Kanate Ploydanai et. al. / (IJCSE) International Journal on Computer Science and Engineering

Vol. 02, No. 05, 2010, 1919-1925

Algorithm for Solving Job Shop Scheduling
Problem Based on machine availability constraint

Kanate Ploydanai

Department of Industrial Engineering, Faculty of
Engineering, Kasetsart University,
Bangkok, Thailand

Abstract—Typically, general job shop scheduling problems
assume that working times of machines are equal, for instance
eight hours a day. However, in real factories, these working
times are different because the machines may have different
processing speeds, or they may require maintenance. That is, one
machine may need to be operated only half day whereas other
machines may have to be operated for the entire day. So, each
machine has its own working time window. In this paper, this
type of problem is referred to as a job shop scheduling problem
based on machine availability constraint which is more complex
than typical job shop scheduling problems. In the previous
research, this type of problem has been rarely investigated
before. Thus a new algorithm is developed based on a non-delay
scheduling heuristic by adding machine availability constraint to
solve job shop scheduling problem with minimize makespan
objective. The newly developed algorithm with the machine
availability constraint assumption is more realistic. The study
reveals the result of algorithm that consider machine availability
constraint is better than the result of algorithm that ignores
machine availability constraint when apply to the real problem.

Keywords-Job shop scheduling; algorithm; heuristic;
optimization; non-delay scheduling; machine availability constraint

. INTRODUCTION

Developing algorithms for solving job shop scheduling
problems is a popular research in the field of optimization. It
has been known that the job shop scheduling problems are NP
hard [1]. That means when the size of problem grows up, the
time for determining the optimal solutions of the problem
increase exponentially.

Typically, there are M machines and N jobs for scheduling.
Jobs have to be processed on these machines with different
routes or sequences. So, the complexity of scheduling depends
on number of machines, number of jobs, and sequences of jobs.
There are N! ways (solutions) to sequence jobs on each
machine. For some type of scheduling problem, all machines
use the similar sequence. So, the numbers of feasible solutions
to find the optimal solution are N! solutions. For the job shop
scheduling problem, each machine has different sequences;

therefore, number of feasible solution increase to (N!)NI
solutions.

ISSN : 0975-3397

Anan Mungwattana
Department of Industrial Engineering, Faculty of
Engineering, Kasetsart University,
Bangkok, Thailand

Many researches developed algorithm for solve job shop
scheduling problem. In-Chan Choi [2] aimed to develop local
search algorithm to solve job shop scheduling problem. The
objective function is to minimize makespan. Sequence
dependent setup condition is added to the problem. The setup
time of each job depends on sequence of jobs in each machine.
This paper solves the problem by local search algorithm.
Local search algorithm helps to reduce computation time.
D.A. Koonce [3] used data mining to find the pattern of
schedule for job shop scheduling problem. Propose of this
work is to apply data mining methodology to explore the
pattern. The objective of the problem is minimizing makespan.
Genetic algorithm is used to generate the good solution. The
data mining is used to find relationship of sequence and
predict next job in sequence. The result from data mining can
use to summarize new dispatching rule that gives the result
likes result of genetic algorithm. Chandrasekharan [4]
presented three new dispatching rules for dynamic flow shop
problem and job shop problem. The performance of the rules
present by comparison with 13 dispatching rules. The case
study is from simulation study for flow shop scheduling
problem. The problems are modified again by random routing
of jobs. The problems are changed the flow shop scheduling
problem to job shop scheduling problem. The study could be
concluded that the performance of dispatching rules is being
influenced by routing of jobs and shop floor configurations.
Hiroshi [5] used shift bottleneck procedure to solve job shop
scheduling problem. The objective of problem is to minimize
total holding cost. The specific constraint is added to the
problem. The added constraint is no tardy job constraint. The
experiment show that shift bottleneck procedure can reduce
computation time. Anthony [6] presented Memmetic
algorithm for job shop with time lag. The time lag means
minimal and maximal between start times of operations. This
article presented framework to solve job shop scheduling
problem base on disjunctive graph to modify the problem and
solve by Memmetic algorithm. Jansen [7] solved job shop
scheduling problem under assumption that jobs have
controllable processing time. That means he can reduce
processing time of job by paying certain cost. Jansen presented
two models. The first is continuous model and the other is
decrease model. The evident of proofing could be showed that

