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Abstract—This paper solves the problem of regulating the output 
of the Arneodo chaotic system (1981), which is one of the 
paradigms of chaotic dynamical systems. Explicitly, using the 
state feedback control laws, the output of the Arneodo chaotic 
system is regulated so as to track constant reference signals as 
well as to track periodic reference signals. The control laws are 
derived using the regulator equations of Byrnes and Isidori 
(1990), which provide the solution of the output regulation 
problem for nonlinear control systems involving neutrally stable 
exosystem dynamics. Numerical results are shown to verify the 
results.   
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I.  INTRODUCTION  

Output regulation of control systems is one of the very 
important problems in control systems theory. Basically, the 
output regulation problem is to control a fixed linear or 
nonlinear plant in order to have its output tracking reference 
signals produced by some external generator (the exosystem). 
For linear control systems, the output regulation problem was 
solved by Francis and Wonham ([1], 1975). For nonlinear 
control systems, the output regulation problem was solved by 
Byrnes and Isidori ([2], 1990), who generalized the internal 
model principle obtained by Francis and Wonham [1]. In their 
work [2], Byrnes and Isidori made an important assumption 
which demands that the exosystem dynamics generating 
reference and disturbance signals is a neutrally stable system 
(Lyapunov stable in both forward and backward time). The 
class of neutrally stable exosystem signals includes the 
important special cases of constant reference signals as well as 
sinusoidal reference signals. Using Centre Manifold Theory 
[3], Byrnes and Isidori derived regulator equations in their 
work [2], which completely characterize the solution of the 
output regulation problem for nonlinear control systems. 

The output regulation problem for linear and nonlinear 
control systems has been the focus of many important studies 
in recent years. Mahmoud and Khalil ([4], 1996) obtained 
results on the asymptotic regulation of minimum phase 
nonlinear systems using output feedback. Serrani et al. ([5], 
2000) derived results on the semi-global and global output 
regulation problem for minimum-phase nonlinear systems. 
Fridman ([6], 2003) solved the output regulation problem for 
nonlinear control systems with delay. Marconi et al. ([7], 2004) 
derived non-resonance conditions for uniform observability in 
the problem of nonlinear output regulation. J. Huang and Z. 

Chen ([8], 2004) established a general framework that 
systematically converts the robust output regulation problem 
for a general nonlinear system into a robust stabilization 
problem for an appropriately augmented system. Chen and 
Huang ([9], 2005) derived results on the robust output 
regulation for output feedback systems with nonlinear 
exosystem. Immonen (10], 2007) derived results on the 
practical output regulation for bounded linear infinite-
dimensional state space systems. Xi and Ding ([11], 2007) 
obtained results on the global adaptive output regulation of a 
class of nonlinear systems with exosystem. Pavolv et al. ([12], 
2007) derived results on the global nonlinear output regulation 
using convergence based controller design. Liu and Huang 
([13], 2008) derived results on the global robust output 
regulation problem for lower triangular nonlinear systems with 
unknown control direction. 

This paper solves the output regulation problem for the 
Arneodo chaotic system ([14], 1981), which is a classical 
example of a nonlinear dynamical system exhibiting chaotic 
motion. In chaos theory for nonlinear dynamical systems, the 
Arneodo system [14] is one of the paradigms of three-
dimensional chaotic systems. This paper uses the regulator 
equations obtained by Byrnes and Isidori [2] to derive the state 
feedback control laws for regulating the output of the Arneodo 
chaotic system for the important cases of constant and periodic 
reference signals. 

This paper is organized as follows. Section 2 reviews the 
output regulation problem and the solution derived by Byrnes 
and Isidori [2]. Section 3 contains the main results of this 
paper, viz. the output regulation of the Arneodo chaotic system. 
Section 4 contains the numerical results illustrating the output 
regulator design for the Arneodo chaotic system. Finally, 
Section 5 provides the conclusions of this paper.  

