
P.Dinadayalan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1453-1461

Neuro Language Generator

 P. Dinadayalan
Department of Computer Science, K. M. centre for P.G.

Studies, Puducherry, India

 Gnanambigai Dinadayalan
 Department of Computer Science, Indira Gandhi Arts and

Science College, Puducherry, India.

R. Vasantha Kumari

Principal, Villanur College for Women, Puducherry, India.

Abstract - ‘Neuro Language Generator using Finite State
Machine’ is based on neural network and finite state machine.
The fundamental properties of neural network along with the
power of Turing machine prove how it can be implemented for
formal language processing. This paper elaborates the
conventional dynamical language generators, limitations of the
conventional dynamical language generators and proposes a
new architecture for formal language processing. The
conventional dynamical language generators used for neural
language generators is feedforward RNN. It expresses
dynamical language generator using finite automaton and
dynamical language generator using pushdown automaton.
Conventional dynamical generators tend to have stability
problem, incapable of network training and lack of memory. It
is proposed that the new method ‘Neuro Language Generator
using Finite State Machine’ solves most of the problems, which
the traditional methods fail to do. The approach employs finite
state technology for a RNN in the task of learning to achieve
stability in network structure. RNN architecture performs the
same computation as a Turing machine. The RNN architecture
acts as a language generator, which accepts formal language.
Neuro Language Generator is a RNN that uses feedback
connections. NLG can be used to solve more complicated
problems compared to traditional dynamical generator.

 Keywords - Artificial Neural Network ; Dynamical
Language Generators; Finite State Machine; Recurrent Neural
Network; Turing Machine

I. CONVENTIONAL DYNAMICAL LANGUAGE

GENERATORS

 As most of the work performed by researchers in
connection with neural networks, it is inferred that formal
language and computation theory concern the training of
RNN to identify neural finite-state automata and regular
language and, neural pushdown automata and context-free
language. RNN architecture is capable of performing the
same computation as a finite-state machine (FSM).

A. Neural Acceptors/Generators

 RNN may be trained to accept strings belonging to a
language and reject strings not belonging to it, by producing
suitable labels after the whole string has been processed
[1][5]. In view of the computational equivalence between
some RNN architectures and some finite-state machine
classes, it is reasonable to expect RNN to learn regular
(finite-state) languages. A set of neural acceptors (separately
or merged in a single RNN) may be used as a neural
classifier.

B. Neural Transducers/Translators

 If the output of the RNN is examined not only at the end
but also after processing each one of the symbols in the
input, then its output may be interpreted as a synchronous,
sequential transduction (translation) for the input string [5].
DTRNN may be easily trained to perform synchronous
sequential transductions and also some asynchronous
transductions.

C. Neural Predictors

 RNN may be trained to predict the next symbol of strings
in a given language. The trained RNN, after reading string
outputs a mixture of the possible successor symbols; in
certain conditions , the output of the RNN may be
interpreted as the probabilities of each of the possible
successors in the language[5]. In this last case, the RNN
may be used as a probabilistic generator of strings. When
RNN are used for grammatical inference, the following have
to be defined: learning set and learning algorithm. The
learning set may contain: strings labeled as belonging or not
to a language or as belonging to a class in a finite set of
classes (recognition/classification task); a draw of unlabeled
strings, possibly with repetitions, generated according to a
given probability distribution (prediction/generation task);
or pairs of strings (translation/transduction task). A learning
algorithm (including a suitable error function and a suitable

ISSN : 0975-3397 1453

P.Dinadayalan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1453-1461

stopping criterion) and a presentation scheme (the whole
learning set may be presented from the beginning or a
staged presentation may be devised). Section I elaborates
the conventional dynamical language generators. Section II
briefly gives the power of Turing machine. Section III
analyses the limitations of conventional dynamical language
generators. Section IV presents a new dynamical approach
‘Neuro Language Generator using Turing machine’. Section
V proposes a new architecture ‘Neuro Language Generator’.
The new architecture consists of training data, network
structure, objective function, training algorithm and output
of the proposed method. Section VI illustrates the
experimental results of Neuro Language Generators.

