
M. Aqeel Iqbal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1572-1579

Abstract – The reconfigurable computing is intended to fill
the gap between the non-flexible but high speed application
specific integrated circuits based technology and the most-
flexible but slow speed general purpose processor based
technology. The main idea behind the reconfigurable
computing technology is to tightly glue the performance and
flexibility aspects of the both existing technologies into one
grain. This kind of tight coupling of both computing
technologies on a single silicon chip requires new
technological advancement in area of software engineering,
computer science and computer engineering. This research
paper is intended to present a comprehensive survey about
the existing reconfigurable computing systems and their
software and hardware level requirements for further
enhancement of the existing technology barrier. Many new
aspects of existing systems are required to be boosted up at
the software and hardware level of such kind of advanced
computing platforms to support the next generation
computing demands.

Keywords - Configuration Streams, FPGA Technology
Reconfigurable Computing, Reconfigurable Devices,
Reconfigurable Functional Units

I. BRIEF INTRODUCTION TO RECONFIGURABLE

COMPUTING TECHNOLOGY

The General Purpose Processors (GPPs) based
computers have served us well over the past few decades.
Their broad band applicability for commercial as well as
scientific purpose has led to a wide spread use and volume
commoditization. Flexibility of dynamic behavior through
instruction set architecture of the underlying processor
allows a single computing machine to perform a multitude
of functions and can be deployed into applications un-
conceived at the time the device was programmed and
manufactured. This kind of architectural flexibility
inherent in general-purpose processor based machines was
one of the key components of the computer revolution
being accelerated since last few decades. Till now, the
programmable micro-processors have been basic driving
engine behind the general-purpose computing machines.
In such a kind of programmable processor based machines
the micro-processors mostly focus on the heavy reuse of a
single or a small set of underlying functional units being
fabricated on the same chip. With the birth of the Very
Large Scale Integration (VLSI) technology, a complete
powerful micro-processor can be integrated onto a single
integrated circuit or on a single silicon chip in the form of
a silicon wafer and the technology is still continuing to

provide a growing amount of transistor on the single
wafer. The John Moore had predicted few decades ago
that the chip density is doubling after every 18 to 24
months. The Intel Corporation has already followed this
prediction quite religiously up to now as shown in Fig. 1.

Since the last few decades, the dramatic growth in the

technology has led us with requirements of our appetite
and need for computing powers to grow faster. Despite of
all this fact that processors performance steadily
increases, we often find it necessary to prop up these
general-purpose processor based computing devices with
specialized processing units, like dedicated multipliers to
perform the convolution operation, generally in the form
of specialized co-processors or ASICs. Consequently, the
computers today exhibit an increasing disparity between
the general-purpose processing core and its specialized
ASICs based units. High performance systems are built
from specialized ASICs. Even today’s high-end
workstations dedicate more active silicon to specialized
processing units than to more general-purpose computing
units. The general-purpose micro-processor will only be a
fractional part of next generation multi-media based
personal computers. As this trend continues, the well
known term of “General Purpose Computers” will become
a misnomer for modern computer technology. Relatively
little of the computing machine power in tomorrow’s
computers can be efficiently deployed to solve any
problem.

Emerging Requirements Of Reconfigurable Computing
Systems For Performance Enhancement

1M. Aqeel Iqbal, 2Asia Khannum, 2Saleem Iqbal and 2M. Asif

1, 2Department of CE, College of E & ME, NUST, Pakistan

1[DSE, Faculty of E & IT, FUIEMS, Pakistan]

Fig. 1 Increasing Chip densities

ISSN : 0975-3397 1572

M. Aqeel Iqbal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1572-1579

There are two main features associated with general-

purpose processor based computers which clearly
distinguish them from those systems which are based on
the ASICs. The way these aspects are handled plays a
vital role in distinguishing the various general-purpose
computing architectures.

