
Vineet Kumar Sharma et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1445-1448

A New Look to Traversal Algorithms Using Set Construct
Data Structure

Vineet Kumar Sharma
Department of Computer Science & Engineering

 Krishna Institute of Engineering & Technology
 Ghaziabad, UP, India

Adesh Kumar Pandey
Department of Computer Science & Engineering
Krishna Institute of Engineering & Technology

Ghaziabad, UP, India

Dr. V.K. Srivastava
Department of Computer Science & Engineering

 Krishna Institute of Engineering & Technology
 Ghaziabad, UP, India

Abstract—Tree traversal refers to the process of visiting or
examining or updating each node in a tree data structure, exactly
once, in a systematic way. Such traversals are classified by the
order in which the nodes of the tree are visited. This paper
presents a new and innovative technique using which traversing
in trees as well as in graph becomes extremely easy and using this
technique explanation & understanding of traversing in trees &
graphs also becomes easy using set construct.

Keywords— Tree, Graph, Traversing algorithm, set construct,
adjacency matrix

I. INTRODUCTION

Tree & Graph traversing has been a great challenge for the
students and research scholars in the field of computer science.
Both are the perfect examples where recursion technique is
deeply involved. Compared to linear data structures like linked
list and one dimension assay, which have only one state of
traversal, tree traversing can be done in various ways. Starting
from the root 8 the binary tree there are three main steps that
can be performed and the order in which they are performed
defines the traversal type. These steps are performing an
action on the current node, named as visiting the node,
traversing to the left child node & then traversing to the right
child node. Thus the process is most easily described through
recursion.

The following techniques are the conventional methodologies
for tree traversing. To traverse a non empty binary tree in
preorder the following operations have to be recursively
performed at each mode, starting with the root node. It is also
known as depth first search.

1. Visit the node
2. Traverse the left sub tree.
3. Traverse the right sub tree.

To traverse a non empty binary tree in inorder, perform the
following operations recursively at each node. It is also called
symmetric traversal.

1. Traverse the left sub tree
2. Visit the node.
3. Traverse the right sub tree.

To traverse a non empty binary tree in post order, perform the
following operations recursively at each node. It is also called
level order traversing, where we visit every node on a level
before going to a lower level.

1. Traverse the left sub tree
2. Traverse the right sub tree.
3. Visit the root.

II. PROPOSED METHODOLOGY

 The technique using set construct presented here requires the
following keywords & notations.
A. Tree
 Tree is an ordered set of subtrees T(Xi) where Xi are the
nodes of the tree defined by ordering them in almost complete
binary tree manner of cardinality n as:
 {T(X1), T(X2), T(X3) ……, T(Xn)}
In almost complete binary tree manner, for a level tree of
depth‘d’ node X1 is at level 0 and node X2 is at level 1, which
is the left most node. On traversing from left to right we reach
node Xn of level/depth‘d’.

B. Subtree
It is the set of three members N, L, R defined as {N, L, R}
where

i) node : N – Parent/leaf/root
ii) left child : L – null/leaf/subtree

right child : R – null/leaf/subtree
Traversal set: T(N) is an ordered sub tree for the node N
according to one of the tree traversal methods. i.e.

(i) Pre order Traversal – {N, L, R}
(ii) Post order Traversal – {L, R, N}
(iii) In order Traversal – {L, N, R}

Result set R: It is an ordered set and its members are the nodes
of the tree, after execution of the program members are in
required path of traversal.

ISSN : 0975-3397 1445

Vineet Kumar Sharma et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1445-1448

A. C. Marking of sub trees

B. Fig. 1 Marking of sub trees

Work set W: An ordered set; members are nodes, L or R of T.
Algorithm for tree traversal in binary tree

Step 1: Initialize R and W to null
Step 2: Set y = X1
Step 3: W  T(y) UW
Step 4: if the left member of W

 Case 1: node, move it to the set R and go to step 4
 Case 2: subtree, set y = parent node of this subtree
 and goto step 3
 Case 3: null, exit

Explanation of algorithm:- The algorithm starts traversing
from the root of the tree. In inorder traversing technique L, N,
R concept is used where L, N, R represents left, Node, & right
respectively.

Fig. 2 Traversing in subtrees

For traversing we come first of all at – X1. Because inorder
follows LNR, traversing in X1, would result X2 50 X3. Now
we start traversing in X2. Traversing in X2 generates X4 40.
Then traversing in X4 only traverse node 35.
So X2 50 X3 generates
X4 40 50 X5 60 X6
35, 40, 50, 58, 59, 60, 65

Similarly we can easily traverse in preorder & post order style.

IV. TRAVERSING IN GRAPH

This innovative technique using set construct can also be
implemented in the traversing of graph. For traversing in
graph several keywords & terminology are required.