D. Dynamical language generators using finite state
automata

 Finite automata with RNNs are finite state machines that
consist of a finite number of states, and transition between
those states based only on the current state and an input
symbol [2][7][10][11]. When the input has all been
consumed, the machine accepts the string of inputs, based
on the final state of the machine. These machines happen to
correspond exactly with regular languages, with the set of
strings accepted by any finite automaton being a regular
language, and with every regular language having a machine
that accepts all and only strings from that language. The
class of regular languages is equivalent to the class of
languages recognized by finite automata. A finite state
transducer (FST) with neural network is a finite state
automaton, which generates both input and output
[11][12][13]. There are two finite state transducers such as
neural moore and neural mealy machine. The class of
languages generated by finite automata is known as the class
of regular languages. The Moore machine with neural
networks [6] uses only entry actions, i.e. output depends
only on the state. The output from a Moore machine is
associated with the state only. The advantage of the Moore
model is a simplification of the behaviour. Mealy machine
with neural networks is a finite state transducer that
generates an output based on its current state and input
[1][7][10][11]. This means that the state transition includes
both an input and output for each transition. In contrast, the
output of a Moore finite state machine depends only on the
machine's current state; transitions are not directly
dependent upon input.

E. Dynamical language generators using pushdown
automata

 Similar to the neural finite state automata except that it
has an available stack which is allowed to grow to arbitrary
size. The state transitions additionally specify whether to
add a symbol to the stack, or to remove a symbol from the
stack [1][2][3]. Pushdown Automata are finite-state
automatons with a stack. A stack is a data structure that can

contain any number of elements, but for which only the top
element may be accessed (hence PDAs have an infinite set
of states) but which can be only accessed in a Last-In-First-
Out (LIFO) fashion. Stack functions as the required
memory. The Finite State Control (FSC) reads inputs, one
symbol at a time. Based on the input symbol, current state
and the top symbol on the stack, FSC does some state
transitions and operations to the stack content. Stack could
be kept unchanged, or some thing could be pushed into the
stack and could be popped out of the stack. The languages
which can be recognized by PDA are precisely the context
free languages.

 As finite-state automata with neural network correspond
to regular languages, the Context-Free Languages (CFL)
have corresponding network system called pushdown
automata (PDA) [5][12][13]. Regular expressions are
generators for regular languages and Finite Automata are
generators for them. Similarly for Context-free Languages,
Context Free Grammars (CFGs) are neural generators and
Pushdown Automata (PDAs) are recognizers. The class of
context free languages is the same as the class of languages
recognized by machines called pushdown automata.
Pushdown automata are equivalent to context-free
grammars: for every context-free grammar, there exists a
pushdown automaton such that the language generated by
the grammar is identical with the language generated by the
automaton, and for every pushdown automaton there exists
a context-free grammar such that the language generated by
the automaton is identical with the language generated by
the grammar. A language L is said to be a Context-Free-
Language (CFL) if its grammar is Context-Free [5][12][13].
More precisely, it is a language whose words, sentences and
phrases are made of symbols and words from a Context-
Free-Grammar. Context-free grammars are simple enough
to allow the construction of efficient parsing algorithms
which for a given string determine whether and how it can
be generated from the grammar. Context-free grammars are
important because they are powerful enough to describe the
syntax of programming languages.

 PDAs with neural networks are better than FSAs with
neural networks. As with the regular languages, there are
many languages which are not context-free. The stack on the
PDA, while it provides infinite storage capacity, is still a
stack, and so only the last element placed on it can be
accessed at any given time. Accessing earlier elements
requires removing and thus losing the later elements, since
there is no other stack on which to place them. The PDA is
also limited in that it must consume the input characters in
the order in which they are received, and cannot access them
again, except by placing them on the stack.

ISSN : 0975-3397 1454

P.Dinadayalan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1453-1461

II. POWER OF TURING MACHINE

 The Turing machine is one of the intriguing intellectual
discoveries [4][8][9]. Turing machine is a simple and useful
abstract model of computation that is general enough to
embody any computer program. It is equivalent to power of
the most programming languages. The Turing machine is
the most powerful machine with power to emulate any of
the other machines. The Turing machine is far more
powerful than any DFA, PDA or LBA. It is similar to a
DFA or PDA [8][9]. The Turing machine takes a tape with
a string of symbols on it as an input, and can respond to a
given symbol by changing its internal state, writing a new
symbol on the tape, shifting the tape right or left to the next
symbol, or halting. It can read or write to the tape. It can
move left or right on the tape. It halts as soon as it reaches
either the special accept state or the special reject state.
Equivalent to the class of unrestricted languages is the class
of languages recognized by a Turing machine. Unrestricted
grammars are much more powerful than restricted form like
the regular and context-free grammars. It has the following
abilities.