A. Bus Inter-connection System:

In general-purpose computing machines, the internal
data-paths between computational units or functional units
cannot be hardwired. Different tasks will require different
patterns of interconnection system between the functional
units. Within a task individual computational routines and
operations may also require different interconnectivity of
these functional units. General-purpose computing
machines must be able to provide the ability to direct the
data flows between the functional units. In the memory
mapped systems, the memory locations are used to
perform this routing function by loading the routing path
information from it. If in the case of coarse grain
computing more functional units may operate together on
a single task or even on a set of tasks, the spatial
switching is required to move data-streams among these
functional units and the reserved memory space. The
flexibility and granularity of this interconnection is one of
the major factors which determine the yielded capacity on
an active application.

B. Software Level Instructions:

Since the general-purpose computing devices must
provide different operations over time space, either within
a computational task or between computational tasks, they
require additional input streams and new instructions
which guide the system how to behave at any point in
time space during the computation. Each general-purpose
processing element of the system needs one instruction to
guide it about what operation is to perform and where is to
find its data input-streams. The handling of this kind of
additional input is one of the main distinguishing features
between different kinds of the general-purpose computing
architectures. When the functional diversity is huge and
the throughput of the required task is much low then it
would not be efficient to build up the entire application
data-flow spatially in the computing device. Instead of it
the active applications are realized by sharing and reusing
the limited hardware resources in time space and hence
only replicating the less expensive memory space for
instruction and intermediate data storage system.

General-purpose computing devices are specifically

intended to be used for those cases, where economically
we cannot or we need not to dedicate the sufficient spatial
resources to support an entire computational task within
an application or where we do not exactly know much
about the required task or tasks prior to the process of
circuit fabrication to hardwire the functionality of the
expected algorithm. The key ideas behind the general-
purpose processor based computing are the defer binding
of functionality until the computing device is finally
employed and to exploit the temporal reuse of the limited

functional capacity. Delayed binding and temporal
reusability work closely together and occur at many scales
to provide the characteristics which we now expect from
general-purpose processor based computing devices. We
are quite accustomed to exploiting these properties so that
unique hardware is not required for every task or a set of
tasks or even to an application.

This basic theme recurs at the many different levels in our
conventional computing systems as described under.

A. Recurrence at market level – Rather than dedicating a
computing machine design to a single task or to an
application or even to a set of applications, the design
effort may be utilized for many different applications.

B. Recurrence at system level – Rather than dedicating
an expensive computing machine to a single application,
the computing machine may execute different applications
at different times by running different sets of instructions
periodically or non-periodically in time space.

C. Recurrence at application level – Rather than
spending much of the preciously available resources to
build a separate computational unit for each different kind
of the function required, the central resources may be
employed to perform these functions in sequence with an
additional input in the form of an instruction which is
telling it how to behave at each point in time space.

D. Recurrence at algorithm level – Rather than fixing the
algorithms which an application uses, an existing general-
purpose computing machine can be reprogrammed for as
many times as required with new techniques and
algorithms as they are developed.

E. Recurrence at user level – Rather than fixing the
functionality of the machine at the supplier side, the
instruction stream specifies the functionality, allowing the
end user to use the machine as best as it suits his
requirements. Computing machines may be used for
functions which the original designers even did not
conceive. Furthermore the computing machine behavior
may be enhanced or upgraded in the working field without
incurring any hardware.

The emerging technological needs have indicated

many problems with the existing computing platforms like
general purpose processor based machines. The problems
indicated so far are not concerned with the notion of
general-purpose computing, but are most likely concerned
with the implementation techniques being adopted for
revolutionarized technology. Since the last few decades,
both the industry and academia have focused largely on
the task of building the highest performance processors,
instead of trying to build the highest performance general-
purpose computing machines or computing engine. As the
silicon wafer technology continues to increase far beyond
the space required to implement a competent micro-
processor, it is time to reconsider or re-evaluate the

ISSN : 0975-3397 1573

M. Aqeel Iqbal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1572-1579

general-purpose computing architectures in the light of
shifting resource availability and cost. In particular, an
interesting space has opened between the extreme edges
of general-purpose processors based computing and
specialized ASICs based computing. This design space is
the birth of the new domain of computing now known as
the reconfigurable computing [1]. Consider the Fig. 2
showing the characteristics of ASICs, GPPs and RC based
system characteristics.