1919

Kanate Ploydanai et. al. / (IJCSE) International Journal on Computer Science and Engineering

both of them can solve by Approximation scheme in
polynomial time when number of machines and number of
operations are fixed. Job shop scheduling problem with the
minimizing makespan is investigated. Guinet [8] reduced the
problem from job shop to flow shop problems by using
precedence constraint of jobs. After that extended of
Johnson‘s rule is define to solve this problem. Also, he noted
that The optimality of extended Johnson‘s rule is proved for
two machine and the rule efficient for some three of four
machine job shop problems. Drobouchevitch [9] presented
two heuristic to solve a special case of job shop scheduling.
The case bases on assumption that each job consists of at most
two operations. One of which is to be processed on one of m
machines. Whie the other operation must be perform on a
single bottleneck machine. One of both heuristics guarantees a
worst case performance ratio 3/2. In addition, he noted that
those techniques can be applied to the related problem, such as
flow shop scheduling problem with parallel machines.
Ganesen [10] solved the special case of job shop scheduling
problem. Minimum competition time variance (CTV)
constraint is added to the problem. The lower bound of CTV is
developed for the problem. For solving this problem backward
scheduling approach is used. To show performance of the
backward scheduling approach, the result is compared with
forward scheduling approach. The study showed backward
scheduling approach is well performance for this special case
of job shop scheduling problem. In addition two layers
technique is a technique to solve the job shop scheduling
problem. Pan [11] described binary mixed integer
programming for the reentrant job shop scheduling problem
and solves the problem by using two layers technique
Ganesen [12] studied job shop scheduling problem with two
objectives. The first is to minimize total absolute difference of
completion time and the other is mean flow time. The
backward scheduling technique was studied again. Moreover,
he used static optimum technique. In this study, 82 problems
were taken to study. The result is a new benchmark for the
problem. Pham [13] solved special case of job shop
scheduling problem namely multi mode blocking job shop
scheduling problem. The problem is from hospital in order to
allocate hospital resource for surgical case. CPLEX was
employed to solve the problem. Because of computation time
limit, the model is capable for small and medium size of
problem. That is the study suggested.

Other researches investigated meta- heuristic. Watanabe
[14] and Koonce [15] used genetic algorithm to solve job shop
scheduling problem. Ganesen used Simulated annealing to
solve job shop scheduling [16], [17]. Some research used
neural network to select dispatching rule. Some researches
solve job shop scheduling by hybrid algorithm between two
Meta heuristics [19], [20], [21].

This paper focuses on developing algorithm to solve job
shop scheduling problem. The algorithm is designed by
considering machine availability constraint. Next section
describes detail of problem and mathematic modeling of
problem. Next, machine availability constraint is described.

ISSN : 0975-3397

Vol. 02, No. 05, 2010, 1919-1925

The machine availability constraint is used to calculate realistic
makespan for factories that have breaking period during
processing time.

Il. PROBLEM STATEMENT AND MATHEMATICAL
FORMULATION

In the previous section, we reviewed the algorithms used
for solving the job shop scheduling problems. This section
presents the general job shop scheduling mathematical model
and the detail of machine availability constraint. In general,
variable are as follows:

Let ti'j be start time of job j that is perform on machine i,

Let fi'j be finish time of job j that is performed on machine
i!

Let |; ; be processing time of job j that is performed on

machine i,
Let C,,, be Makespan (finish time of latest job).

The objective of the problem is to minimize makespan. The
mathematical model of job shop scheduling problem without
machine availability constraint is shown below.

Min C,., 1
St

t—t; =D (2
Cmax _ti,j 2 pi,j (€))
G-tz porty —t,2p; (4)
t,; >0 ©)
t,=r (6)
t,+p; <d, (7

To make sure that the next step on machine h of job j
starts after finish time of the step on machine 1 of job j,
equation 2 is employed. Next, equation 3 ensures that Cyax
must be more than finish time of the last job. Equation 4 is
used for sequencing jobs on the machines. This equation
means that only one job can be processed only one machine at
a time. By using equation 5, the start time of processes is non
negative. Some time, some problem requires condition of job
released time. Equation 6 ensures that a job must start after the
released time. The last constraint is used to control that jobs
must be finished before their due dates.

The mathematical model is the general for job shop
scheduling problem, but the job shop scheduling problem based
on machine availability constraint is more complicated. In

1920

Kanate Ploydanai et. al. / (IJCSE) International Journal on Computer Science and Engineering

addition, we develop procedure to calculate finish time of
process and makespan.

Let
be index of working day type.

a
p be index of breaking period

Hyp be time to stop machine of working day
type o atperiod [3.
% be time to start machine)again(of working

day type o at period [.