 A Turing machine with a two-way infinite tape [8][9] is
identical to the standard model except that the tape extends
indefinitely in both directions. Since a two-way tape has no
left boundary, the input can be placed anywhere on the tape.
All other tape positions are assumed to be blank. The tape
head is initially positioned on the blank to the immediate left
of the input string.

 A multi-tape Turing machine consists of n tapes and n
independent tape heads [4][8][9] . The states and inputs of a
multi-tape machine are the same as in a standard Turing
machine. The Turing machine reads the tape
simultaneously but has only one state. A transition is
determined by the state and the symbols are scanned by each
of the tape heads. A transition in a multi-tape machine may
change the state, with a symbol on each of the tape, and
independently reposition each of the tape heads. The
repositioning consists of moving the tape head one cell to
the left or one cell to the right or leaving it at its current
position.

 A Turing machine with k-dimension is called
multidimensional Turing machine [8] [9]. The device has
the usual finite control, but the tape consists of a k-
dimensional array of cells infinite in all 2k directions, for
some fixed k. Depending on the state, symbol scanned, the
device changes state, prints a new symbol, and moves its
tape head in one of 2k directions, either positively or
negatively, along one of the k axes. Initially, the input is
along one axis, and the head is at the left end of the input.

 A k-head Turing machine has some fixed number, k, of
heads [8][9]. The heads are numbered 1 through k, and a

move of the Turing machine depends on the state and on the
symbol scanned by each head. In one move, the heads may
each move independently left, right, or remain stationary.

 An off-line Turing machine is a multi-tape Turing
machine whose input tape is read only [8][9]. Usually the
input is surrounded by end markers, ¢ on the left and $ on
the right. The Turing machine is not allowed to move the
input tape head off the region between ¢ and $. It should be
obvious that the off-line Turing machine is a special case of
the multi-tape Turing machine.

 A Turing machine halts when it no longer has any
available moves. If it halts in a final state, it accepts its
input; otherwise, it rejects its input. The TM is started on a
tape containing a string w є Σ* at the beginning of the tape
and blanks B after it. A TM accepts a string w when it enters
a final state in F; if the string is not accepted, the TM may or
may not stop. It may be shown [8] that the class of
languages accepted by TM is the same as the class of
languages generated by unrestricted grammars.

 The Halting Problem is a very strong, provably correct,
statement that no one will ever be able to write a computer
program or design a Turing machine that can determine if a
arbitrary program will halt (stop, exit) for a given input
[4][8][9]. Turing machines can solve halting problems and
compute results based on inputs. A halting problem is a
computational problem where the answer is always yes or
no (accept/reject). The halting problems are recursive. A
language is recursive if there exists a Turing machine that
accepts every string of the language and rejects every string
that is not in the language. Unrestricted grammar generates
recursive language.

III. LIMITATIONS OF CONVENTIONAL DYNAMICAL

LANGUAGE GENERATORS

 From the literature survey, neural finite automaton
dynamical language generators (neural finite automata) and
pushdown automaton dynamical language generators
(neural PDA) [1][5][7][10][11][12][13] are various
recurrent networks having their own strengths and
limitations. The conventional dynamical language
generators [1][5][6][7] [10][11][12][13] used for formal
language generations is feedforward neural network. The
existing works express neural finite automaton and neural
PDA. As it has been examined that recurrent network can
be modeled by neural finite automaton, it generates a
specific class of the language. Neural finite state automaton
generates regular languages. Neural finite automata with
outputs are neural Moore machine and mealy machine
[1][7]10][11]. These machines have both input pattern and
target pattern. In neural Moore machine the target pattern
depends on its present state. In neural mealy machine the
target pattern depends on its transition. These two machines

ISSN : 0975-3397 1455

P.Dinadayalan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1453-1461

also generate regular languages. The limitations of these
machines are that machines mostly produce indefinite loops
when finite automata are implemented in RNN symbol
[1][6][10][11] [12][13]. The neural finite automata leads to
indefinite loop and thus stability and generalization cannot
be attained in neural finite state automaton. The neural finite
automaton can remember only current input pattern. It does
not remember previous long sequence of input pattern.

