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Abstract—Tree traversal refers to the process of visiting or 
examining or updating each node in a tree data structure, exactly 
once, in a systematic way. Such traversals are classified by the 
order in which the nodes of the tree are visited. This paper 
presents a new and innovative technique using which traversing 
in trees as well as in graph becomes extremely easy and using this 
technique explanation & understanding of traversing in trees & 
graphs also becomes easy using set construct. 
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I. INTRODUCTION 

Tree & Graph traversing has been a great challenge for the 
students and research scholars in the field of computer science. 
Both are the perfect examples where recursion technique is 
deeply involved. Compared to linear data structures like linked 
list and one dimension assay, which have only one state of 
traversal, tree traversing can be done in various ways. Starting 
from the root 8 the binary tree there are three main steps that 
can be performed and the order in which they are performed 
defines the traversal type. These steps are performing an 
action on the current node, named as visiting the node, 
traversing to the left child node & then traversing to the right 
child node. Thus the process is most easily described through 
recursion.  
 
The following techniques are the conventional methodologies 
for tree traversing. To traverse a non empty binary tree in 
preorder the following operations have to be recursively 
performed at each mode, starting with the root node. It is also 
known as depth first search. 

1. Visit the node 
2. Traverse the left sub tree. 
3. Traverse the right sub tree. 

To traverse a non empty binary tree in inorder, perform the 
following operations recursively at each node. It is also called 
symmetric traversal. 

1. Traverse the left sub tree 
2. Visit the node. 
3. Traverse the right sub tree. 

To traverse a non empty binary tree in post order, perform the 
following operations recursively at each node. It is also called 
level order traversing, where we visit every node on a level 
before going to a lower level. 

1. Traverse the left sub tree 
2. Traverse the right sub tree. 
3. Visit the root. 

II. PROPOSED METHODOLOGY 

 The technique using set construct presented here requires the 
following keywords & notations. 
A. Tree 
 Tree is an ordered set of subtrees T(Xi) where Xi are the 
nodes of the tree defined by ordering them in almost complete 
binary tree manner of cardinality n as: 
 {T(X1), T(X2), T(X3) ……, T(Xn)}  
In almost complete binary tree manner, for a level tree of 
depth‘d’ node X1 is at level 0 and node X2 is at level 1, which 
is the left most node. On traversing from left to right we reach 
node Xn of level/depth‘d’. 
 
B. Subtree 
It is the set of three members N, L, R defined as {N, L, R} 
where 

i) node : N – Parent/leaf/root 
ii) left child : L – null/leaf/subtree 

right child : R – null/leaf/subtree 
Traversal set: T(N) is an ordered sub tree for the node N 
according to one of the tree traversal methods. i.e. 

(i) Pre order Traversal – {N, L, R} 
(ii) Post order Traversal – {L, R, N}  
(iii) In order Traversal – {L, N, R} 

Result set R: It is an ordered set and its members are the nodes 
of the tree, after execution of the program members are in 
required path of traversal. 
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A. C. Marking of sub trees 

 

B. Fig. 1 Marking of sub trees 
 

Work set W: An ordered set; members are nodes, L or R of T. 
Algorithm for tree traversal in binary tree 
 
Step 1: Initialize R and W to null 
Step 2: Set y = X1 
Step 3: W  T(y) UW 
Step 4: if the left member of W 
 
 Case  1: node, move it to the set R and go to step 4 
 Case 2: subtree, set y = parent node of this subtree    
                            and goto step 3 
 Case 3:  null, exit 
 
Explanation of algorithm:- The algorithm starts traversing 
from the root of the tree. In inorder traversing technique L, N, 
R concept is used where L, N, R represents left, Node, & right 
respectively. 

 
Fig. 2 Traversing in subtrees  

 
For traversing we come first of all at – X1. Because inorder 
follows LNR, traversing in X1, would result X2 50 X3. Now 
we start traversing in X2. Traversing in X2 generates X4 40. 
Then traversing in X4 only traverse node 35. 
So X2 50 X3 generates 
X4 40 50 X5 60 X6 
35, 40, 50, 58, 59, 60, 65 
 
Similarly we can easily traverse in preorder & post order style. 

 

IV. TRAVERSING IN GRAPH 

This innovative technique using set construct can also be 
implemented in the traversing of graph. For traversing in 
graph several keywords & terminology are required. 
 