II. REVIEW OF THE OUTPUT REGULATION OF NONLINEAR 

CONTROL SYSTEMS 

In this section, we consider a multivariable nonlinear 
control system modelled by equations of the form 

           ( ) ( ) ( ) x f x g x u p x                        (1a) 

           ( )s                                                         (1b) 

            ( ) ( )e h x q                                             (2) 

Here, the differential equation (1a) describes a plant 
dynamics with state x  defined in a neighbourhood X of the 
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origin of, and the input u  takes values in nR , subject to the 
effect of a disturbance represented by the vector field 

( ) p x  . The differential equation (1b) describes an 
autonomous system, known as the exosystem, defined in a 

neighbourhood W  of the origin of ,kR  which models the 
class of disturbance and reference signals taken into 
consideration. The equation (2) defines the error between the 

actual plant output ( ) ph x R  and a reference signal  q  , 

which models the class of disturbance and reference signals 
taken into consideration. 

We also assume that all the constituent mappings of the 
system (1) and the error equation (2), namely , , , ,f g p s h  

and q  are 1C  mappings vanishing at the origin, i.e. 

(0) 0,f   (0) 0,g   (0) 0,p   (0) 0,s   (0) 0h   and 

(0) 0q  . Thus, for 0,u   the composite system (1) has an 

equilibrium state    , 0,0x    with zero error (2).  

A state feedback controller for the system (1) has the form 

                              ,u x                                     (3) 

where  ,x   is a 1C  mapping defined on X W  such 

that (0,0) 0.   Composing the plant dynamics (1) with (3), 
we get the closed-loop system given by 

                
( ) ( ) ( , ) ( ) 

( )

x f x g x x p x

s

  
 
  





        (4) 

The purpose of control action is to achieve internal stability 
and output regulation, which are explained as follows. 

 Internal stability means that when the input is disconnected 
(i.e. when 0),   the closed-loop system (4) has an 

exponentially stable state equilibrium at 0.x   

 Output regulation means that for the closed-loop system 

(4), for all initial states  (0), (0)x   sufficiently close to the 

origin, ( ) 0e t   asymptotically as .t    

Formally, we can summarize the requirements as follows. 

State Feedback Regulator Problem [2]:  
Find, if possible, a state feedback control law ( , )u x   

such that  
(OR1) [Internal Stability] The dynamics 

               ( ) ( ) ( ,0)x f x g x x   

    is locally exponentially stable at 0x  . 

(OR2) [Output Regulation] There exists a neighbourhood 
U X W   of ( , ) (0,0)x    such that for each 

initial condition ( (0), (0))x U  , the solution 

( ( ), ( ))x t t  of  (4) satisfies  

          lim ( ( )) ( ( )) 0.
t

h x t q t


   ■ 

Byrnes and Isidori [2] have completely solved this problem 
under the following assumptions: 

(H1) The exosystem dynamics is neutrally stable at 
0  , i.e. the system is Lyapunov stable in both 

forward and backward time at 0  . 

(H2) The pair ( ( ), ( ))f x g x  has a stabilizable linear 

approximation at 0x  , i.e. if  

           
0x

f
A

x 

    
   and   

0x

g
B

x 

    
, 

       then ( , )A B  is stabilizable, which means that we can  

       find a gain matrix K  so that A BK  is Hurwitz. ■ 

Next, we recall the solution of the output regulation 
problem derived by Byrnes and Isidori [2].  

Theorem 1. [2] Under the hypotheses (H1)-(H2), the state 
feedback regulator problem is solvable if, and only if, there 

exist 1C  mappings ( )x    with (0) 0   and 

( )u    with (0) 0  , both defined in a neighbourhood 
0W W  of 0   such that the following equations (called 

the Byrnes-Isidori regulator equations) are satisfied: 

   (1) 
     

 

( ) ( ) ( )

                  ( )

s f g

p

       


  


  

  

   (2) ( ( )) ( ) 0h q    . 

 When the Byrnes-Isidori regulator equations (1) and (2) are 
satisfied, a control law solving the state feedback regulator 
problem is given by 
                      ( ) ( ( ))u K x       

where K  is any gain matrix such that A BK  is Hurwitz. ■ 

III. OUTPUT REGULATION OF THE ARNEODO SYSTEM 

The Arneodo chaotic system ([14], 1981) is one of the 
paradigms of the three dimensional chaotic systems and is 
described by the dynamics 

       

1 2

2 3

2
3 1 2 3 1

x x

x x

x ax bx x x u




    





                             (7) 

where the parameters a and b are positive real constants and 
u is the controller to be designed. 
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The unforced Arneodo chaotic system (i.e. Eq. (7) with 
0)u   undergoes a chaotic behaviour when 7.5a  and 

3.8,b  which is illustrated in Figure 1. 