 The conventional neural PDA [1][2][3] is an improved
model over neural finite state automaton which uses
context-free language. It uses a stack, which helps the
networks to remember any arbitrary long input sequence and
thus generates larger classes of languages than that of neural
finite automata. As these networks are developed using
stack concepts, they could not solve all the problems of the
formal language. The training algorithm depends on stack
operation of neural PDA. Neural PDA does not solve non
context-free languages. It does not solve halting problem
and cannot process recursive languages. Neural PDA tends
to have stability problems when presented with the input
strings which are longer than those used for training. The
major limitations of neural PDA are: it solves limited
problems, has the stability problem that does not halt,
generate only context free languages, and has less
computational capability such as speed, storage, retrieval
and comparison [1][2][3]. Feedforward network is used in
neural finite automaton and neural PDA
[1][5][6][7][10][11][12][13]. The structure of neural finite
state automaton and neural PDA are mostly unstable. The
feedforward neural network is not effective for producing
formal languages. As the training process in the
feedforward is not effective, it produces irrelevant and
inconsistent results. The training process in the feedforward
neural network using finite state automaton and PDA takes
long training session and leads to wrong direction producing
inconsistent and improper results. The conventional
dynamical language generators [1][5][6][7][10][11][12][13]
cannot achieve stability, computational network
interactions, incapable of network learning and insufficient
memory. Moreover feedforward dynamical language
generators produce incorrect and inconsistent results. In the
training processes in most of the occasions, the feedforward
dynamical generator never comes to an end thereby the
dynamical generator attains the indefinite loop. The time
taken for training process is more and the training process
never comes to an end. So, the stability of the traditional
approaches is very low. It is very difficult to design
dynamical generators using finite automata and PDA
recurrent networks.

IV. NEURO LANGUAGE GENERATOR USING
TURING MACHINE

 This section presents a new dynamical approach, ‘Neuro
Language Generator using finite state machine’. On analysis

of the related domain such as neural finite automata and
neural PDA, their limitations reveal that the researchers
[1][5][6][7][10][11][12][13] have given less notice to
halting problem. Moreover the previous research
contributions fail to achieve stability and generalization. As
researchers have not contributed the efforts in this direction
there have been many unanswered questions which may
lead to construct a new model to alleviate the hurdles faced
by the conventional models. Traditionally, finite state
technology and neural network have been investigated along
with finite automata based RNN and pushdown automata
based RNN. Investigating finite automata based RNN and
pushdown automata based RNN their limitations are
identified and the computational difficulty of this task is
clarified by examining specific model for formal language
processing [1][5][6][7][10][11][12][13]. The proposed
model expands the approach that encompasses RNN by
coupling the power of Turing machine with its speed and
storage efficiency. Turing machine is dominant than other
finite state machines such as finite automata and pushdown
automata. Turing machine is used to achieve stability and
generalization of the neural network. It is quite natural to
consider the possibilities of integrating the two paradigms
into a new kind of system where the desired strengths of
both systems are utilized and combined appropriately. In
fact there has been a great amount of interest and practice in
the synergetic combination of finite state technology and
neural networks, with an expectation that the capacity of the
hybrid system will be greatly enhanced. Treating finite state
technology and a neural network as two different
computational elements, they can be configured at a system
level in a hierarchical manner. The overall task is divided
hierarchically into levels, some of which are completed by
neural networks and the others by finite state machines.
Traditional models are static which never complete the
training. But still the network has certain limitations and
which are removed by new dynamical network called Neuro
Language Generator using Finite State Machine (Turing
machine). The proposed Neuro Language Generator using
finite state machine is a RNN that can change its behaviour
to accept perpetual innovation. This work discusses the use
of Neuro Language Generator and Turing machine to
generate recursive languages. The internal architecture of
Neuro Language Generator is a Turing machine. Turing
machine prevents indefinite training. Neuro Language
Generator is a RNN that uses feedback connections. NLG
can be used to solve more complicated problems compared
to traditional dynamical generator.

V. ARCHITECTURE OF NEURO LANGUAGE
GENERATOR

 Neuro Language Generator structure is based on RNN
with a Turing machine. Neuro language generator is a single
layer RNN (dynamical network) which consists of three-

ISSN : 0975-3397 1456

P.Dinadayalan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1453-1461

layer of connection weights. Neuro Language Generator
possesses as rich repertoire of dynamics which result in their
being capable of performing powerful tasks such as formal
language generation. The structure of the Neuro Language
Generator is dynamic and stable. The Neuro Language
Generator properly ends with the input pattern (string). The
network of NLG is also called dynamical language
generator where there are feedback-connection from a unit
back to itself. Neuro language generator consists of a set of
highly interconnected entities, called nodes or units. Each
accepts a weighted set of inputs and responds with an
output. Neuro language generator can be divided into five
units, namely training data unit, network unit, objective
function unit, training unit and output unit. The architecture
of Neuro language generator is shown in figure1.

