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Abstract -  ‘Neuro Language Generator using Finite State 
Machine’ is based on neural network and finite state machine. 
The fundamental properties of neural network along with the 
power of Turing machine prove how it can be implemented for 
formal language processing. This paper elaborates the 
conventional dynamical language generators, limitations of the 
conventional dynamical language generators and proposes a 
new architecture for formal language processing. The 
conventional dynamical language generators used for neural 
language generators is feedforward RNN. It expresses 
dynamical language generator using finite automaton and 
dynamical language generator using pushdown automaton. 
Conventional dynamical generators tend to have stability 
problem, incapable of network training and lack of memory. It 
is proposed that the new method ‘Neuro Language Generator 
using Finite State Machine’ solves most of the problems, which 
the traditional methods fail to do. The approach employs finite 
state technology for a RNN in the task of learning to achieve 
stability in network structure.  RNN architecture performs the 
same computation as a Turing machine. The RNN architecture 
acts as a language generator, which accepts formal language.  
Neuro Language Generator is a RNN that uses feedback 
connections. NLG can be used to solve more complicated 
problems compared to traditional dynamical generator.   

 
        Keywords - Artificial Neural Network ; Dynamical 
Language Generators; Finite State Machine; Recurrent Neural 
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I.  CONVENTIONAL DYNAMICAL LANGUAGE 

GENERATORS 
 
      As most of the work performed by researchers in 
connection with neural networks, it is inferred that formal 
language and computation theory concern the training of 
RNN to identify neural finite-state automata and regular 
language and, neural pushdown automata and context-free 
language. RNN architecture is capable of performing the 
same computation as a finite-state machine (FSM). 

 

A. Neural Acceptors/Generators 
 
     RNN may be trained to accept strings belonging to a 
language and reject strings not belonging to it, by producing 
suitable labels after the whole string has been processed 
[1][5]. In view of the computational equivalence between 
some RNN architectures and some finite-state machine 
classes, it is reasonable to expect RNN to learn regular 
(finite-state) languages. A set of neural acceptors (separately 
or merged in a single RNN) may be used as a neural 
classifier. 
 
B. Neural Transducers/Translators 
 
     If the output of the RNN is examined not only at the end 
but also after processing each one of the symbols in the 
input, then its output may be interpreted as a synchronous, 
sequential transduction (translation) for the input string [5]. 
DTRNN may be easily trained to perform synchronous 
sequential transductions and also some asynchronous 
transductions. 
 
C. Neural Predictors 
 
     RNN may be trained to predict the next symbol of strings 
in a given language. The trained RNN, after reading string 
outputs a mixture of the possible successor symbols; in 
certain  conditions , the output of the RNN may be 
interpreted as the probabilities of each of the possible 
successors in the language[5]. In this last case, the RNN 
may be used as a probabilistic generator of strings. When 
RNN are used for grammatical inference, the following have 
to be defined: learning set and learning algorithm. The 
learning set may contain: strings labeled as belonging or not 
to a language or as belonging to a class in a finite set of 
classes (recognition/classification task); a draw of unlabeled 
strings, possibly with repetitions, generated according to a 
given probability distribution (prediction/generation task); 
or pairs of strings (translation/transduction task). A learning 
algorithm (including a suitable error function and a suitable 
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stopping criterion) and a presentation scheme (the whole 
learning set may be presented from the beginning or a 
staged presentation may be devised).   Section I elaborates 
the conventional dynamical language generators. Section II 
briefly gives the power of Turing machine. Section III 
analyses the limitations of conventional dynamical language 
generators.  Section IV presents a new dynamical approach 
‘Neuro Language Generator using Turing machine’. Section 
V proposes a new architecture ‘Neuro Language Generator’. 
The new architecture consists of training data, network 
structure, objective function, training algorithm and output 
of the proposed method. Section VI illustrates the 
experimental results of Neuro Language Generators. 
 