This paper considers two cases of output regulation for the 
Arneodo chaotic system, viz. 

(A) Tracking of constant reference signals; 

(B) Tracking of periodic reference signals. 

 
Figure 1. Chaotic Portrait of Unforced Arneodo System 

A. Tracking of Constant Reference Signals 

In this case, it is assumed that the exosystem is given by 
the scalar dynamics 

              0                                                         (8) 

It is important to observe in this case that the exosystem 
given by (8) is neutrally stable. Thus, the assumption (H1) of 
Theorem 1 holds. 

Linearization of the dynamics of the Arneodo system (7) at 
0x  yields the system matrices 

   

0 1 0

0 0 1

1

A

a b

 
   
   

      and   

0

0 .

1

B

 
   
  

 

Using Kalman’s rank test for controllability [15, p.738], it 
can be easily shown that the pair ( , )A B  is controllable. Since 

the linearized system is in Bush canonical form, it is easy to 
see that the feedback gain matrix 

              1 2 3   K k k k  

will render the matrix A BK Hurwitz if and only if the 
following inequalities are satisfied: 

1 2 3 3 2 1, , 1, (1 )( ) ( ) 0.k a k b k k b k k a            (9) 

(This follows simply by applying Routh’s stability criterion 
[15, p.234] to the characteristic polynomial of .)A BK  

It is assumed that the gain matrix K satisfies the 
inequalities (9) so that the hypothesis (H2) of Theorem 1 also 
holds. 

A.1 Constant Tracking Problem for 1x  

Here, the tracking problem for Arneodo chaotic system is 
given by 

           

1 2

2 3

2
3 1 2 3 1

1

0

x x

x x

x ax bx x x u

e x 






    

 






                         (10) 

The Byrnes-Isidori regulator equations for the system (10) 
are given by Theorem 1 as 

       

2

3

2

1 2 3 1

1

0 ( )

0 ( )

0 ( ) ( ) ( ) ( ) ( )

0 ( )

a b

 

 

         

  





    

 

      (11) 

Solving the Byrnes-Isidori regulator equations (11), the 
unique solution is obtained as 

     

1

2

3

2

( )

( ) 0

( ) 0

( ) a

  
 
 

   





  

                                                 (12) 

Using Theorem 1 and the solution (12) of the Byrnes-
Isidori regulator equations (11), the following result is 
obtained which gives a state feedback control law solving the 
output regulation problem for (10). 

Theorem 2. A state feedback control law solving the output 
regulation problem for (10) is given by 

        2
1 1 2 2 3 3( )u a k x k x k x                     

where 1 2,k k and 3k satisfy the inequalities given in (9).      

A.2 Constant Tracking Problem for 2x  

Here, the tracking problem for Arneodo chaotic system is 
given by 
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1 2

2 3

2
3 1 2 3 1

2

0

x x

x x

x ax bx x x u

e x 






    


 






                           (13) 

The Byrnes-Isidori regulator equations for the system (13) 
are given by Theorem 1 as 

       

2

3

2

1 2 3 1

2

0 ( )

0 ( )

0 ( ) ( ) ( ) ( ) ( )

0 ( )

a b

 

 

         

  





    

 

      (14) 

Since the first and last equations of (14) contradict each 
other, the regulator equations (14) are not solvable. Thus, by 
Theorem 1, it follows that the output regulation problem is not 
solvable for this case. 

A.3 Constant Tracking Problem for 3x  

Here, the tracking problem for Arneodo chaotic system is 
given by 

     

1 2

2 3

2
3 1 2 3 1

3

0

x x

x x

x ax bx x x u

e x 






    


 






                                (15) 

The Byrnes-Isidori regulator equations for the system (15) 
are given by Theorem 1 as 

       

2

3

2

1 2 3 1

3

0 ( )

0 ( )

0 ( ) ( ) ( ) ( ) ( )

0 ( )

a b

 

 

         

  





    

 

      (16) 

 Since the second and last equations of (16) contradict each 
other, the regulator equations (16) are not solvable. Thus, by 
Theorem 1, it follows that the output regulation problem is not 
solvable for this case. 

B. Tracking of Periodic Reference Signals 

In this case, it is assumed that the exosystem is given by 
the two-dimensional dynamics 

  
1 2

2 1

 
 


 




                                                              (17) 

It is important to observe in this case that the exosystem 
given by (17) is neutrally stable. Thus, the assumption (H1) of 
Theorem 1 holds. 