II. PROBLEM DESCRIPTION AND SCOPE

The reconfigurable computing offers all the benefits of

general-purpose processor based computing with much
greater performance gain than that of provided by the
traditional micro-processors. This space is most easily
seen by looking at the binding time for device function.
Application Specific Integrated Circuits (ASICs) bind the
functionality of the required computation to active silicon
at fabrication time making the silicon useful only for the
designated function. On the other hand the micro-
processors bind the functionality to active silicon only for
the duration of a single cycle, a restrictive model which
limits the amount the micro-processor can accomplish in a
single machine cycle while requiring considerable on-chip
resources to hold and distribute the instructions.
Reconfigurable computing systems/machines allow the
functionality to be bounded at a range of intervals within
the final system depending on the needs of the running
application program. Consider the Fig. 3 which shows the
different software and hardware layers in reconfigurable
computing systems and Fig. 4 which shows the internal
design elements of a typical FPGA device.

This flexibility found in the binding time allows the

reconfigurable computing devices to make better use of
the limited device resources including silicon area as well
as the instruction distribution within the active instruction
set window [2]. More precisely, the reconfigurable
computing architectures offer the following main
computing characteristics [3], [4].

1. More application-specific architectural adaptation than

conventional micro-processors.
2. Greater computational density than the conventional

micro-processors.
3. More efficient and broader reuse of silicon area than in

the ASICs.
4. Better opportunities to ride hardware and algorithmic

technology curves than ASICs.
5. Better match to current technology costs than ASICs

or micro-processors.

In the domain of computing, the reconfigurable

computing systems architecture/design is a very much new
paradigm with a lot of benefits [5]. Hence due to this reason
the most of researchers have been focusing on this area and
research work has been involved actively since last two
decades. In the beginning due to lack of the most advanced
technology of dynamic and partial configurations, the
investigators have been facing a lot of problems [6]. But
quiet recently the Xilinx’s Virtex series of FPGAs including

Fig. 2 Reconfigurable Computing Domain

Fig. 3 Reconfigurable Computing System Layers

ISSN : 0975-3397 1574

M. Aqeel Iqbal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1572-1579

the Virtex-4 platforms and Alrtera’s Stratix-II series of
FPGAs gives us a lot of computational scope in this area to
get most of benefits of reconfigurable computing systems [5],
[6].

III. REQUIREMENTS OF MODERN RECONFIGURABLE
COMPUTING SYSTEMS: A GENERAL VIEW

In the following paragraphs the major requirements and

issues of the modern reconfigurable computing systems have
been presented with short descriptions which have not been
yet solved completely.

A. Requirements for New Computing Architectures
1. New reconfigurable computing hybrid architectural

models at system level are required.
2. Pipeline based reconfigurable computing architectures

are required.
3. Parallel processing reconfigurable computing

architectures are required
4. Multithreaded reconfigurable computing architectures are

required.
5. Emerging bit-slice technology based reconfigurable

computing architectures are required.
6. Data and control dependencies analysis required for

run-time reconfiguration.
7. Techniques for low power and high performance

reconfigurable computing architectures are required.

B. Requirements for New Memory Architectures and

Interface Designs
1. High performance embedded memory architectures for

reconfigurable systems are required.
2. High bandwidths memory communication architectures
3. Customizable local memory management units and

methodologies are required.
4. Configuration streams reusability transformations at

memory level are required for reconfigurable computing
systems.

5. Memory storage context transformations are required.
6. Memory communication interfaces for low power

applications are required.
7. Memory communication interfaces for high performance

applications are required.

