
symbol in the password is produced independently, the
entropy is just given by the formula

2

log
log

log2

N
H L N L

where N is the number of possible symbols and L is the
number of symbols in the password. The function log2 is the
base-2 logarithm. H is measured in bits.

Symbol Set N Entropy /
Symbol

Digits only (0-9) (e.g.
PIN)

10 3.32 bits

Single case letters (a-z) 26 4.7 bits
Single case letters and
digits (a-z, 0-9)

36 5.17 bits

Mixed case letters and
digits (a-z, A-Z,0-9)

62 5.95 bits

All standard U.S.
Keyboard characters

94 6.55 bits

Dice ware word list 7776 12.9 bits

Thus an eight character password of single case
letters and digits would have 41 bits of entropy (8 x 5.17).
The same length password selected at random from all U.S.
computer keyboard characters would have 52 bit entropy;
however such a password would be harder to memorize and
might be difficult to enter on non-U.S. keyboards. A ten
character password of single case letters and digits would
have essentially the same strength (51.7 bits). Any password
generator is limited by the state space of the pseudo-random
number generator, if one is used. Thus a password generated
using a 32-bit generator has maximum entropy of 32 bits,
regardless of the number of characters the password
contains.

IV. SYSTEM MODEL

The system model concerned with attacks on the

extension that originate on malicious phishing sites.
Password hashing is computed using a Pseudo Random
Function (PRF) as follows:

ISSN : 0975-3397 1848

T.S. Thangavel et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1846-1851

Hash (pwd, dom) = PRFpwd (dom)

Where the user’s password pwd is used as the PRF key and
the remote site’s domain name dom or some variant is used
as the input to the PRF. The hash value is then encoded as a
string that satisfies the site’s password encoding rules, under
control of a configuration file used by the browser
extension.

Password hashing is implemented naively inside a

browser with rudimentary knowledge of HTML form
components. Forms begin with a tag <form action=URL>
that tells the browser where the form is to be submitted, and
HTML password fields are tagged using <input
type=“password”>. The naive browser extension listens for
blur events, which fire when focus leaves a field. When the
blur event occurs, the extension replaces the contents of the
field with the hashed value, using the form action attribute.
Thus, after the user enters a password into a form, the clear
text password is replaced by a hashed version.

The goal, however, is to defend against web

scripting attacks with minimal change to the user
experience. For this leverage the browser extension as a
protective but largely transparent intermediary between the
user and the web application. All input can be first
monitored and secured by the browser extension before the
web application is aware that the user is interacting with it.
This requires a mechanism by which users can notify
password hash browser extension that they are about to
enter a password. Password hash can then take steps to
protect the password as it is being entered. A distributed
hash table is introduced to handle the browser utility
replicas of the multiple users across hash authentication
mode.

 A. Distribute Hash Table

In Figure2, The distributed hash table provides
incremental scalability of throughput and data capacity as
more nodes are added to the cluster. To achieve this, we
horizontally partition tables to spread operations and data
across bricks. Each brick thus stores some number of
partitions of each table in the system, and when new nodes
are added to the cluster, this partitioning is altered so that
data is spread onto the new node. Because of our workload
assumptions, this horizontal partitioning evenly spreads both
load and data across the cluster.

Given that the data in the hash table is spread

across multiple nodes, if any of those nodes fail, then a
portion of the hash table will become unavailable. For this
reason, each partition in the hash table is replicated on more
than one cluster node. The set of replicas for a partition form
a replica group; all replicas in the group are kept strictly
coherent with each other. Any replica can be used to service

a get(), but all replicas must be updated during a put()
or remove(). If a node fails, the data from its partitions is
available on the surviving members of the partitions' replica
groups. Replica group membership is thus dynamic; when a
node fails, all of its replicas are removed from their replica
groups. When a node joins the cluster, it may be added to
the replica groups of some partitions.

The illustration below describe the steps taken to

discover the set of replica groups which serve as the backing
store for a specific hash table key. The key is used to
traverse the DP map tries and retrieve the name of the key's
replica group. The replica group name is then used looked
up in the RG map to find the group's current membership.