Adjacency Matrix

 The adjacency matrix of finite graph G on n vertices (nodes)
is the n x n matrix where the non diagonal entry a ij is the
number of edges from vertex i to vertex j, and the diagonal
entry a ii are assumed to be ordered from V1 to Vn.
 The nxn matrix A, in which
 Aij = 1 if there exists a path from Vi to Vj
 Aij = 0 otherwise

Adjacency set A(N)
 N (say ith vertex) node; members which are adjacent nodes to
N and currently present (say jth vertex) i.e. a ij = 1 in the
adjacency matrix ith row at the time of execution i.e. from the
current states of the adjacency matrix.

Update adjacency matrix
For the member/node (say jth vertex) which is included in the
adjacency set A(N), set all is to zero in the column vector for
that node in the adjacency matrix.

Result set R
 An ordered set; members are the nodes of the graph. After
execution of the program, members are in the path of traversal
from the given node.

Work set W
 An ordered set; members are nodes of the graph.
Preorder Traversal
 A U M
Postorder Traversal
W U A

V. PROPSED ALGORITHM

Traverse in the given graph from a given source say y.

Construct the adjacency matrix A. then
 Step 1: set W to null.
 Step 2: initialize R with y as first member and update
 adjacency matrix.
 Step 3: get A(y) and update adjacency matrix.

Step 4: apply the required traversal scheme i.e.
 W = AUW or W = WUA
Step5: if the left member of W
 Node (say Z), move Z to R
 Set y = z and go to step 3.
 Else null, exit

ISSN : 0975-3397 1446

Vineet Kumar Sharma et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1445-1448

A. Explanation of algorithm
Suppose the following graph is given to us & we have to
traverse with in it. A is given as the source vertex.

Fig. 3 Connected graph

Fig. 4 Adjacency Matrix

We stand traversing from A. We put A in R, its adjacency
set as is B, C & F because A connects to B, C & F
vertices. The same becomes the workset and the column
of B, C &F becomes zero.

R = {A}
 A$ = {B, C, F}
 W$ = {B, C, F}

1. Now B vertex has been extracted from WS and it
is inserted into the result set. The adjacency set is
now {G}
R = {A, B}
A$ = {G} Because B connects to vertex G and C
but C previously column has converted all 1 to 0

& that W$ = {C, F} is why we are not
considering C again.

 Now W$ = WSUA
 W$ = {C, F, G}
Now G is introduced in W$ so we converted the

 1’s of G column into 0.

2. Now we extract C from WS and put it in R
R = {A, B, C}
A$ = { }
Because C does not connect to any vertex.
Previously WS = {F, G}
Now WS is same i.e. {F,G}

3. Now we extract from WS and put it into R
R = {A, R, C,F}
A$ = {D}
Previously WS was {G}
New WS = {G, D}
Here we introduce G is WS so we make all
the 1’s of this column to 0.

4. Now G is extracted from WS and it is put in R
R = {A, B, C, F, G}
A$ = {E}
Previous W$ = {D}
New W$ = {D, E}
Because E is introduced in WS to we

 make all 1’s of this column to 0.

5. Now D is being extracted from WS, We put it in
R
R = {A, B, C, F, G, D}
AS = { }
Previous W$ = {E}
New W$ = {E}

6. Now we extract E from WS & put it in R
R = {A, B, C, F, G, D, E}
AS = {J}
Previous W$ = { }
New W$ = {J}
Because J is introduced in WS so we convert
all 1’s of its column to 0.

7. Now we extract J from WS & put it in R
R = {A, B, C, F, G, D, E, J}
AS = {K}
Previous W$ = { }
New W$ = {K}
Because K is introduced in WS so we convert
all 1’s of its column to 0.

8. Now we extract K from WS & put it in R
R = {A, B, C, F, G, D, E, J, K}
AS = { }

 A B C D E F G J K

 A 1 1 1

 B 1 1

 C 1

 D 1

 E 1 1 1

 F 1

 G 1 1

 J 1 1

 K 1 1

E

C

B

D

J

F

G

K

A

ISSN : 0975-3397 1447

Vineet Kumar Sharma et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1445-1448

Previous W$ = { }
New W$ = { }
Now this time WS becomes null so algorithm
terminates at this point.

VI. CONCLUSIONS

The study presented an innovative technique for
traversing in trees and graph. Using this technique
any body can easily implement the concept of
traversing on any complicated graph or on tree. This
paper also opens the doors to utilize the set construct

technique for the lots of more complicated algorithms
and by this way they can be understood and operated
in an easy and better way.

REFERENCES

[1] An Intoduction to Algorithms, Thomas H. Corman, PHI publication
[2] Data Structures Using C and C++, Tanenbaum, PHI publication
[3] Data Structures and Program Design in C, Kruse, Pearson Edition

ISSN : 0975-3397 1448

