
R.Kavitha et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1462-1466

Test Case Prioritization for Regression Testing
based on Severity of Fault

 R. Kavitha
Assistant Professor/CSE

Velammal College of Engineering and Technology
Madurai, Tamilnadu, India

 Dr. N. Sureshkumar
Principal

Velammal College of Engineering and Technology
Madurai, Tamilnadu, India

Abstract— Regression testing is one of the most critical activities
of software development and maintenance. Whenever software is
modified, a set of test cases are run and the comparison of new
outputs is done with the older one to avoid unwanted changes. If
the new output and old output match it implies that the
modifications made in one part of the software don’t affect the
remaining software. It is impractical to re-execute every test case
for a program if changes occur. The problem of regression test
case selection can be solved by prioritizing the test cases.
Regression test prioritization techniques reorder the execution of
a test suit in an attempt to ensure that faults are revealed at the
earlier stage of the testing process. Test case prioritization
techniques schedule test cases for execution so that those with
higher priority, according to some criterion are executed earlier
than those with lower priority to meet some performance goal. In
this paper an algorithm is proposed to prioritize test cases based
on rate of fault detection and fault impact. The proposed
algorithm identifies the severe fault at earlier stage of the testing
process and the effectiveness of prioritized test case and
comparison of it with unprioritized ones with the help of APFD.

Keywords- Regression Testing, Test Case, Average Percentage of
Faults Detected (APFD).

I. INTRODUCTION

Software developers often save the test suites, so that they
can reuse them, when software undergoes changes. Running
all test cases in an existing test suite can consume enormous
amount of time. For example a product that contains
approximately 20,000 lines of code running an entire test suits
requires seven weeks. Researchers have found various
algorithms to reduce the cost of regression testing and also to
increase the effectiveness of testing [1]. Dennis Jeffrey and
Neelam Gupta [2] have tested experimentally by selectively
retaining test cases during test suite reduction. In [3], [4], they
have empirically evaluated several test case filtering
techniques that are based on exercising information flows.
Call-Stack coverage technique is also used to reduce the test
suite [5].

The other way of testing is to order the test case
based on some criteria to meet some performance goal.
Testers may want to order their test cases so that those test
cases with the highest priority according to some criterion are
run first. So test case prioritization technique do not discard
test cases, they can avoid the drawback of test case
minimization techniques. The software is successful when
Quality of software is maximized, cost should be minimized
and the product should be delivered to the customer in time
[6], [7], [8].

In [9], [10], Gregg Rothermel investigated several

prioritization techniques such as total statement coverage
prioritization and additional statement coverage, to improve
the rate of fault detection. There are varieties of testing
criteria that have been discussed and the different testing
criteria are useful for identifying test cases that exercise
different structural and functional elements in a program. And
therefore the use of multiple testing criteria can be effective at
identifying test cases that are likely to expose different faults
in a program. In this paper, one new approach to prioritize the
test cases at system level for regression test cases is proposed.
This technique identifies more severe faults at an earlier stage
of the testing process. Factors proposed to design algorithm
are 1) Rate of faults detection (how quickly the faults are
identified 2) Fault Impact.

To determine the effectiveness of proposed
algorithm, we tested two projects developed in a CCSQ at
Chennai. We analyze the test cases by feeding faults, invariant
of the severity into the projects. Section 2 presents the
literature survey on coverage based test case prioritization.
Section 3 and 4 describes the new proposed prioritization
technique and case study conducted. Section 5 presents the
summary and future work.

II. RELATED WORK

This section describes the code coverage based TCP
Strategies and their benefits. Coverage based TCP done their
prioritization based on their coverage of statements [1]. For
Prioritizing statement coverage the test cases are ordered
based on the number of statements executed or covered by the

ISSN : 0975-3397 1462

R.Kavitha et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1462-1466

test case such that the test cases covering maximum number of
statements would be executed first. Some of the other
techniques are branch coverage and function coverage. In this
method test cases are prioritized based on their number of
branch or function coverage by test case respectively.