D. Dynamical language generators using finite state 
automata 

 
     Finite automata with RNNs are finite state machines that 
consist of a finite number of states, and transition between 
those states based only on the current state and an input 
symbol [2][7][10][11]. When the input has all been 
consumed, the machine accepts the string of inputs, based 
on the final state of the machine. These machines happen to 
correspond exactly with regular languages, with the set of 
strings accepted by any finite automaton being a regular 
language, and with every regular language having a machine 
that accepts all and only strings from that language. The 
class of regular languages is equivalent to the class of 
languages recognized by finite automata. A finite state 
transducer (FST) with neural network is a finite state 
automaton, which generates both input and output 
[11][12][13]. There are two finite state transducers such as 
neural moore and neural mealy machine. The class of 
languages generated by finite automata is known as the class 
of regular languages.  The Moore machine with neural 
networks [6] uses only entry actions, i.e. output depends 
only on the state. The output from a Moore machine is 
associated with the state only. The advantage of the Moore 
model is a simplification of the behaviour. Mealy machine 
with neural networks is a finite state transducer that 
generates an output based on its current state and input 
[1][7][10][11]. This means that the state transition includes 
both an input and output for each transition. In contrast, the 
output of a Moore finite state machine depends only on the 
machine's current state; transitions are not directly 
dependent upon input. 
 
E. Dynamical language generators using pushdown 
automata 
 
     Similar to the neural finite state automata except that it 
has an available stack which is allowed to grow to arbitrary 
size. The state transitions additionally specify whether to 
add a symbol to the stack, or to remove a symbol from the 
stack [1][2][3].  Pushdown Automata are finite-state 
automatons with a stack. A stack is a data structure that can 

contain any number of elements, but for which only the top 
element may be accessed (hence PDAs have an infinite set 
of states) but which can be only accessed in a Last-In-First-
Out (LIFO) fashion. Stack functions as the required 
memory. The Finite State Control (FSC) reads inputs, one 
symbol at a time. Based on the input symbol, current state 
and the top symbol on the stack, FSC does some state 
transitions and operations to the stack content.  Stack could 
be kept unchanged, or some thing could be pushed into the 
stack and could be popped out of the stack. The languages 
which can be recognized by PDA are precisely the context 
free languages.  
 
     As finite-state automata with neural network correspond 
to regular languages, the Context-Free Languages (CFL) 
have corresponding network system called pushdown 
automata (PDA) [5][12][13]. Regular expressions are 
generators for regular languages and Finite Automata are 
generators for them. Similarly for Context-free Languages, 
Context Free Grammars (CFGs) are neural generators and 
Pushdown Automata (PDAs) are recognizers. The class of 
context free languages is the same as the class of languages 
recognized by machines called pushdown automata.  
Pushdown automata are equivalent to context-free 
grammars: for every context-free grammar, there exists a 
pushdown automaton such that the language generated by 
the grammar is identical with the language generated by the 
automaton, and for every pushdown automaton there exists 
a context-free grammar such that the language generated by 
the automaton is identical with the language generated by 
the grammar.  A language L is said to be a Context-Free-
Language (CFL) if its grammar is Context-Free [5][12][13]. 
More precisely, it is a language whose words, sentences and 
phrases are made of symbols and words from a Context-
Free-Grammar. Context-free grammars are simple enough 
to allow the construction of efficient parsing algorithms 
which for a given string determine whether and how it can 
be generated from the grammar. Context-free grammars are 
important because they are powerful enough to describe the 
syntax of programming languages.  
 
     PDAs with neural networks are better than FSAs with 
neural networks.  As with the regular languages, there are 
many languages which are not context-free. The stack on the 
PDA, while it provides infinite storage capacity, is still a 
stack, and so only the last element placed on it can be 
accessed at any given time. Accessing earlier elements 
requires removing and thus losing the later elements, since 
there is no other stack on which to place them. The PDA is 
also limited in that it must consume the input characters in 
the order in which they are received, and cannot access them 
again, except by placing them on the stack. 
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II. POWER OF TURING MACHINE 
 