We do have a checkpoint mechanism in our

distributed hash table that allows us to force the on-disk
image of all partitions to be consistent, the disk images can
then be backed up for disaster recovery. This checkpoint
mechanism is extremely heavy weight, however; during the
check pointing of a hash table, no state-changing operations
are allowed. We currently rely on system administrators to
decide when to initiate checkpoints.

Figure 2: distribute hash table

V. EXPERIMENTAL RESULT AND DISCUSSION

A. Experimental Implementation

In the proposed hash based password

authentication, a user can change her password at a given
site without changing her password at other sites. In fact, the
recommended method for using password hash is to choose
a small number of strong, distinct passwords, one for every
security level (e.g. one password for all financial sites, one
password for all news sites, etc). The password hash
extension ensures that a break-in at one financial site will
not expose the user’s password at all other banks.

The system implemented the prototype as a
browser helper object for Internet Explorer. The extension
registers three new objects i.e., an entry in the Tools menu
(to access extension options), an optional new toolbar, and

ISSN : 0975-3397 1849

T.S. Thangavel et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1846-1851

the password protection service itself. Internet Explorer
support COM event sinks that enable Browser Helper
Objects to react to website events. Use these sinks to detect
focus entering and leaving password fields, drag and drop
events, paste events and double click events. The DHTML
event model used by Internet Explorer allows page elements
to react to these events before they “bubble” up to the
extension at the top level. Since extension must handle
keystroke events before scripts on the page, we intercept
keystrokes using a low-level Windows keyboard hook.

When the password-key or password-prefix is
detected, the browser extension determines whether the
active element is a password field. If it is not a password
field, the user is warned that it is not safe to enter his
password. If it is a password field, the extension until the
focus leaves the field. The keystrokes are canceled and
replaced with simulated keystrokes corresponding to the
“mask” characters. The system implementation of secured
hash password authentication is intercepts all keystrokes of
printable characters accomplished through following
process. The client utility is in a web browser, generating
hash password as shown in Fig. 3.

B. Result and Discussion

The proposed hash based multi-site pseudo random

password mechanism shows proposal considers N number
of times that the user U might authenticate before re-
registration is required. This suggests that high values of N
are desirable. The host H has to store R hash function values
at the server. This implies that to reduce the storage
requirements, it is desirable to have a low value of R.
However, N/2R is the average number of hash function
computations that U has to do for every authentication
session. Thus, it is desirable to have a high value of R. The
parameter R therefore represents a tradeoff between
computational requirements of the user U and the storage
requirements of the host H. This implies that the value of N
and R are best selected by the system administrator keeping
in mind the system requirements. We believe that given the
current state of storage technologies, the storage
requirement is significantly less important than the
computational requirement. Major improvement over the
previous cryptographic method is the significant reduction
in computational requirements per authentication session
and increase in the number of logins before re-initialization.

 Fig 3: Client side hash password generation

Table 1: Effectiveness of Proposed Hash Based Pseudorandom Password
Authentication over Existing Cryptographic Password Authenticity

Technique Resistan

ce to
eaves

dropping

Web
Brows

er
Compa
tibility

Web
browser

Compatibil
ity

Number of
rounds for
authenticat

ion

Comp
utatio

nal
Effici
ency

Stora
ge

Capa
city

Comm
unicati

on
effecti
veness

Existing
Cryptograp
hic
password
authenticati
on

Feasible False Low Low Hig
h

False

Proposed
hash based
pseudo
random
password
authenticatio
n

Highly
feasible

True High High Low True

Regarding the computation evaluation the host
verifies the proposed hash password sent by user by
computing just a single hash function and one comparison
with the stored last one time password. For the investigation
of communication factor the host sends the user a hash value
and an integer t. The user returns only a single hash value.
The resultant of the proposed hash based pseudo random
password

Authentication and cryptographic password
authentication are listed in the below Table1.

ISSN : 0975-3397 1850

T.S. Thangavel et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1846-1851

VI.CONCLUSION

The paper proposed a provably secure hash
functions based password authentication scheme. This
construction provides features such as both the block size of
the hash function and the output size are completely
scalable. The password hashing method is extremely simple,
rather than send the user’s clear text password to a remote
site, it sends a hash value derived from the user’s password,
and the site domain name. Password Hash captures all user
input to a password field and sends hash (pwd, dom) to the
remote site. The hash is implemented using a Pseudo
Random Function keyed by the password. Since the hash
output is tailored to meet server password requirements, the
resulting hashed password is handled normally at the server;
no server modifications are required. This technique deters
password phishing since the password received at a phishing
site is not useful at any other domain. The proposed model
implements the password hashing as a secure and
transparent extension to modern browsers.