As noted earlier, the system linearization pair ( , )A B is 

controllable. It is assumed that the gain matrix K satisfies the 
inequalities (9) so that the hypothesis (H2) of Theorem 1 also 
holds. 

 

B.1 Periodic Tracking Problem for 1x  

Here, the tracking problem for the Arneodo chaotic system 
is given by 

  

1 2

2 3

2
3 1 2 3 1

1 2

2 1

1 1

x x

x x

x ax bx x x u

e x

 

 






    

 

 









                                   (18) 

The Byrnes-Isidori regulator equations for the system (18) 
are given by Theorem 1 as 

21 1
2

11 2

22 2
3

11 2

23 3
1 2 3

11 2

2

1

( )

( )

( ) ( ) ( )

                                          ( ) ( )

                     

a b

 
 

 

 
 

 

 
     

 

   

 


 

 


 

 
  

 

 

   
   

  
   
   

  
   
   

  

1 1         0 ( )   

     (19) 

Solving the Byrnes-Isidori regulator equations (19), the 
unique solution is obtained as 

      

1 1

2 2

2
3 1

2 2 2
1 1 2

( )

( )

( )

( ) ( ) ( )a b

  
  

   

       




 

     

         (20) 

Using Theorem 1 and the solution (20) of the Byrnes-
Isidori regulator equations (19), the following result is 
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obtained which gives a state feedback control law solving the 
output regulation problem for (18). 

Theorem 3. A state feedback control law solving the output 
regulation problem for (19) is given by 

 2
1 1 1 2 2 2 3 3 1( ) ( ) ( ) ( )u k x k x k x             

where ( )  is given by (20), and 1 2,  k k and 3k satisfy the 

inequalities given in (9).                                                       

B.2 Periodic Tracking Problem for 2x  

Here, the tracking problem for the Arneodo chaotic system 
is given by 

  

1 2

2 3

2
3 1 2 3 1

1 2

2 1

2 1

x x

x x

x ax bx x x u

e x

 

 






    


 

 









                                   (21) 

The Byrnes-Isidori regulator equations for the system (21) 
are given by Theorem 1 as 

21 1
2

11 2

22 2
3

11 2

23 3
1 2 3

11 2

2

1

( )

( )

( ) ( ) ( )

                                          ( ) ( )

                     

a b

 
 

 

 
 

 

 
     

 

   

 


 

 


 

 
  

 

 

   
   

  
   
   

  
   
   

  

2 1         0 ( )   

     (22) 

Solving the Byrnes-Isidori regulator equations (22), the 
unique solution is obtained as 

      

1
1 2

2 1

3 2

2 1 2 2
1 2 2

( )

( )

( )

( ) ( ) ( )b a

   
  
  

        



 

 



    

         (23) 

Using Theorem 1 and the solution (23) of the Byrnes-
Isidori regulator equations (22), the following result is 
obtained which gives a state feedback control law solving the 
output regulation problem for (21). 

Theorem 4. A state feedback control law solving the output 
regulation problem for (19) is given by 

1
1 1 2 2 2 1 3 3 2( ) ( ) ( ) ( )u k x k x k x             

where ( )  is given by (23), and 1 2,  k k and 3k satisfy the 

inequalities given in (9).                                                       

B.3 Periodic Tracking Problem for 3x  

Here, the tracking problem for the Arneodo chaotic system 
is given by 

  

1 2

2 3

2
3 1 2 3 1

1 2

2 1

3 1

x x

x x

x ax bx x x u

e x

 

 






    


 

 









                                   (24) 

The Byrnes-Isidori regulator equations for the system (24) 
are given by Theorem 1 as 

21 1
2

11 2

22 2
3

11 2

23 3
1 2 3

11 2

2

1

( )

( )

( ) ( ) ( )

                                          ( ) ( )

                     

a b

 
 

 

 
 

 

 
     

 

   

 


 

 


 

 
  

 

 

   
   

  
   
   

  
   
   

  

3 1         0 ( )   

     (25) 

Solving the Byrnes-Isidori regulator equations (25), the 
unique solution is obtained as 

     

2
1 1

1
2 2

3 1

2 1 4 2
1 2 1

( )

( )

( )

( ) (1 ) ( )a b

   

   
  

        





  

 

 


    

        (26) 

Using Theorem 1 and the solution (26) of the Byrnes-
Isidori regulator equations (25), the following result is 
obtained which gives a state feedback control law solving the 
output regulation problem for (24). 