     The Turing machine is one of the intriguing intellectual 
discoveries [4][8][9]. Turing machine is a simple and useful 
abstract model of computation that is general enough to 
embody any computer program. It is equivalent to power of 
the most programming languages. The Turing machine is 
the most powerful machine with power to emulate any of 
the other machines.  The Turing machine is far more 
powerful than any DFA, PDA or LBA. It is similar to a 
DFA or PDA [8][9].  The Turing machine takes a tape with 
a string of symbols on it as an input, and can respond to a 
given symbol by changing its internal state, writing a new 
symbol on the tape, shifting the tape right or left to the next 
symbol, or halting. It can read or write to the tape. It can 
move left or right on the tape. It halts as soon as it reaches 
either the special accept state or the special reject state. 
Equivalent to the class of unrestricted languages is the class 
of languages recognized by a Turing machine. Unrestricted 
grammars are much more powerful than restricted form like 
the regular and context-free grammars.  It has the following 
abilities.  
 
     A Turing machine with a two-way infinite tape [8][9] is 
identical to the standard model except that the tape extends 
indefinitely in both directions.  Since a two-way tape has no 
left boundary, the input can be placed anywhere on the tape.  
All other tape positions are assumed to be blank.  The tape 
head is initially positioned on the blank to the immediate left 
of the input string.  
 
     A multi-tape Turing machine consists of n tapes and n 
independent tape heads [4][8][9] .  The states and inputs of a 
multi-tape machine are the same as in a standard Turing 
machine.  The Turing machine reads the tape 
simultaneously but has only one state.  A transition is 
determined by the state and the symbols are scanned by each 
of the tape heads.  A transition in a multi-tape machine may 
change the state, with a symbol on each of the tape, and 
independently reposition each of the tape heads.  The 
repositioning consists of moving the tape head one cell to 
the left or one cell to the right or leaving it at its current 
position.   
 
     A Turing machine with k-dimension is called 
multidimensional Turing machine [8] [9].  The device has 
the usual finite control, but the tape consists of a k-
dimensional array of cells infinite in all 2k directions, for 
some fixed k.  Depending on the state, symbol scanned, the 
device changes state, prints a new symbol, and moves its 
tape head in one of 2k directions, either positively or 
negatively, along one of the k axes.  Initially, the input is 
along one axis, and the head is at the left end of the input. 
 
     A k-head Turing machine has some fixed number, k, of 
heads [8][9].  The heads are numbered 1 through k, and a 

move of the Turing machine depends on the state and on the 
symbol scanned by each head.  In one move, the heads may 
each move independently left, right, or remain stationary. 
 
     An off-line Turing machine is a multi-tape Turing 
machine whose input tape is read only [8][9].  Usually the 
input is surrounded by end markers, ¢ on the left and $ on 
the right.  The Turing machine is not allowed to move the 
input tape head off the region between ¢ and $.  It should be 
obvious that the off-line Turing machine is a special case of 
the multi-tape Turing machine. 
 
     A Turing machine halts when it no longer has any 
available moves. If it halts in a final state, it accepts its 
input; otherwise, it rejects its input. The TM is started on a 
tape containing a string w є Σ* at the beginning of the tape 
and blanks B after it. A TM accepts a string w when it enters 
a final state in F; if the string is not accepted, the TM may or 
may not stop. It may be shown [8] that the class of 
languages accepted by TM is the same as the class of 
languages generated by unrestricted grammars. 
 
     The Halting Problem is a very strong, provably correct, 
statement that no one will ever be able to write a computer 
program or design a Turing machine that can determine if a 
arbitrary program will halt (stop, exit) for a given input 
[4][8][9].  Turing machines can solve halting problems and 
compute results based on inputs. A halting problem is a 
computational problem where the answer is always yes or 
no (accept/reject). The halting problems are recursive. A 
language is recursive if there exists a Turing machine that 
accepts every string of the language and rejects every string 
that is not in the language. Unrestricted grammar generates 
recursive language. 
 