A. Training data unit

 Neuro language generator is applicable in virtually every
situation in which a relationship between the predictor
variables (independents, inputs) and predicted variables
(dependents, outputs) exists, even when that relationship is
very complex and not easy to articulate in the usual terms of
correlations or differences between groups. The input/output
training data are fundamental in neural network technology,
because they convey the necessary information to discover
the optimal operating point.

Figure 1. Architecture of Neuro Language Generator

 The training data unit consists of input pattern and target
pattern. The input and target pattern can be taken from
formal language. Initially, the input pattern is the start
symbol (initial state of the Turing machine) of the formal
grammar. During the training process the current output is
changed into input data. The training data unit expands the

input pattern to the network unit. The output of the network
unit data is compared with the target pattern which is stored
in training data unit.The nature of the network processing
elements provides the system with lots of flexibility to
achieve practically any desired input/output map. Training
set can be made directly from formal grammar. Certain
grammar of measured values is used as inputs and the value
to be predicted is used as required output. An input is
presented to the NLG and a corresponding desired or target
response set at the output. An error is composed from the
difference between the desired response and the system
output. This error information is fed back to the system and
adjusts the system parameters in a systematic fashion (the
learning rule). The process is repeated until the performance
is acceptable.

B. Network unit

 The network structure of neuro language generator is a
feedbackward (dynamic). That is, Neuro language
generator network has a feedback structure: signals flow
from inputs, feed backwards through the same layer,
eventually reaching the output units. Such a structure has
stable behavior. The important property of NLG is the
dynamical properties of the network. If the input pattern is
presented, the unit computes its activation just as in a feed
forward network. However its net input now contains a term
which reflects the state of the network. Activation values of
the units undergo a relaxation process such that the neural
network will evolve to a stable state in which these
activations do not change anymore. The change of the
activation values of the output neurons is significant, such
that the dynamical behaviour constitutes the output of the
neural network.

 In Neuro Language Generator, network activations and
signals are in a flux of change until they settle down to a
steady state. It has feedback paths from their outputs back
to their inputs, the response of such networks is dynamic.
(ie) After applying a new input, the output is calculated and
fed back to modify the input. The output is then recalculated
and the process is repeated again and again. In NLG,
successive iterations produce smaller and smaller output
changes until eventually the outputs become stable. For
many traditional networks, the process never ends and such
networks are unstable.

 Network unit computes the weighted sum of its inputs
and produces the actual output. If the actual output and
target output match, then the NLG recognizes the input
pattern and halt. Otherwise, training process continues until
the network produces a constant value. The internal
representation of Neuro Language Generator is implemented
by Turing machine. Each and every iterations in the training
process is called a state. The Turing machine recognizes a
language (the set of string accepted by the generator) by

ISSN : 0975-3397 1457

P.Dinadayalan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1453-1461

being presented with an input string. The given string is
either accepted or rejected as part of the language,
depending on the resulting point.

C. Objective function unit

 NLG receives a number of inputs (either from original
data, or from the output of NLG). Each input comes through
a connection that has a strength (or weight); these weights
correspond to synaptic efficacy in a biological neuron. Each
neuron also has a single threshold value. The weighted sum
of the inputs is formed, and the threshold subtracted, to
compose the activation of the neuron.

 When the NLG is executed, the input variable values are
placed in the input units, and then computational and output
layer units are progressively executed. Each of them
calculates its activation value by taking the weighted sum of
the outputs of the units in the computational layer, and
subtracting the threshold. The activation value is passed
through the objective function to produce the output of the
neuron. When the entire network has been executed, the
outputs of the output layer act as the output of the entire
network.

 As shown in the figure 2, the objective function
minimizes the error in the training process. That is, the
objective function finds the difference between actual output
and target output. The objective function of NLG is given
by:

where x is the number of iterations in the training
process and x lies between 0 and n, d is the difference
between actual output and target output. i.e., d =
length(actual output) – length (target output).

 If fn+1(x) = 0, then the given input pattern is not the
correct sentence of the given language and the NLG is in
rejecting state. If fn+1(x) = 1, then the given input pattern is
the correct sentence of the given language and the NLG is in
accepting state. Otherwise the training process continues.

D. Training unit

 The training unit consists of set of weight productions
and NLG training algorithm. The neuro language generator
gathers formal language patterns, and then invokes training
algorithms to automatically learn the structure of the data.
Neuro language generator is a recurrent learning to perform

a function (an input/output map) from data. Recurrent
learning means that the system parameters are changed
during recurrent operation, normally called the training
phase.