C. Requirements for New Design Methodologies
1. Computing system-level modeling of dynamically

reconfigurable computing architectures is required.
2. New efficiently reconfigurable computing design

methodologies are still immature and inconsistent and
hence demanding for more elaboration and research
work.

3. New kind of advanced methods to manage the
dynamically changing hardware/software resources in
process of dynamic/run-time reconfiguration
environment are required

4. Efficient methods for seamless interface design for bus
macros are required for different operating environment

5. It is required to find metrics for generalized
reconfigurable computing architecture characterizations.

6. Configuration overheads are becoming a new kind of
system bottleneck and hence reducing of these

configuration overheads in reconfiguration process are
required.

7. At design level, the new kind of very powerful CAD
tools are required to provide more accurate and specific
automatic routing and partitioning

D. Requirements for New Software Tools
1. New software development tools and techniques for

reconfigurable computing systems are required
2. Emerging automated synthesizer and constraint management

software tools for a given application are required.
3. Logic design mapping onto the high density field

programmable gate arrays and reconfigurable functional units
(RFUs) for partial reconfiguration and dynamic/run-time
reconfiguration.

4. Automated run-time reconfiguration temporal partitioning for
reconfigurable embedded systems for real-time processing are
required

5. New methodologies and architectures are required for
advanced hardware/software co-design partitioning.

E. Requirements for Modern Techniques and

Algorithms for CAD Tools
1. Fast and optimized routing and placement algorithms and

techniques for new FPGAs are required.
2. Hardware and software level partitioning and co-design

approaches are required.
3. Mapping algorithms are required for mapping the RTL

design library functions on reconfigurable logic unit in
run-time reconfigurable architectures.

4. New kind of algorithms and methods for the effective
utilization of existing FPGA resources are required.

5. Effective methods are required for the reconfiguration of
multiprocessor environments.

6. Design of an advanced operating system is required for a
heterogeneous reconfigurable computing system-on-chip
technology.

Fig. 4 Basic FPGA Internal Architecture

ISSN : 0975-3397 1575

M. Aqeel Iqbal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1572-1579

IV. REQUIRMENTS OF RECONFIGURABLE SYSTEMS

AT APPLICATION LAYER LEVEL

Reconfigurable computing systems are now fully
capable of providing the execution parallelism at many
different levels from intra-operation level parallelism to
task level parallelism [7]. In this regard it has been
observed that it would be ideal case if high level
programming languages and automatic compilation tools
could generally compile, profile, partition and parallelize
existing code onto reconfigurable computing systems. It
would be desirable to expression level computational
algorithms and applications in a high level language and
use the compiler to automatically detect computational-
intensive segments of code and accordingly translate them
into customized hardware level instructions and hence
leaving inherently sequential or infrequently executed
piece of code in software [8].

However, the reality is much different than the

expectations arising from the inspiration of the
reconfigurable computing technology. The research
projects have been attempting to realize this gain but the
software tools being available now a days and in the near
future are requiring a very comprehensive and in depth
understanding of reconfigurable computing systems
strengths and weaknesses [8]. A considerable manual
effort is required to partition the underlying code and
familiarity with hardware level design to map the code
segments to reconfigurable computing logic.

A. Programming Language Level Requirements

Programming languages for programmable general
purpose processors are mostly algorithmic in their nature,
building on the basic Turing machine formalism of
instruction fetch, decode and execute cycle of a sequential
stream of instructions and their relevant data that read and
write memory. In contrast the software mapping
algorithms/computation at application layer level to
reconfigurable the hardware logic entails the low level
fabrications of arbitrary logic circuits, exposing the
maximal available amount of parallelism being consistent
with hardware resource constraints.

For traditional hardware design, especially for the
design of those circuits that must interface to external I/O
devices and meet stringent timing constraints of the
underlying hardware resource, it is desirable to use tools
that mirror an abstraction of the underlying hardware
resources. Hardware modules such as logical shift
registers, logic comparators, multiplexers, binary adders
and other functional units are convenient building blocks
that the designer can combine, either graphically or
through textual type of commands, so that to create a
hierarchical, spatially-parallel hardware level circuit.
Software tools are required to simulate the module
interactions at the clock cycle level, as are software tools
to control and analyze the automatic mapping, placement
and logic routing of the modules onto the underlying
FPGA device/fabric.