III. LIMITATIONS OF CONVENTIONAL  DYNAMICAL  

LANGUAGE GENERATORS 
 
     From the literature survey, neural finite automaton 
dynamical language generators (neural finite automata) and 
pushdown automaton dynamical language generators 
(neural PDA) [1][5][7][10][11][12][13] are various 
recurrent networks having their own strengths and 
limitations.  The conventional dynamical language 
generators [1][5][6][7] [10][11][12][13] used for formal 
language generations is feedforward neural network. The 
existing works express neural finite automaton and neural 
PDA.  As it has been examined that recurrent network can 
be modeled by neural finite automaton, it generates a 
specific class of the language.  Neural finite state automaton 
generates regular languages.  Neural finite automata with 
outputs are neural Moore machine and mealy machine 
[1][7]10][11].  These machines have both input pattern and 
target pattern.  In neural Moore machine the target pattern 
depends on its present state.  In neural mealy machine the 
target pattern depends on its transition.  These two machines 
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also generate regular languages.  The limitations of these 
machines are that machines mostly produce indefinite loops 
when finite automata are implemented in RNN symbol 
[1][6][10][11] [12][13].  The neural finite automata leads to 
indefinite loop and thus stability and generalization cannot 
be attained in neural finite state automaton. The neural finite 
automaton can remember only current input pattern. It does 
not remember previous long sequence of input pattern. 
 
     The conventional neural PDA [1][2][3] is an improved 
model over neural finite state automaton which uses 
context-free language.  It uses a stack, which helps the 
networks to remember any arbitrary long input sequence and 
thus generates larger classes of languages than that of neural 
finite automata. As these networks are developed using 
stack concepts, they could not solve all the problems of the 
formal language.  The training algorithm depends on stack 
operation of neural PDA.  Neural PDA does not solve non 
context-free languages. It does not solve halting problem 
and cannot process recursive languages. Neural PDA tends 
to have stability problems when presented with the input 
strings which are longer than those used for training.  The 
major limitations of neural PDA are: it solves limited 
problems, has the stability problem that does not halt, 
generate only context free languages, and has less 
computational capability such as speed, storage, retrieval 
and comparison [1][2][3].  Feedforward network is used in 
neural finite automaton and neural PDA 
[1][5][6][7][10][11][12][13].  The structure of neural finite 
state automaton and neural PDA are mostly unstable.  The 
feedforward neural network is not effective for producing 
formal languages.  As the training process in the 
feedforward is not effective, it produces irrelevant and 
inconsistent results.  The training process in the feedforward 
neural network using finite state automaton and PDA takes 
long training session and leads to wrong direction producing 
inconsistent and improper results. The conventional 
dynamical language generators [1][5][6][7][10][11][12][13] 
cannot achieve stability, computational network 
interactions, incapable of network learning and insufficient 
memory.   Moreover feedforward dynamical language 
generators produce incorrect and inconsistent results. In the 
training processes in most of the occasions, the feedforward 
dynamical generator never comes to an end thereby the 
dynamical generator attains the indefinite loop. The time 
taken for training process is more and the training process 
never comes to an end. So, the stability of the traditional 
approaches is very low. It is very difficult to design 
dynamical generators using finite automata and PDA 
recurrent networks. 
 

IV. NEURO LANGUAGE GENERATOR USING 
TURING MACHINE 

 
     This section presents a new dynamical approach, ‘Neuro 
Language Generator using finite state machine’. On analysis 