Figure 2. Structure of Neuro Language generator with output

 Neuro language generator is built with a systematic step-
by-step procedure to optimize a performance criterion or to
follow some implicit internal constraint, which is commonly
referred to as the learning rule. Supervised training in which
the network is trained by providing it with input and
matching output patterns. These input-output pairs are
provided by training data unit (from external environment),
or by the system which contains the network. Supervised
training is based on the target value or the desired outputs.
During training the network tries to match the outputs with
the desired target values. The method of training a neural
network is trial and error. The network uses the trial and
error method and produces results.

Training algorithm for Neuro language generator:

Step1 : Load the input pattern and target pattern to
training data unit.
Step 2 : Training data unit expands the input pattern to
the network unit.
Step 3 : Network unit determines the OUT value, where
OUT is the actual output of
 NLG.
Step 4: Calculate the objective function, d = length
(OUT) – length (target pattern)
Step 5: a) If d > 0, then the given target pattern is not
the correct sentence of
 the given formal language.
 b) If d = 0, then the OUT value contains only
terminal symbols, the given
 target is correct and NLG is in accepting state.

fn+1(x)

0, if d > 0
fn(x), if d < 0
1,

th i

…(1)

ISSN : 0975-3397 1458

P.Dinadayalan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1453-1461

 c) If d < 0, then the OUT value is treated as new
input of NLG.
 Step 6: Apply new weight production from the training
unit.
Step 7: Training process continues and
 step 2 to step 7 are repeated.

 Figure 3. State transition diagram of TM for the language { anbnan}

 The adjustment of synaptic weights during the learning
reduces the output error as the learning trails increase. This
interaction is externally imposed rather than occurring
within the neural structure. When a new input pattern is
presented, the neuron outputs are computed as usual, but
because these outputs are fed back as inputs to the system,
the activations of neurons get subsequently modified,
leading the network to a new system. The next state of the
network is thus a function of the current input and the
present state of the network.

E. Output unit

 The output unit is the result of NLG. The output unit
consists of two outputs either ‘ACCEPT’ or ‘REJECT’. If
the output unit produces the result ‘ACCEPT’, then the
NLG recognizes the target pattern. If the output unit
generates the result ‘REJECT’, then the NLG does not
accept the target pattern. Therefore, NLG generates
recursive language (recursive language produces either
accept or reject).

VI. EXPERIMENTAL RESULTS

 The stability and dynamic nature of network which are
achieved through the architecture of NLG are proved by an

example. The structure of NLG also generates recursive
language. The simulation result of the NLG is produced
using the formal language L={anbnan}. For experimental
purpose a set of correct patterns and a set of incorrect
patterns are taken. The set of correct patterns {aba, aabbaa,
aaabbbaaa, aaaabbbbaaaa, aaaaabbbbbaaaaa } are taken
from L and set of incorrect patterns {abba, aaabaabb,
bbbaaabbb, abbabababbaaab, aabbaabbaabbaabbaabba} are
taken from L’ where L’ is a complement of L. If the correct
input pattern x1 is applied for training it accepts x1 and halts
where x1 L. If the incorrect input pattern x2 is applied for
training it rejects x2 and halts where x2 L (x2 L’). The
language is recursive if there exists a Turing machine that
accepts every word in L and rejects every word in L’.

 The NLG architecture consists of training data unit,
network unit, objective function unit, training unit and
output unit. The training set is taken for network training
process. The training set consists of input pattern X = {S},
weight vector W={ w1=(S → aAba, R), w2= S → aba,
R),w3 = (A → aAbB, R), w4 = (A → abB, R), w5 = (Bb →
Bb, R), w6 = (Bb → Bb, L), w7 = (Ba → aa, R), w8 = (Ba →
aa, L)} and target pattern T = { a3b3a3}. The training data
unit consists of input pattern {S} and target pattern (desired
output) {a3b3a3} for training. If the input pattern X={S} and
target pattern T={a3b3a3} are applied to the network unit in
NLG. Network unit structure is feedback network which
has dynamical property. The network unit works until it
reaches the equilibrium point using the training parameters,
input patterns, weight vector and OUT value. The structure
of the network unit is designed using the state transition
diagram of Turing machine. The state transition diagram is
shown in figure 3.