The benefits of the code coverage strategies were

measured using weighted average of the percentage of branch
covered (APBC), percentage of decision covered (APDC) and
percentage of statement covered (APSC) [1]. APBC is the rate
of coverage of blocks during testing process, APDC is a
measure of rate of coverage of decisions for a test suite and the
APSC is a measure of rate of coverage of statements during
test suite. The disadvantage of the above method is that no
importance for fault. Our aim is to give equal weightage of
rate of fault detection and also identification of severe faults at
the earlier stages of the testing process. Several case studies
demonstrate the benefits of code coverage based TCP
strategies [3,],[4]. Researchers have used various prioritization
techniques to measure APFD values and found statistically
significant results. The APFD value is a measure that shows
how quickly the faults are identified for a given test suite set.
The APFD values range from 0 to 100 and the area under the
curve by plotting percentage of fault detected against
percentage of test cases executed. The code coverage-based
TCP strategies were shown to improve the rate of fault
detection, allowing the testing team to start debugging
activities earlier in the software process and resulting in faster
software release to the customer.

 If all the faults are not equally severe, then APFD
leads misleading information. The fault impact value also has
to be considered to prioritize the test cases. In this paper,
severity value also is considered as one of the factors to
prioritize the test cases where severity value ranging from 2 to
10 to the faults.

III. PROPOSE PRIORITIZATION TECHNIQUE

 This section discusses the proposed set of
prioritization factors and the prioritization algorithm.

A. Factors to be considered for prioritization

Two factors are proposed for system level
prioritization. These two factors are discussed below, and the
reasoning of why they were chosen for prioritization technique
and their importance of software testing.

 Rate of fault detection
The average number of faults per minute by a test

case is called rate of fault detection. The rate of fault detection
of test case i have been calculated using the number of faults
detected and the time taken to find out those faults for each
test case of test suite.
RFTi = ((number of faults) / time) * 10 (1)

Every factor is converted into 1 to 10 point scale. The reason
being, earlier work [3], [9] may take long time (may be several

months or a year) depending on the size of the test suite and
how long each test case takes to run. The technique presented
in this paper implemented a new test case prioritization
technique that prioritize the test cases with the goal of giving
importance of test case which have higher value for rate of
fault detection and severity value.

 Fault Impact

Testing efficiency can be improved by focusing on the
test case that is likely to contain high number of severe faults.
So, for each fault severity value was assigned based on impact
of the fault on the product. Severity value has been assigned
based on a 10 point scale as given below.
 Very High Severe : SV of 10
 High Severe : SV of 8
 Medium Severe : SV of 6
 Less Severe : SV of 4

 Least Severe : SV of 2

Equation (2) shows that the severity value of test case i, where
t represent number of faults identified by the ith test case.

 (2)

If Max(S) is the high severity value of test case among all the
test cases then fault impact of ith test case is shown below

 (3)

B. Test Case Weightage

 Test case weight of ith test case is computed as
follows.

 (4)
Test cases are sorted for execution based on the descending
order of TCW, such that test case with highest TCW runs first.

C. Proposed Prioritization Algorithm

 The proposed Prioritization technique is presented in
an algorithmic form here under: The input of the algorithm is
test suite T, test case weightage of each test case is computed
using the equation (4) and the output of the algorithm is
prioritized test case order.
Algorithm:

1. Begin
2. Set T’ empty
3. for each test case t ε T do
4. Calculate test case weightage as

TCW = RFT + FI
5. end for

t

j

i SVS
1

 10*)(SMaxSiFIi

FIiRFTiTCWi

ISSN : 0975-3397 1463

R.Kavitha et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1462-1466

6. Sort T in descending order on the value of test case
weightage

7. Let T’ be T
8. end

IV. EXPERIMENTATION AND ANALYSIS

 The experiments were conducted on a PC with a
3GHz Intel Pentium 4 CPU and 8GB memory running the
Windows XP operating systems. Two projects were tested
using manual testing and testing tool QTP 9.5. The screen shot
for the defect view is presented in Fig.1. We injected 10 faults,
varying in severity level in each of the projects. To test the
projects, we wrote 10 test cases for system level testing for
each of the project. We have noted the time taken to find out
the faults by each test case. The Table 1 shows the number of
faults detected by each test case, the total time taken to detect
the fault and severity values of faults for each test case.