of the related domain such as neural finite automata and 
neural PDA, their limitations reveal that the researchers 
[1][5][6][7][10][11][12][13] have given less notice to 
halting problem.  Moreover the previous research 
contributions fail to achieve stability and generalization. As 
researchers have not contributed the efforts in this direction 
there have been many unanswered questions which may 
lead to construct a new model to alleviate the hurdles faced 
by the conventional models.  Traditionally, finite state 
technology and neural network have been investigated along 
with finite automata based RNN and pushdown automata 
based RNN. Investigating finite automata based RNN and 
pushdown automata based RNN their limitations are 
identified and the computational difficulty of this task is 
clarified by examining specific model for formal language 
processing [1][5][6][7][10][11][12][13].  The proposed 
model expands the approach that encompasses RNN by 
coupling the power of Turing machine with its speed and 
storage efficiency.  Turing machine is dominant than other 
finite state machines such as finite automata and pushdown 
automata.  Turing machine is used to achieve stability and 
generalization of the neural network.  It is quite natural to 
consider the possibilities of integrating the two paradigms 
into a new kind of system where the desired strengths of 
both systems are utilized and combined appropriately.  In 
fact there has been a great amount of interest and practice in 
the synergetic combination of finite state technology and 
neural networks, with an expectation that the capacity of the 
hybrid system will be greatly enhanced.  Treating finite state 
technology and a neural network as two different 
computational elements, they can be configured at a system 
level in a hierarchical manner.  The overall task is divided 
hierarchically into levels, some of which are completed by 
neural networks and the others by finite state machines. 
Traditional models are static which never complete the 
training. But still the network has certain limitations and 
which are removed by new dynamical network called Neuro 
Language Generator using Finite State Machine (Turing 
machine).  The proposed Neuro Language Generator using 
finite state machine is a RNN that can change its behaviour 
to accept perpetual innovation. This work discusses the use 
of Neuro Language Generator and Turing machine to 
generate recursive languages. The internal architecture of 
Neuro Language Generator is a Turing machine. Turing 
machine prevents indefinite training.  Neuro Language 
Generator is a RNN that uses feedback connections. NLG 
can be used to solve more complicated problems compared 
to traditional dynamical generator. 
 
 

V. ARCHITECTURE OF NEURO LANGUAGE 
GENERATOR 

 
     Neuro Language Generator structure is based on RNN 
with a Turing machine. Neuro language generator is a single 
layer RNN (dynamical network) which consists of three-
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layer of connection weights. Neuro Language Generator 
possesses as rich repertoire of dynamics which result in their 
being capable of performing powerful tasks such as formal 
language generation. The structure of the Neuro Language 
Generator is dynamic and stable. The Neuro Language 
Generator properly ends with the input pattern (string).  The 
network of NLG is also called dynamical language 
generator where there are feedback-connection from a unit 
back to itself. Neuro language generator consists of a set of 
highly interconnected entities, called nodes or units.  Each 
accepts a weighted set of inputs and responds with an 
output. Neuro language generator can be divided into five 
units, namely training data unit, network unit, objective 
function unit, training unit and output unit. The architecture 
of Neuro language generator is shown in figure1.   

A. Training data unit 

     Neuro language generator is applicable in virtually every 
situation in which a relationship between the predictor 
variables (independents, inputs) and predicted variables 
(dependents, outputs) exists, even when that relationship is 
very complex and not easy to articulate in the usual terms of 
correlations or differences between groups. The input/output 
training data are fundamental in neural network technology, 
because they convey the necessary information to discover 
the optimal operating point. 
 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Architecture of Neuro Language Generator 
 
 

     The training data unit consists of input pattern and target 
pattern.  The input and target pattern can be taken from 
formal language.  Initially, the input pattern is the start 
symbol (initial state of the Turing machine) of the formal 
grammar.  During the training process the current output is 
changed into input data.  The training data unit expands the 

input pattern to the network unit. The output of the network 
unit data is compared with the target pattern which is stored 
in training data unit.The nature of the network processing 
elements provides the system with lots of flexibility to 
achieve practically any desired input/output map. Training 
set can be made directly from formal grammar. Certain 
grammar of measured values is used as inputs and the value 
to be predicted is used as required output. An input is 
presented to the NLG and a corresponding desired or target 
response set at the output. An error is composed from the 
difference between the desired response and the system 
output. This error information is fed back to the system and 
adjusts the system parameters in a systematic fashion (the 
learning rule). The process is repeated until the performance 
is acceptable. 
 

B. Network unit  
 
     The network structure of neuro language generator is a 
feedbackward (dynamic).  That is, Neuro language 
generator network has a feedback structure: signals flow 
from inputs, feed backwards through the same layer, 
eventually reaching the output units. Such a structure has 
stable behavior. The important property of NLG is the 
dynamical properties of the network. If the input pattern is 
presented, the unit computes its activation just as in a feed 
forward network. However its net input now contains a term 
which reflects the state of the network.  Activation values of 
the units undergo a relaxation process such that the neural 
network will evolve to a stable state in which these 
activations do not change anymore. The change of the 
activation values of the output neurons is significant, such 
that the dynamical behaviour constitutes the output of the 
neural network.      
 