 The network unit can be demonstrated by means of a
state transition diagram which gives the states of the
network and their training parameter together with the target
pattern from one state to another. The network either
remains in the same state or moves to the next state. The
function of training unit is based on the weight vectors and
algorithm in the training unit. The training algorithm is
constructed by the transition function of the language L =
{anbnan}. The figure 4 demonstrates architecture of NLG for
the language { anbnan}.

ISSN : 0975-3397 1459

P.Dinadayalan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1453-1461

Figure 4. Architecture of NLG for the language { anbnan}

 Initially, the input pattern X={S} and the target pattern T
= {a3b3a3} are applied to the network unit. This unit
determines the OUT value. If objective function f compares
the length of OUT and length of target pattern, then
d = length (OUT) – length (target pattern) where d is the
difference between OUT and target pattern. If d<0 then the
OUT value is taken as input pattern and the weights are
adjusted and trained in the network unit using training
algorithm from training unit. This process continues until
the target pattern and the OUT value is same. If d=0 and if
the OUT value contains non-terminal with terminal symbol
then the training process continues until the non-terminal
becomes terminal. If d>0, the NLG goes to wrong
direction as the given input pattern is an incorrect pattern
which does not belong to L. Thus the training process is
terminated and the NLG halts.

TABLE I. SIMULATION OF CORRECT WORD PATTERN IN
NLG

 The correct word pattern T = {a3b3a3} is taken from L =
{anbnan} for simulation. In table I, iteration1 denotes that the
input pattern {S} is applied to the network unit. {S} is
adjusted by w1 = {aAba}. The network unit produces OUT
= aAba. In table I, if d < 0, then the OUT value is fed back

again considered as input pattern and the training process
continues from iteration1 to iteration2. Iteration3 shows d=0
and OUT value has both terminal and non-terminal. Since
the OUT value contains both terminal and non-terminal the
training process continues till the OUT values becomes
terminal. The training continues from iteration3 to iteration7.
In iteration8, the OUT value contains only terminal symbols
(OUT = aaabbbaaa). The OUT value and target pattern T =
{aaabbbaaa} are equal. Thus the NLG accepts the given
correct word pattern {aaabbbaaa} and halts.

 The incorrect word pattern {b3a3b3} is taken for
simulation. The incorrect pattern {b3a3b3} is fixed as target
pattern T. The training procedure is same as training
procedure of the correct word pattern. The input pattern
X={S} and the target pattern T = {a3b3a3} are applied to the
network unit. In table II, iteration1 shows that the input
pattern {S} is applied to the network unit. {S} is adjusted
by w1={aAba}. The network unit produces OUT = aAba. In
table II if d<0, then the OUT value is given as input to the
network and the training process continues from iteration1 to
interation2. Iteration3 shows d=1 means d>0. When d>0,
then the training algorithm of NLG implies that the training
process leads to indefinite loop. Therefore the training
process of NLG should be terminated and the NLG rejects
the given incorrect word pattern {bnanbn}.

TABLE II. SIMULATION OF INCORRECT WORD PATTERN IN NLG

 From the above discussion it is concluded that if correct
input word pattern is given to the NLG it accepts and halts.
If incorrect word pattern is given to the NLG it rejects the
incorrect word pattern and halts. Since the NLG halts for
both correct and incorrect pattern applied to it the NLG
achieves stability and it accepts recursive language. The
NLG is efficiently trained by single layer feedbackward
neural network. As it is a dynamical system, changes are
made at the run time of the machine. It solves halting
problems and never goes to indefinite loop or cycle. The
most important notable thing is that the machine achieves
stability. As it solves most of the problems of the formal
language, it is considered better than any other conventional
feedforward networks.

ISSN : 0975-3397 1460

P.Dinadayalan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1453-1461

VII. CONCLUSION

 Conventional dynamical language generators are neural
finite automata and neural pushdown automata. These
conventional methods are feedforward neural networks. The
lack of feedback network ensures that the network is
unconditionally stable. Non-recurrent networks have a
repertoire of behavior that is limited compared to their
recurrent structure. Neuro Language Generator overcomes
the defects faced by the traditional neural finite automata
and neural PDA. Neuro Language Generator is based on
neural network with a finite-state machine which is a Turing
machine. It is feedback neural networks which is dynamic or
recurrent networks. The Neuro Language Generator can
offer great computational advantages over purely static
neural networks. The NLG is a language generator.

REFERENCES

[1] Alquezar, R. and Sanfeliu, A. (1995). An algebraic framework to

represent finite state automata in single-layer recurrent neural
networks. Neural Computation, 7(5):931-949.