Figure 1. Defect view

Table I. Time taken to find out the fault and the severity value of first Project

Test
case /
Fault

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

F1 * *
F2 * * *
F3 * * *
F4 * *
F5 *
F6 * *
F7 * * *
F8 * *
F9 * * *
F10 * *
Number
of Faults

2 2 2 3 2 3 1 4 2 2

Time
(ms)

9 8 14 9 12 14 11 10 10 13

Severity
Value

6 6 6 10 8 10 4 20 12 6

From Proposed Technique Rate of fault detection of test cases
T1, T2….T10 respectively.

RFT1 = (2/9)*10=2.22
RFT2 = (2/8)*10=2.5
RFT3= (2/14)*10 =1.428
RFT4= (3/9)*10=3.33
RFT5= (2/12)*10=1.66
RFT6= (3/14)*10=2.142
RFT7= (1/11)*10=0.9
RFT8 = (4/10)*10=4.0
RFT9 = (2/10)*10=2.0
RFT10= (2/13)*10=1.538
From Equation (3) Fault impact of test cases T1, T2….T10
respectively.
FI1 = (6/20)*10 = 3.0
FI2 = (6/20)*10 = 3.0
FI3 = (6/20)*10 = 3.0
FI4 = (10/20)*10 = 5.0
FI5 = (8/20)*10 = 4.0
FI6 = (10/20)*10 = 5.0
FI7 = (4/20)*10 = 2.0
FI8 = (20/20)*10 = 10.0
FI9 = (12/20)*10 = 6.0
FI10 = (6/20)*10 = 3.0
From Equation (4) test case weightage of test cases T1,
T2….T10 respectively.
TCW1 = 5.22
TCW2 = 5.5
TCW3 = 4.428
TCW4 = 8.33
TCW5= 5.66
TCW6= 7.142
TCW7= 2.9
TCW8= 14.0
TCW9 = 8.0
TCW10= 4.538
Prioritize the test case according to decreasing order of their
test case weightage (TCW), so the prioritized test case order
is: T8, T4, T9, T6, T5, T2, T1, T10, T3, and T7.

A. Comparison between prioritized and non prioritized test
case

 The comparison is drawn between prioritized and non
prioritized test case, which shows that number of test cases
needed to find out all faults are less in the case of prioritized
test case compared to non prioritized test case. It can be
observed from Figure 2 that the new prioritization technique
needs only 60% of test cases to find out all the faults. But 80%
of test cases are needed to find out all the faults in the case of
non prioritization, if test cases are executed in this order: T1,
T2, T3, T4, T5, T6, T7, T8, T9, and T10.APFD is the portion of
area below the curve in Figure 2, plotting percentage of test
cases executed against percentage of faults detected. Formally,
the APFD can be computed according to equation (5).

ISSN : 0975-3397 1464

R.Kavitha et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1462-1466

nnm

FkPos
ABFD

m

k

2

1
)(

1 1

 (5)

where n is the number of test cases, m is the number of
revealed faults and pos(Fk) is the position of the first test case
revealing the fault Fk in the prioritized test case.
APFD for Prioritized test case:

10*2

1

10*10

7272116261
1

APFD

APFD = 0.70
APFD for Non Prioritized test case:

10*2

1

10*10

14148|82428
1

APFD

APFD = 0.63
 Ten random prioritization sets are generated to allow
for comparison. And the results in Table 2 shows the new
prioritization algorithm is better than randomized order. The
results of the APFD for both prioritized and randomized order
for the two projects are presented in graphical way in Fig. 2
and Fig. 3.