     In Neuro Language Generator, network activations and 
signals are in a flux of change until they settle down to a 
steady state.  It has feedback paths from their outputs back 
to their inputs, the response of such networks is dynamic. 
(ie) After applying a new input, the output is calculated and 
fed back to modify the input. The output is then recalculated 
and the process is repeated again and again. In NLG, 
successive iterations produce smaller and smaller output 
changes until eventually the outputs become stable. For 
many traditional networks, the process never ends and such 
networks are unstable. 
 
     Network unit computes the weighted sum of its inputs 
and produces the actual output. If the actual output and 
target output match, then the NLG recognizes the input 
pattern and halt. Otherwise, training process continues until 
the network produces a constant value. The internal 
representation of Neuro Language Generator is implemented 
by Turing machine. Each and every iterations in the training 
process is called a state. The Turing machine recognizes a 
language (the set of string accepted by the generator) by 
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being presented with an input string.  The given string is 
either accepted or rejected as part of the language, 
depending on the resulting point. 

C. Objective function unit 

     NLG receives a number of inputs (either from original 
data, or from the output of NLG). Each input comes through 
a connection that has a strength (or weight); these weights 
correspond to synaptic efficacy in a biological neuron. Each 
neuron also has a single threshold value. The weighted sum 
of the inputs is formed, and the threshold subtracted, to 
compose the activation of the neuron. 
 
     When the NLG is executed, the input variable values are 
placed in the input units, and then computational and output 
layer units are progressively executed. Each of them 
calculates its activation value by taking the weighted sum of 
the outputs of the units in the computational layer, and 
subtracting the threshold. The activation value is passed 
through the objective function to produce the output of the 
neuron. When the entire network has been executed, the 
outputs of the output layer act as the output of the entire 
network. 

 
     As shown in the figure 2, the objective function 
minimizes the error in the training process.  That is, the 
objective function finds the difference between actual output 
and target output.  The objective function of NLG is given 
by: 
 
 
 
 
 
 
 

where x is the number of iterations in the training 
process and x lies between 0 and n, d is the difference 
between actual output and target output. i.e., d = 
length(actual output) – length (target output). 
 
     If fn+1(x) = 0, then the given input pattern is not the 
correct sentence of the given language and the NLG is in 
rejecting state.  If fn+1(x) = 1, then the given input pattern is 
the correct sentence of the given language and the NLG is in 
accepting state. Otherwise the training process continues. 
 
D. Training unit  
 
     The training unit consists of set of weight productions 
and NLG training algorithm. The neuro language generator 
gathers formal language patterns, and then invokes training 
algorithms to automatically learn the structure of the data. 
Neuro language generator is a recurrent learning to perform 

a function (an input/output map) from data. Recurrent 
learning means that the system parameters are changed 
during recurrent operation, normally called the training 
phase. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Structure of  Neuro Language generator with output 

 
     Neuro language generator is built with a systematic step-
by-step procedure to optimize a performance criterion or to 
follow some implicit internal constraint, which is commonly 
referred to as the learning rule. Supervised training in which 
the network is trained by providing it with input and 
matching output patterns. These input-output pairs are 
provided by training data unit (from external environment), 
or by the system which contains the network. Supervised 
training is based on the target value or the desired outputs. 
During training the network tries to match the outputs with 
the desired target values.  The method of training a neural 
network is trial and error. The network uses the trial and 
error method and produces results. 
 