[2] Blair, A. and Pollack, J. B. (1997). Analysis of dynamical
recognizers. Neural Computation, 9(5):1127 - 1142.

[3] Carrasco, R. C., Forcada, M. L., Valdes-Munoz, M..A., and Neco, R.
P. (2000). Stable encoding of finite-state machines in discrete-time
recurrent neural nets with sigmoid units. Neural Computation,
12(9):2129 - 2174.

[4] Draye, J., Pavisic, D., Cheron, G., and Libert, G. (1995). Adaptive
time constants improve the prediction capability of recurrent neural
networks. Neural Processing Letters, 2(3):12 - 16.

[5] Elman, J.L., (1995). Language as a dynamical system in (eds) Port,
R.F. & van Gelder, T. Mind as Motion: Explorations in the Dynamics
of Cognition, pp 195-225, Cambridge MA: MIT Press.

[6] Goudreau, M., Giles, C., Chakradhar, S., and Chen, D. (1994). First-
order vs. second-order single layer recurrent neural networks. IEEE
Transactions on Neural Networks, 5(3):511 - 513.

[7] Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer
feedforward networks are universal approximators. Neural Networks,
2(5):359 - 366.

[8] Hopcroft, J. E. and Ullman, J. D. (1979). Introduction to automata
theory, languages, and computation, Addison, Wesley, Reading, MA.

[9] Kolen, J. F. (1994). Fool's gold: Extracting finite state machines from
recurrent network dynamics. In Cowan, J. D., Tesauro, G., , and
Alspector, J., editors, Advances in Neural Information Processing
Systems 6, pages 501 - 508, San Mateo, CA. Morgan Kaufmann.

[10] Kremer, S. C. (1999). Identification of a specific limitation on local-
feedback recurrent networks acting as mealy-moore machines. IEEE
Transactions on Neural Networks, 10(2):433 - 438.

[11] Peter Tino, Bill G. Horne, C. Lee Giles (1998). Finite State Machines
and Recurrent Neural Networks Automata and Dynamical Systems
Approaches. Technical Report, UMIACS-TR-95-1 and CS-TR-3396,
Institute for Advanced Computer Studies, University of Maryland.

[12] Tabor, W., (2001). Sentence Processing and Linguistic Structure in
Kolen, J.F. & Kremer, S.C. (eds), A Field Guide to Dynamical
Recurrent Networks, pp 291-309, New York: IEEE Press.

[13] Wiles, J., Blair, A.D. & Boden, M., (2001). Representation Beyond
Finite States: Alternatives to Pushdown Automata in Kolen, J.F. &
Kremer, S.C. (eds) A Field Guide to Dynamical Recurrent Networks,
pp 129-142, New York: IEEE Press.

AUTHORS PROFILE

Dinadayalan. P. obtained his
M.C.A degree in the year 1996 and
M.Tech degree in Computer
Science and Engineering in the year
2000 from Pondicherry University,
India and M.Phil. degree in
Computer Science from

Manonmaniam Sundaranar University, Tirunelveli,
India in the year 2002. He is presently pursuing his
Ph.D in Computer Science from Vinayaka
Missions University, Salem, India under the
guidance of Dr. R. Vasanthakumari. He has
published papers in national and international
conferences conference and in many international
journals in the area of Artificial Neural Networks
and Theory of Computer Science. He is working as
Assistant Professor in the Department of Computer
Science, Kanchi Mamunivar Centre for
Postgraduate Studies, Puducherry, India.

Gnanambigai Dindadyalan
obtained her M.Sc. degree in
Computer Science from
Pondicherry University, India in
1999 and M.Phil. degree in
Computer Science from M.S.
University, Tirunelveli, India in

2002. She is presently pursuing her Ph.D in
Computer Science from Vinayaka Missions
University, Salem, India under the guidance of
Dr. R. Vasanthakumari. She has published papers
in national and international conferences in the
area of Neural Networks and Automata theory.
She is working as Assistant Professor in the
Department of Computer Science, Indira Gandhi
College of Arts and Science, Puducherry, India.

Dr. R. Vasanthakumari
obtained her Ph.D. degree from
Pondicherry University, in 2005.
She is working as a Principal in
Government College,
Puducherry, India. She has more
than 27 years of teaching
experience in P.G. and U.G

colleges. She is guiding many research scholars and
has published many papers in national and
international conference and in many international
journals.

ISSN : 0975-3397 1461