Project 1

Figure 2. APFD is higher for prioritized test case order that reveal most faults

early

Project 2

Figure 3. APFD is higher for prioritized test case order that reveal most faults
early

Table II. Percentage of test cases executed to detect all the faults for
prioritized and random order for Project 1

Random Test Case
order

% of test
case

executed to
detect all the

faults
7,10,5,7,3,1,6,4,9,8 100
3,10,8,6,9,1,4,7,2,5 70
1,5,3,7,10,6,2,9,4,8 100
1,4,6,5,10,2,3,7,8,9 90
9,1,10,2,5,7,4,6,3,8 100
5,1,4,10,8,9,2,3,7,6 70
10,7,5,4,3,2,9,8,6,1 90
8,1,3,2,5,9,10,4,6,7 70
3,6,4,9,10,7,8,1,5,2 70
2,10,5,3,7,6,9,8,4,1 80
3,2,10,7,1,9,6,5,8,4 90
Prioritized Order 60

V. CONCLUSION

 In this paper a new prioritization technique to
improve the rate of fault detection of severe faults for
Regression testing is proposed. Here, two factors rate of fault
detection and fault impact for prioritizing test cases are
proposed. The proposed algorithm is validated by analyzing
two sets of industrial projects. Results indicate that the
proposed technique lead to improved rate of detection of
severe faults in comparison to random ordering of test cases.
And also it is tested experimentally that the number of test
cases runs to find the entire fault is less in case of proposed
prioritization technique. The results prove that the proposed
prioritization technique is effective. In future, test case
prioritization over requirement analysis will be tried

APPENDIX A

 In order to validate the effectiveness of the proposed
technique, two VB projects of approximately 4500 LOC
tested in CCSQ, Competency Centre for Software Quality,
Chennai, India were chosen. Programs were thoroughly tested
by manual testing and using QTP tool. The proposed
prioritization algorithm was analyzed by seeding faults,
invariant of the severity. On the entire faulty programs
prioritized test cases are run and the execution of total number
of test cases to find the faults are computed. Then ten different
random orders of test cases using random number generation
in ‘C’ are generated. The test cases are executed in this
different random order of test cases and the total numbers of
test cases run to find out all the faults are detected. The results
of number of test cases executed to detect all faults in
prioritized and non prioritized test cases are compared to show
the effectiveness of the proposed test case prioritization. And
Also Average Percentage of Fault Detected is higher for
prioritized test cases.

ISSN : 0975-3397 1465

R.Kavitha et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1462-1466

REFERENCES

[1] Zheng Li, Mark Harman, and Robert M. Hierons, “Search

algorithm for Regression Test Case Prioritization,” IEEE
Transactions on Software Engineering, Vol. 33, No.4, April 2007.

[2] Dennis Jeffrey and Neelam Gupta, “Improving Fault Detection
Capability by Selectively Retaining Test Cases during Test Suite
Reduction,” IEEE Transactions on software Engineering, VOL. 33
NO.2, February 2007.

[3] Jennifer Black, Emanuel Melachrinoudis and David Kaeli, “Bi
Criteria Models for All uses Test Suite-Reduction,” 26th
International Conference on Software Engineering (ICSE’04).

[4] Wes Masri, Andy Podgurski and David Leon, “An Emprical
Studey of Test Case Filtering Techniques Based on Exercising
Information Flows,” IEEE Transactions on software Engineering,
VOL. 33, NO.7, February 2007.

[5] Scott McMaster, Atif M. Memon, “Call Stack Coverage for GUI
Test Suite Rdduction,” IEEE Transactions on software
Engineering, VOL. 34 NO.1, January/February 2008.

[6] J. Karlsson, K. Rayan , “A Cost value approach for Prioritizing
requirements,” IEEE Software Vol 14, NO 5, 1997.

[7] Maruan Khoury, “Cost Effective Regression Testing,” October 5,
2006.

[8] Alexey G. Malishevsy, Gregg Rothermel, Sebastian
Elbaum,”Modeling the Cost-Benefits Tradeoffs for Regression
Testing Techniques,” Proceedings of the International Conference
on Software Maintenance ICSM’02), 2002 IEEE.

[9] Sebastian Elbaum, Alexey G. Malishevsky and Gregg Rothermel,
“Test Case Prioritization: A Family of Emprical Studies,” IEEE
Transactions on software Engineering, VOL. 28, NO.2, February
2002.

[10] Gregg Rothermel, Roland H. Untch, Chentun Chu and Mary Jean
Harrold, “Prioritizing Test Cases for Regression Testing,” IEEE
Transactions on software Engineering, VOL. 27 NO.10, October
2001.

ISSN : 0975-3397 1466