In contrast, a reconfigurable computing problem
which is required to map it onto FPGA hardware is
initially expressed as a set of sequential algorithmic
instructions. There are a large number of different ways
that the algorithm can be partitioned between hardware
and software and even further, there are many functionally
equivalent hardware logic circuits that can be generated
from these algorithms [9]. Thus the search space in which
to optimize partitioning options, the logic area, the
frequency of computation and throughput is very large.
Since the vast majority of FPGA based applications fall in
the domain of traditional hardware logic design, so the
greatest option and basic capability in programming
languages and the underlying compilers is skewed toward
hardware description languages, schematic layout editors,
hardware circuit simulation tools and the synthesis
process.

Most of these Computer Aided Design (CAD) tools

are very much expensive and are requiring use of high
performance workstation platforms. At the lowest level of
design, the designer may direct the functionality and
interconnection of hardware logic blocks onto the FPGA
device and hence creating dense chip-specific designs that
optimize the features of the particular chip being targeted.
Intellectual Property (IP) blocks of computing systems are
designed at this level and often are provided by the
different chip vendors as the optimized building blocks
for higher level designs. The next level of abstraction is to
combine intellectual property blocks with application
specific logic like in ASICs. This kind of methodology is
called the structural design. At the next level of
abstraction, Register-Transfer Level (RTL), registers,
function modules, control structure, and timing are all
specified by the designer. Finally the algorithmic and
behavioral languages available are providing high level
functional descriptions of computation. Consider Fig. 5
which shows the CAD tools development process for
reconfigurable computing devices like FPGAs.

B. Compilation Tools Level Requirements

Application level program compilation for
reconfigurable computing systems is considerably much
more difficult than the compilation for conventional
programmable general purpose processors. With the
conventional programmable processors, the instruction set
architectures (ISA) is already specified or given. The
problem is to map an abstraction of the instruction set
level as represented by a high level programming
language onto a concrete instruction set level. With
superscalar computing architectures particularly, much of
the optimization occurs at run time of the application
program in the micro-architecture that implements an
underlying ISA and hence in this way simplifying the job
of the compiler tool.

In contrast, the field programmable gate array (FPGA)

has no instruction set architecture. The task of the
algorithmic compiler of the application layer is to devise a
micro-architecture being customized to the specific

ISSN : 0975-3397 1576

M. Aqeel Iqbal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1572-1579

application, including data-paths, system memory
hierarchy, Input/output and the sequencer in order to
control the sequence of data-path operations, system
memory access and Input/output operations. From the
data types used and the operations within a program, the
compiler is supposed to generate the functional units to
execute the primitive operations. More often there is a
huge sized module library from which it is required to
select function units.

Given the array structures and other kind of required

variables in a high level language program, the underlying
compiler must be able to decide where each variable
resides. The reconfigurable computing systems include a
complex memory hierarchy ranging from several orders of
magnitude in size and operational latency, making the
trades-off space very large for designers. Once variables
have been assigned memory locations, the compiler must
generate hardware to read and write memory to/from on-
chip microprocessor registers and logical and arithmetic
function units.

High speed I/O such as a data stream from an analog-

to-digital converter (A/D) imposes the hard real time
constraints on the design. The combination of these
system level constraints and options makes the compiling
algorithmic languages of reconfigurable computing
systems, a very difficult multi-objective combinatorial
optimization problem. Equally difficult tasks are required
for register transfer level synthesis of logic gates, mapping
gates onto configurable logic blocks, placing virtual logic
blocks to physical resource, and routing among the logic
blocks. Consider the Fig. 5 which shows the major steps
involved in the design and programming of a
reconfigurable system.