Training algorithm  for Neuro language generator: 

 
Step1 : Load the input pattern and target pattern to 
training data unit. 
Step 2 : Training data unit expands the input pattern to 
the network unit. 
Step 3 : Network unit determines  the OUT value, where 
OUT is the actual output of   
             NLG. 
Step 4: Calculate the objective function, d = length 
(OUT) – length (target pattern) 
Step 5: a) If d > 0, then the given target pattern is not 
the correct sentence of  
                      the given formal language. 
            b) If d = 0, then the OUT value contains only 
terminal symbols, the given  
           target is correct and NLG is in accepting state. 

fn+1(x) 

0,   if d > 0 
fn(x),      if d < 0 
1,   

th i

…(1) 
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           c) If d < 0, then the OUT value is treated as new 
input of NLG. 
 Step 6: Apply new weight production from the training 
unit. 
Step 7:  Training process continues and 
             step 2 to step 7 are repeated.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Figure 3. State transition diagram of TM for the            language { anbnan} 
 

     The adjustment of synaptic weights during the learning 
reduces the output error as the learning trails increase.  This 
interaction is externally imposed rather than occurring 
within the neural structure. When a new input pattern is 
presented, the neuron outputs are computed as usual, but 
because these outputs are fed back as inputs to the system, 
the activations of neurons get subsequently modified, 
leading the network to a new system.  The next state of the 
network is thus a function of the current input and the 
present state of the network. 
 
 

E. Output unit 
 
     The output unit is the result of NLG. The output unit 
consists of two outputs either ‘ACCEPT’ or ‘REJECT’.  If 
the output unit produces the result ‘ACCEPT’, then the 
NLG recognizes the target pattern.  If the output unit 
generates the result ‘REJECT’, then the NLG does not 
accept the target pattern.  Therefore, NLG generates 
recursive language (recursive language produces either 
accept or reject). 
 

VI. EXPERIMENTAL RESULTS 
 
     The stability and dynamic nature of network which are 
achieved through the architecture of NLG are proved by an 

example.  The structure of NLG also generates recursive 
language.  The simulation result of the NLG is produced 
using the formal language L={anbnan}. For experimental 
purpose a set of correct patterns and a set of incorrect 
patterns are taken.  The set of correct patterns {aba, aabbaa, 
aaabbbaaa, aaaabbbbaaaa, aaaaabbbbbaaaaa } are taken 
from L and set of incorrect patterns {abba, aaabaabb, 
bbbaaabbb, abbabababbaaab, aabbaabbaabbaabbaabba} are 
taken from L’ where L’ is a complement of L. If the correct 
input pattern x1 is applied for training it accepts x1 and halts 
where x1 L.  If the incorrect input pattern x2 is applied for 
training it rejects x2 and halts where x2  L (x2  L’).  The 
language is recursive if there exists a Turing machine that 
accepts every word in L and rejects every word in L’.  
 
     The NLG architecture consists of training data unit, 
network unit, objective function unit, training unit and 
output unit. The training set is taken for network training 
process. The training set consists of input pattern X = {S}, 
weight vector  W={ w1=(S → aAba, R), w2=  S → aba, 
R),w3 = (A → aAbB, R), w4 = (A → abB, R),    w5 = (Bb → 
Bb, R), w6 = (Bb → Bb, L), w7 = (Ba → aa, R), w8 = (Ba → 
aa, L)} and target pattern T = { a3b3a3}.  The training data 
unit consists of input pattern {S} and target pattern (desired 
output) {a3b3a3} for training. If the input pattern X={S} and 
target pattern T={a3b3a3} are applied to the network unit in 
NLG.  Network unit structure is feedback network which 
has dynamical property.  The network unit works until it 
reaches the equilibrium point using the training parameters, 
input patterns, weight vector and OUT value.  The structure 
of the network unit is designed using the state transition 
diagram of Turing machine.  The state transition diagram is 
shown in figure 3. 
 