REFERENCES

[1] Kumar Magnitude and Rajendra Katti, “A Hash-based Strong Password
Authentication Protocol with User Anonymity”, International Journal of
Network Security, Vol.2, No.3, PP.205–209, May 2006.
[2] J. A. Halderman, B.Waters, and E. Felten “A convenient method for
securely managing passwords” To appear in Proceedings of the 14th
International World Wide Web Conference (WWW 2005), 2005.
[3] F. Hao, P. Zielinski, “A 2-round anonymous veto protocol,”
Proceedings of the 14th International Workshop on Security Protocols,
SPW’06, Cambridge, UK, May 2006.
[4] Muxiang Zhang, “Analysis of the SPEKE password-authenticated key
exchange protocol,” IEEE Communications Letters, Vol. 8, No. 1, pp. 63-
65, January 2004.
[5] Z. Zhao, Z. Dong, Y. Wang, “Security analysis of a password-based
authentication protocol proposed to IEEE 1363,” Theoretical Computer
Science, Vol. 352, No. 1, pp. 280–287, 2006.
[6] Abdalla M., Catalano D., Chevalier C., and Point cheval D., “Efficient
Two-Party Password Based Key Exchange Protocol in the UC
Framework”, Springer-verlag Berlin, pp 335-351, 2008
[7] Feng Hap and Peter Reyan “Password Authenticated key exchange by
juggling” IEEEP1363-2008.
[8] O. Hallaraker and G. Vigna. Detecting Malicious JavaScript Code in
Mozilla. In Proceedings of the IEEE International Conference on
Engineering of Complex Computer Systems (ICECCS), pages 85–94,
Shanghai, China, June 2005.
[9] Antoine Joux. Multicollisions in iterated hash functions. Application to
cascaded construction. In Advances in Cryptology - CRYPTO '04
Proceedings, Lecture Notes in Computer Science, Vol. 3152, M. Franklin,
ed, Springer-Verlag, 2004, pp. 306-316.
[10] R.C. Merkle. A Certified Digital Signature. In Advances in Cryptology
- CRYPTO '89 Proceedings, Lecture Notes in Computer Science Vol. 435,
G. Brassard, ed, Springer-Verlag, 1989, pp. 218-238.
[11] I. Damgård. A Design Principle for Hash Functions. In Advances in
Cryptology - CRYPTO '89 Proceedings, Lecture Notes in Computer
Science Vol. 435, G. Brassard, ed, Springer-Verlag, 1989, pp. 416-427.

1T. S. Thangavel received his Bsc degree in
Computer Science (Bharathiyar University)
in 1991 and the MSC degree in Computer
science Bharathidasan University) in 1993
and the Mphil degree in Computer Science
(Bharathidasan University) in 2003. He is

pursuing the PhD degree in department of science and
humanities (Anna University). He is working as an Assistant
Professor in MCA department at K.S.Rangasamy College of
Technology, Tiruchengode.

2Dr. A. Krishnan received his Ph.D
degree in Electrical Engineering from IIT,
Kanpur. He has been in the field of
technical teaching and research for more
than four decades at Government College
of Technology and Coimbatore Institute

of Technology, Tamilnadu, India. From 1994 to 1997, he
was an Associate Professor in Electrical Engineering at
University Pertanian Malaysia (UPM), Malaysia. He is now
working as an Academic Dean at K.S.Rangasamy College
of Technology, Tiruchengode and research guide at Anna
University Chennai. His research interest includes Control
system, Digital Filters, Power Electronics, Digital Signal
processing, Communication Networks. He has been
published more than 250 technical papers at various
National/ International Conference and journals. Dr.
Krishnan is a senior member of IEEE, Life fellow Institution
of Engineers (India), IETE (India) and Computer Society of
India.

ISSN : 0975-3397 1851