Factory has many type of working day. The paper
suggests to keep information of working time by using Hy p

and Va.p by « as index of working day type and /3 as index

of breaking period in the working day type. For example,
working day type 1 has two breaking period. First breaking

period is lunch period (44,=12:00 pm and
71, =1:00 pm). The second breaking period is between
4:00 pm to 8:00 am of tomorrow. That means £ , equals 4:00
PM and y, , equals 8:00 AM. For case of second breaking
period 4, , more than y, , that mean /4 , is the time of
next day. On the other hand, if 4, , less thany, 5. 4, 4

and y, , are on the same day.

2

1

L

Figure 1. Finish time computation with a breaking period.

When breaking period occurs in processing time, the
calculation of finish time is different form the typical
calculation. Figure 1 illustrates how to compute finish time
when breaking period is in processing time. Working period

start from ti'j and finish at fi,j . If a breaking period is in the

working time, algorithm compensates breaking time by
At=y,,— U,z and finish time is calculated

by f'; = f,; + At. Also, if there are two working period

ISSN : 0975-3397

Vol. 02, No. 05, 2010, 1919-1925

times are in working time, the finish time is calculated as
Figure 2. There are many cases of breaking period between
processing periods of job operations. Breaking period appears
many types between processing time.

iz

1

v

Figure 2. Finish time computation of two breaking period.

Indeed, this section presents the mathematic model of
general job shop scheduling, and presents machine availability
constraint in a factory briefly. Job shop scheduling with
machine availability constraint is a special problem. In the
next section, we present non delay-scheduling algorithm. For
special case of problem, we present an algorithm to calculate
finish time with machine availability constraint. The algorithm
to calculate finish time of job by considering machine
availability constraint names working time window algorithm.

Ill. ALGORITHMS FOR JOB SHOP SCHEDULING PROBLEM

In this section, we present a non-delay scheduling algorithm
(NSA), working time window algorithm (STA), and the
algorithm that are combined between the non delay scheduling
algorithm and working time window algorithm. We call the
new algorithm that working time window non-delay
scheduling algorithm (WT-NSA).

First, NSA is presented. NSA uses the concept that a
machine is never idle when its queue is not empty [22].
Computational time required for this algorithm can be
minimal. For M machines and N jobs, it spends MN
computational time to solve the problem. The solution by this
algorithm, however, is not the optimal solution. Nonetheless,
the problem is NP-Hard. The optimal solution might not be
possible to determine in a short time.

A. Non-delay scheduling algorithm.

The procedure of NSA is to compute all operational times of
all jobs that are able to process in the list. Next, the operation
with the earliest finish is chosen. Then, the operations that are
able to be processed are updated to the list and the same
procedure will continue again until all operations are selected.
The procedure of NSA [22] can be shown as followed:

At state t let S, be the partial schedule of (t—1)
operations. Let A be the set of operations schedulable at

stage t, that is, all predecessor operations are in S, .Let €, be

1921

Kanate Ploydanai et. al. / (IJCSE) International Journal on Computer Science and Engineering

the earliest time that operations K € A can be scheduled, that

is, predecessor are completed and machine is available.

Non-delay schedule generation.

Step:

Step O Initialize. Let t =1, S, = ¢. A contains the
first operation of each ready job

Step 1 Select operation. Find € = min, _,

If several € exist, choose arbitrarily. Let m’ be
machine need by € .Choose any K € A that

requires m’ and has e = e’ (If all non delay

schedules are to be created, choose all such k and
create a new partial schedule for each)

Step 2 Increment. Add the selected operation k to S, to

create S,,, .Remove k from A, and add the next

operation for its job unless that job is completed;
this creates A,,;.Sett =t+1.If t = MN
stop; otherwise go to 1

B. Working time window

In this section, we present algorithm for calculating finish
time with machine availability constraint. It is well suitable for
factories that have many machines, many jobs, and several
breaking period. The algorithm is called working time window
algorithm.

Working day includes working period and breaking period.
Working period is period of time to operate jobs on machines.
Breaking period is period of time to stop operating.

If breaking period does not occur between operation times,
the finish time of the operation equal start time pluses
processing time. Otherwise, if some part of breaking period is
in operation time, the finish time is compensated.

The developed algorithm is recursive algorithm. Algorithm
calls itself until the finish time is complete to calculate. For
iteration, for example, algorithm checks breaking period and
compensates this time. Sometimes, an operation cannot
process for a day. Algorithm calls itself one time for
calculating again. Working time window calculation is shown
as followed.