     The network unit can be demonstrated by means of a 
state transition diagram which gives the states of the 
network and their training parameter together with the target 
pattern from one state to another. The network either 
remains in the same state or moves to the next state. The 
function of training unit is based on the weight vectors and 
algorithm in the training unit. The training algorithm is 
constructed by the transition function of the language L = 
{anbnan}.  The figure 4 demonstrates architecture of NLG for 
the language { anbnan}.   
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Figure 4.  Architecture of NLG for the language { anbnan} 
 

     Initially, the input pattern X={S} and the target pattern T 
= {a3b3a3} are applied to the network unit.  This unit 
determines the OUT value.  If objective function f compares 
the length of OUT and length of target pattern, then                         
d = length (OUT) – length (target pattern) where d is the 
difference between OUT and target pattern.  If d<0 then the 
OUT value is taken as input pattern and the weights are 
adjusted and trained in the network unit using training 
algorithm from training unit. This process continues until 
the target pattern and the OUT value is same.  If d=0 and if 
the OUT value contains non-terminal with terminal symbol 
then the training process continues until the non-terminal 
becomes terminal.        If d>0, the NLG goes to wrong 
direction as the given input pattern is an incorrect pattern 
which does not belong to L. Thus the training process is 
terminated and the NLG halts. 
    
 
TABLE I. SIMULATION OF CORRECT WORD PATTERN IN 
NLG 
 
 

 
 
       The correct word pattern T = {a3b3a3} is taken from L = 
{anbnan} for simulation.  In table I, iteration1 denotes that the 
input pattern {S} is applied to the network unit.  {S} is 
adjusted by w1 = {aAba}.  The network unit produces OUT 
= aAba. In table I, if d < 0, then the OUT value is fed back 

again considered as input pattern and the training process 
continues from iteration1 to iteration2.  Iteration3 shows d=0 
and OUT value has both terminal and non-terminal.  Since 
the OUT value contains both terminal and non-terminal the 
training process continues till the OUT values becomes 
terminal. The training continues from iteration3 to iteration7.  
In iteration8, the OUT value contains only terminal symbols 
(OUT = aaabbbaaa).  The OUT value and target pattern  T = 
{aaabbbaaa} are equal. Thus the NLG accepts the given 
correct word pattern {aaabbbaaa} and halts. 
 
 
     The incorrect word pattern {b3a3b3} is taken for 
simulation. The incorrect pattern {b3a3b3} is fixed as target 
pattern T.  The training procedure is same as training 
procedure of the correct word pattern. The input pattern 
X={S} and the target pattern T = {a3b3a3} are applied to the 
network unit.  In table II, iteration1 shows that the input 
pattern {S} is applied to the network unit.  {S} is adjusted 
by w1={aAba}.  The network unit produces OUT = aAba. In 
table II if d<0, then the OUT value is given as input to the 
network and the training process continues from iteration1 to 
interation2.  Iteration3 shows d=1 means d>0. When d>0, 
then the training algorithm of NLG implies that the training 
process leads to indefinite loop.  Therefore the training 
process of NLG should be terminated and the NLG rejects 
the given incorrect word pattern {bnanbn}. 
 
 
TABLE II.  SIMULATION OF INCORRECT WORD PATTERN IN NLG 
 

      
      From the above discussion it is concluded that if correct 
input word pattern is given to the NLG it accepts and halts.  
If incorrect word pattern is given to the NLG it rejects the 
incorrect word pattern and halts. Since the NLG halts for 
both correct and incorrect pattern applied to it the NLG 
achieves stability and it accepts recursive language. The 
NLG is efficiently trained by single layer feedbackward 
neural network. As it is a dynamical system, changes are 
made at the run time of the machine. It solves halting 
problems and never goes to indefinite loop or cycle.  The 
most important notable thing is that the machine achieves 
stability. As it solves most of the problems of the formal 
language, it is considered better than any other conventional 
feedforward networks. 
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VII. CONCLUSION 
 
     Conventional dynamical language generators are neural 
finite automata and neural pushdown automata. These 
conventional methods are feedforward neural networks. The 
lack of feedback network ensures that the network is 
unconditionally stable. Non-recurrent networks have a 
repertoire of behavior that is limited compared to their 
recurrent structure. Neuro Language Generator overcomes 
the defects faced by the traditional neural finite automata 
and neural PDA.  Neuro Language Generator is based on 
neural network with a finite-state machine which is a Turing 
machine. It is feedback neural networks which is dynamic or 
recurrent networks. The Neuro Language Generator can 
offer great computational advantages over purely static 
neural networks.  The NLG is a language generator. 
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