Theorem 5. A state feedback control law solving the output 
regulation problem for (19) is given by 

2 1
1 1 1 2 2 2 3 3 1( ) ( ) ( ) ( )u k x k x k x               
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where ( )  is given by (26), and 1 2,  k k and 3k satisfy the 

inequalities given in (9).                                                       

IV. NUMERICAL RESULTS 

For simulation, the parameters are chosen as in the chaotic 
case of Arneodo’s system (7), viz. 7.5a  and 3.8.b    

For achieving internal stability of the state feedback 
regulator problem, a gain matrix K must be chosen so that the 
inequalities given in (9) are satisfied. The gain matrix K  is 

chosen so that A BK has stable eigenvalues  5, 5, 5 .    

A simple calculation using MATLAB yields 

   1 2 3 132.5 71.2 14 .K k k k      

In the periodic tracking output regulation problem, the 
value 1  is taken in the exosystem dynamics (17). For the 
simulations, the fourth order Runge-Kutta method is used to 
solve the system using MATLAB. The simulation results are 
discussed as follows. 

A. Tracking of Constant Reference Signals 

A.1 Constant Tracking Problem for 1x  

Here, the initial conditions are taken as 

 1 2 3(0) 8, (0) 5,  (0) 9x x x    and 2.   

The simulation graph is depicted in Figure 2 from which it 

is clear that the state trajectory 1( )x t  tracks the constant 

reference signal 2  in about 2 seconds. 

 

Figure 2. Constant Tracking Problem for 1x  

 

A.2 Constant Tracking Problem for 2x  

As pointed out in Section III, the output regulation problem 
is not solvable for this case, because Byrnes-Isidori regulator 
equations (14) do not admit any solution. 

A.3 Constant Tracking Problem for 3x  

As pointed out in Section III, the output regulation problem 
is not solvable for this case, because Byrnes-Isidori regulator 
equations (16) do not admit any solution. 

B. Tracking of Constant Reference Signals 

Here, it is assumed that 1.   

 

B.1 Periodic Tracking Problem for 1x  

Here, the initial conditions are taken as 

 1 2 3 1 2(0) 5, (0) 3, (0) 4, (0) 0, (0) 1.x x x         

The simulation graph for this case is depicted in Figure 3 
from which it is clear that the state trajectory 1( )x t tracks the 

periodic reference signal 1( ) sint t  in about 2 seconds. 

 

Figure 3. Periodic Tracking Problem for 1x  

B.2  Periodic Tracking Problem for 2x  

Here, the initial conditions are taken as 

 1 2 3 1 2(0) 6, (0) 5, (0) 4, (0) 0, (0) 1.x x x         

The simulation graph for this case is depicted in Figure 4 
from which it is clear that the state trajectory 2 ( )x t tracks the 

periodic reference signal 1( ) sint t  in about 2 seconds. 
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Figure 4. Periodic Tracking Problem for 2x  

B.3 Periodic Tracking Problem for 3x  

Here, the initial conditions are taken as 

 1 2 3 1 2(0) 6, (0) 4, (0) 3, (0) 0, (0) 1.x x x         

The simulation graph for this case is depicted in Figure 5 

from which it is clear that the state trajectory 3( )x t tracks the 

periodic reference signal 1( ) sint t  in about 2 seconds. 

 

Figure 5. Periodic Tracking Problem for 3x  

V.  CONCLUSIONS 

The output regulation problem for the Arneodo chaotic 
system (1981) has been studied in detail and solved in this 
paper. Explicitly, using the Byrnes-Isidori regulator equations 
(1990), new state feedback control laws have been derived for 
regulating the output of Arneodo chaotic system. As tracking 
reference signals, constant input and sinusoidal reference 
signals have been considered and in each case, feedback 

control laws regulating the output of the Arneodo chaotic 
system have been derived. As tracking reference signals, 
constant and periodic reference signals have been considered 
and in each case, feedback control laws regulating the output of 
the Arneodo chaotic system have been derived. Numerical 
simulations are shown to verify the results. 
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