C. Application Debugging Level Requirements

The software tools and computing systems which have
been available in past have demonstrated about what is
possible for debugging the reconfigurable computing
applications and what can be improved further in this
regard, but despite of all these advancements, the most
advanced tools available today for reconfigurable
computing systems debugging tend to be trial and error,
conventional logic analyzers, and tools like Identify,
SignalTap and ChipScope. Although each of these
software tools can be very useful in its own perspective,
they illustrate the lack of real debugging support in most
of the reconfigurable computing systems. This parameter
has a significant effect on the productivity for developing
validated and reliable complex reconfigurable computing
applications.

One of the reasons for this is that many of such type of
tools treat the development of reconfigurable computing
applications for FPGAs and similar devices to be
essentially the same way as the development of
application specific integrated circuits (ASICs) hardware.
However, the two development cycles are quite different.
In the case of ASICs, enormous amounts of time spaces
are required to correctly simulate the designs because it is
extremely costly to fix the problems with the hardware
modules once it has been fabricated. This kind of negative
economic factor does not exist with reconfigurable
computing systems since the hardware is often available
for use and the cost of dynamically changing the design at
run time is comparatively small. Of course, with design
recompilations taking hours for very large designs,
simulation is still important for reconfigurable computing
application validation. On the other hand, the simulation
of thousands and even millions of cycles can take as much
time as a day or more for large complicated designs. So in
this regard the recompilation cycle for hardware is not
always unreasonable when justifying debugging using the
actual hardware.

Another most difficult aspect is the economical factor
for reconfigurable computing debugging systems. Unlike
the developers of conventional software debuggers that
can be retargeted to many systems somewhat easily due to
the fact that the target microprocessor and the related
system is fixed, the developers of high level as well as
low level debuggers for reconfigurable computing
applications are faced with a difficulty of supporting
considerably smaller system volumes and the costs of
developing the debugging support for each different
reconfigurable computing system can be quite huge. In
order to help this critical situation, some standardization
of debugging support across reconfigurable computing
systems might be able to encourage the third-party
debugging tools [9], [10]. Furthermore in order to
generate the information needed to support the hardware
level debugging activity using commercial CAD tools
would also take the willingness and concerted effort by
RTL synthesis, FPGA and reconfigurable computing
systems development companies. As reconfigurable
computing becomes more and more common, hopefully

Fig. 5 Reconfigurable system Design Flow

ISSN : 0975-3397 1577

M. Aqeel Iqbal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1572-1579

these technical and non-technical challenges can be
addressed so that the better debugging support can be
achieved for reconfigurable computing applications.

V. OPERATING SYSTEM LEVEL REQUIRMENTS OF
RECONFIGURABLE SYSTEMS

Operating Systems for reconfigurable computing

systems will require a large number of different
abstractions as in a traditional operating system for
traditional computing machines. These abstractions may
include the items such as a relocatable core library which
will be responsible for the interface between each of the
cores and application architecture. Such kinds of
abstractions are also needed for detailing the procedures
of how to communicate between the hardware level
applications and the system level operating system. The
hardware-to-hardware level abstractions defining how
different application cores are required with each other
and system input/output. A detailed description of each of
them is given below.

A. Requirements for Relocatable Core Library

It has been observed that the pre-placed and pre-routed
software cores will need to have a standard interface for
their use in an underlying operating system. At the most
basic level this requirement means a standard format for
communication ports between different modules of the
hardware are required. The most prominent example of
such a type of static standard is the JBits core library
standard. Furthermore a more complex requirement is a
standard protocol for each of such available core to
interchange with other cores of the system.