 
Adjacency Matrix 
 
 The adjacency matrix of finite graph G on n vertices (nodes) 
is the n x n matrix where the non diagonal entry a ij is the 
number of edges from vertex i to vertex j, and the diagonal 
entry a ii are assumed to be ordered from V1 to Vn. 
 The nxn matrix A, in which 
 Aij = 1 if there exists a path from Vi to Vj 
 Aij = 0 otherwise 
  
Adjacency set A(N)  
 N (say ith vertex) node; members which are adjacent nodes to 
N and currently present (say jth vertex) i.e. a ij = 1 in the 
adjacency matrix ith row at the time of execution i.e. from the 
current states of the adjacency matrix. 
 
Update adjacency matrix 
For the member/node (say jth vertex) which is included in the 
adjacency set A(N), set all is to zero in the column vector for 
that node in the adjacency matrix. 
 
Result set R 
 An ordered set; members are the nodes of the graph. After 
execution of the program, members are in the path of traversal 
from the given node. 
 
Work set W 
 An ordered set; members are nodes of the graph. 
Preorder Traversal 
 A U M 
Postorder Traversal  
W U A 

V. PROPSED ALGORITHM  

Traverse in the given graph from a given source say y.  
 
Construct the adjacency matrix A. then  
 Step 1: set W to null. 
 Step 2: initialize R with y as first member and update  
                           adjacency matrix. 
 Step 3: get A(y) and update adjacency matrix. 

Step 4: apply the required traversal scheme i.e.  
             W = AUW or W = WUA 
Step5: if the left member of W 
 Node (say Z), move Z to R 
 Set y = z and go to step 3. 
 Else null, exit 
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A. Explanation of algorithm  
Suppose the following graph is given to us & we have to 
traverse with in it. A is given as the source vertex. 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
   
 

 
Fig. 3 Connected graph    

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4 Adjacency Matrix 

 
We stand traversing from A. We put A in R, its adjacency 
set as is B, C & F because A connects to B, C & F 
vertices. The same becomes the workset and the column 
of B, C &F becomes zero. 

R = {A} 
  A$ = {B, C, F} 
  W$ = {B, C, F} 
 

1. Now B vertex has been extracted from WS and it 
is inserted into the result set. The adjacency set is 
now {G} 
R = {A, B} 
A$ = {G} Because B connects to vertex G and C 
but C previously column has converted all 1 to 0 

& that W$ = {C, F} is why we are not 
considering C again. 

        Now W$ = WSUA 
  W$ = {C, F, G}                       
Now G is introduced in W$ so we converted the                

              1’s of G column into 0. 
 

2. Now we extract C from WS and put it in R 
R = {A, B, C} 
A$ = { }                                         
Because C does not connect to any vertex. 
Previously WS = {F, G} 
Now WS is same i.e. {F,G}  
 

3. Now we extract from WS and put it into R 
R = {A, R, C,F} 
A$ = {D} 
Previously WS was {G} 
New WS = {G, D}  
Here we introduce G is WS so we make all  
the 1’s of this column to 0. 
 

4. Now G is extracted from WS and it is put in R 
R = {A, B, C, F, G} 
A$ = {E} 
Previous W$ = {D} 
New W$ = {D, E}          
Because E is introduced in WS to we  

        make all 1’s of this column to 0.  
 

5. Now D is being extracted from WS, We put it in 
R 
R = {A, B, C, F, G, D} 
AS = { } 
Previous W$ = {E} 
New W$ = {E} 
 

6. Now we extract E from WS & put it in R 
R = {A, B, C, F, G, D, E} 
AS = {J} 
Previous W$ = { } 
New W$ = {J}                               
Because J is introduced in WS so we convert  
all 1’s of its column to 0. 
 

7. Now we extract J from WS & put it in R 
R = {A, B, C, F, G, D, E, J} 
AS = {K} 
Previous W$ = { } 
New W$ = {K}                            
Because K is introduced in WS so we convert  
all 1’s of its column to 0. 
 

8. Now we extract K from WS & put it in R 
R = {A, B, C, F, G, D, E, J, K} 
AS = { } 

 A B C D E F G J K 

                               A  1 1   1    

                              B   1    1   

                              C      1    

                              D   1       

                             E   1 1    1  

                             F    1      

                             G   1  1     

                             J    1     1 

                              K     1  1   
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Previous W$ = { } 
New W$ = { }                            
Now this time WS becomes null so algorithm 
terminates at this point. 

VI. CONCLUSIONS 

 
The study presented an innovative technique for 
traversing in trees and graph. Using this technique 
any body can easily implement the concept of 
traversing on any complicated graph or on tree. This 
paper also opens the doors to utilize the set construct 

technique for the lots of more complicated algorithms 
and by this way they can be understood and operated 
in an easy and better way.   
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