B. Requirements for Application Architecture

Abstractions
Operating system is basically a general purpose

system level tool. Definitely it would be unwise and
unnecessary to commit its structure too heavily on
application layer architecture. However application-layer
architecture options impact on its performance. In the
software area of course the operating system runs on the
same architecture as the applications do and that
architecture is a narrowly defined von Neumann processor
architecture. On field programmable gate array, it is
expected that the operating system and the applications
might want to use the different internal structures. Hence
the question for the operating system designer is just what
a minimum shared structure is for these applications. For
the focus on the application architectures, it is believed
that it should be identifying items that are shared between
applications either because they must communicate with
each other using the shared resource at hardware and
software level or because the shared resource has limited
capacity such as internal RAM memory interfaces. The
whole issue of the relationship between application
architectures and the operating system performance (in
terms of average response time and throughput) and
design is still an open ended question since there have
been almost no implementations of an operating system at

all. Even it is becoming more and more worst as what has
been implemented has taken the route of being very much
closely aligned to a well defined specific architecture.

C. Requirements for Hardware/Software

Communication Abstraction
It has been observed that there will always be a need

for a standardized communication interface between
hardware cores and software processes/threads unless and
until all the applications being under execution under the
supervision of an operating system and the operating
system itself are implemented in hardware. A large
number of comparative studies being done on the nature
and needs of application layer programs and operating
systems itself and it has been expected from experiences
that it would not be very much useful or beneficial from a
performance and design complexity point of view to have
all the application functions being implemented in
hardware. The rarely used computational functions and
very complex control structures for hardware data-paths
may not be the best candidates for implementation on
hardware level.

The so far historical aspects of computing have shown

that the only published abstractions have device driver
type software with a message based socket interface to the
software applications at intermediate level. It has been
observed critically that there are significant performance
overheads (in terms of computational latency and
communicational latency) in this as compared to a socket-
less interface which may be lead to a loss of performance
gain for the hardware level module. There may exist a lot
of other options like to have a method/function call
interface but it is still an open question of whether this can
be engineered with any better performance gain or not that
the socket based one. As the performance of the software
hardware interface is very much critical to the any
operating system which involves software and hardware
components, hence further investigations on this issue is
also very important for the operating system research
community.

D. Requirements for Hardware/Hardware

Communication Abstraction
Typically the hardware cores are supposed to

communicate with each other using some hardware level
channels, for performance reasons. In addition the access
of these cores to associated memory is supposed to be
done at hardware level layer. There is no dought about
that most of the application layer architectures suggested
have by necessity a notion of inter-core communication
and are very specific to the underlying architectures which
themselves are very prescriptive in nature. The only RAW
projects have been observed that have realized a compiler
that generates interconnection structures at this level. This
compilation of interfaces is viewed as a part of the
application layer as distinct from the operating system. It
has been observed that the operating system should also
have its own internal data structures for inter-application
layer communications. This observation allows us to have

ISSN : 0975-3397 1578

M. Aqeel Iqbal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1572-1579

a large number of different compilers for the same
operating system. It is a situation which is common place
in the software layer arena. If a standardized core
abstraction includes a fixed communication interface
between different modules of the underlying layer then
the inter core communication could be implemented by
abutment. Another interesting possible option for the
operating system is to have a local bus structure similar to
common computing systems/platforms and some system-
on-chip (SOC) proposals. However the locally associated
bus structures are probably a very poor option for
reconfigurable computing systems since they serialize all
communication between cores.

The internal local bus structure also unnecessarily

constrains the layout of cores on the field programmable
gate array to bus interface locations. It might seem that the
most promising area of investigation/research for
interfaces is a parameterizable communication cores that
allow the underlying operating system to be able to
generate interfaces for heterogeneous application layer
cores and thus taking advantage of the reconfigurable
nature of the underlying platform and not holding the
unduly constrain for the layout or serialize all
communications. Interfaces to fast memories being
attached directly to the field programmable gate array are
a special case of the hardware to hardware interface and
are likely to play a vital role in determining the
performance gain of the many applications that need
extensive off the chip storage. There might be the cases of
having a fixed portion of this type of interface to ensure
that this performance gain is achieved.

E. Requirements for Global Routing Abstraction

The logic routing between different hardware cores is
known as the global routing. Whilst many field
programmable gate array based platforms have
hierarchical inter routing resources and hence it would
seem to be unnecessarily very complex to have a routing
abstraction that exposed these many levels [10]. Thus a
single level of logic routing could be assumed by the
operating system and it might be left to the software tools
to optimize the routing logic using the available resources.

VI. CONCLUSION

Reconfigurable computing is becoming an important
part of research since last few decades. Reconfigurable
computing is intended to fill the gap between extremely
inflexible but very high speed application specific
integrated circuits based technology and flexible but very
slow speed programmable processors based technology. It
has been observed that currently available reconfigurable
systems have many flaws which at hardware and software
level. These flaws have stuck the increasing performance
gain of reconfigurable computing systems. There are
many emerging requirements at software and hardware
level which are best candidates for further explorations of
the existing technology. Each one of these requirements
can be investigated at multi-dimensional levels and the

currently available computing domains can be enhanced
to a state-of-art technology which will promise us a very
high performance gain for commercial as well as non-
commercial computing applications.

REFERENCES

[1]. Compton K. and Hauck S. An introduction to reconfigurable
computing. IEEE Computer, April 2000.

[2]. Grant B. Wigley and David A. Kearney “Research Issues in
Operating Systems for Reconfigurable Computing”, 2002.

[3]. K. Compton and S. Hauck, “Reconfigurable computing: a survey
of systems and software,” ACM Computing Surveys, vol. 34, no.
2, pp. 171–210, 2002.

[4]. Grant Wigley and David Kearney, “The Management of
Applications for Reconfigurable Computing using an Operating
System” 2000.

[5]. Francisco Barat, R. Lauwereins, G. Deconinck, “Reconfigurable
Instruction Set Processors from a Hardware/Software Perspective”;
IEEE Transactions on Software Engineering, Vol. 28, No.9, pp.
847–862, Sept., 2002

[6]. Kiran Bondalapati* and Viktor K. Prasanna, “Reconfigurable
computing: Architectures, models and algorithms,” CURRENT
SCIENCE, VOL. 78, NO. 7, 10 APRIL 2000.

[7]. R. Hartenstein. A decade of reconfigurable computing: a visionary
retrospective. In DATE ’01: Proceedings of the conference on
Design, automation and test in Europe, pages 642–649,
Piscataway, NJ, USA, 2001. IEEE Press.

[8]. Khaled Benkrid, “High Performance Reconfigurable Computing:
From Applications to Hardware”, IAENG International Journal of
Computer Science, 35:1, IJCS_35_1_04, 2008.

[9]. Azween Bin Abdullah, “Survivability Using Adaptive
Reconfigurable Systems”, IJCSNS International Journal of
Computer Science and Network Security, VOL.9 No.1, January
2009.

[10]. Prof. Sunil Kr. Singh, Dr. M. P. S. Bhatia, Dr. Rajni Jindal,
“Architectural Modeling for Hardware and Software in
Reconfigurable Embedded System”, International Journal of
Recent Trends in Engineering, Vol. 1, No. 1, May 2009.

AUTHORS PROFILES

M. Aqeel Iqbal

Dr. Asia Khannum

Dr. Asia Khannum Is An Assistant Professor In Collge Of E & ME,
National University Of Sciences And Technology (NUST), Pakistan.
She Did Her Phd In Computer Software Engineering From The Same
Institution.

Saleem Iqbal and M. Asif

Mr. Saleem Iqbal and M. Asif are doing PhD and M.S respectivily in
Computer Software Engineering from College of E & ME, National
University of Sciences and Technology (NUST), Pakistan.

M. Aqeel Iqbal Is An Assistant Professor
In The Department Of Software Engineering,
Faculty Of Engineering And Information
Technology, Foundation University, Institute
Of Engineering And Management Sciences,
Rawalpindi, Pakistan. As A Researcher He
Has A Deep Affiliation With The College of
E & ME, National University Of Sciences
And Technology (NUST), Rawalpindi,
Pakistan.

ISSN : 0975-3397 1579