Algorithm1: working time window algorithm (ti’j , fi'j P)

SET
b Sy 5 < fi’j
:otherwise

bl:{true

false

ISSN : 0975-3397

Vol. 02, No. 05, 2010, 1919-1925

b - true t;<y,,<f;
2| false -otherwise
b3 :{1 o Sti,j < Va.p

0 otherwise
b — 1 ;ﬂa,ﬁSfi,jsya,ﬁ
“lo otherwise

/*to calculate new finish time by rules followed
that:*/

If ~b, Ab, AbyA ~ b, then

t ; = Vg pand fi,j = fi,j +(fi,j _,Ua,ﬂ)
Else If b, Ab, ADyA ~ b, then

t; =7, pand fi,j = fi,j +(7a,ﬁ _ﬂa,ﬁ)
Else If b, Ab,A ~DyA ~ b, then

t, =u, sand fi,j = fi,j +(7a,ﬁ _ﬂa,p)
Else If b,A ~ b, A ~ b, A, then

t, =H, pand fi,j = fi,j "'(%,ﬁ _lua,ﬁ)
End if

If & <finish time of working time window then

Finish time = f, ;
Else

Call working time window procedure
(t, ;. fi.;.0) again
End if

First, the finish time is approximated by the start time
and processing time. Next breaking period information

(M4 p Vo p) are considered. The algorithm sets f the first

breaking period between the start time and finish time of
operation. Db,b,,b, , and b, are set for identify state of

breaking period and time to compensate. After that we use if-
then structure for recalculating finish time of job operation.
Last, if the finish time of the job operation is more that the end
of working day, then algorithm calls itself again. The iteration
occurs until the finish time of the job operation less than the
end of current working day.

In addition, this paper presents working time window
algorithm and presents the mixed algorithm between Non-
delay scheduling algorithm and working time window

1922

Kanate Ploydanai et. al. / (IJCSE) International Journal on Computer Science and Engineering

algorithm. The mixed algorithm is called WT-NSA. This
mixed algorithm looks similar to the NSA, but it is different.
For WT-NSA, we modify procedure to calculated finish times
of job operations.

Algorithm 2 shows the detail of WT-NSA. First, algorithm
calculates finish times of all operations for each job if the
operation is ready to operate at this time. Next step, the
algorithm check and recalculates finish time by using working
time window algorithm. This step is new added to algorithm to
use in the specific problem.

In addition, the operation that has earliest start time is
chosen. If many jobs have the same start time, the algorithm
chooses the operation with the earliest finish time. In addition,
algorithm updates the operations that are ready be processed on
machines. The chosen operation is recorded in the sequence
for updating finish time when the operation times change. The
iteration runs until all operation of jobs complete.

Algorithm 2: Non-delay scheduling algorithm based on
working time window.

While all job complete
{

ForJ=1to lastjob
Calculate fi]j of current operation of job j

(by using working time window procedure)
Next j

Select job j by min t; ,
If start time t; ; is equal then choose by min f; ;

Updating operation of chosen job |

Save sequence of all operations of jobs follows for
update times later

} Loop

Next section, we compare two results from experiment.
The first one is result from the NSA and the other is result
from the WT-NSA.

IV. EXPERIMENT

To illustrate that WT-NSA is well performed for job shop
scheduling, 40 cases are used in the experiment. Almost of
cases are from internet. The processing time is between zero
and one hundred.

First non delay scheduling algorithm is used. After that we
investigate the effect of solution when we use the solution
from algorithm that not considers machine availability
constraint to the problem with machine availability constraint.
Three makespans of experiment are shows. The first is
makespan from algorithm that ignores machine availability
constraint. The second makespan form the sequence of
previous but recalculate by using machine availability
constraint. The second makespan use to illustrate the different

ISSN : 0975-3397

Vol. 02, No. 05, 2010, 1919-1925

time of result from the real problem in factory and the result of
elder (original) algorithm. The last makespan is from the
algorithm that considers machine availability constraint. The
sequence of the last is different from the first and the second.
The quality of solution is better because is the makespan of the
last is shorter than both of them.

Table 1 shows data of the experiment. The first column
shows number of problem. The second column presents
number of job and third column presents number of machine.
The makespan of NSA are shown in the fourth column. We fix
sequence from the fourth column and recalculate by apply
machine availability constraint. The new makespan are shown
in the fifth column.

Next, we present WT-NSA in sixth column. New
technique brings to the new sequence and new quality of
solution in sixth column. The seventh column is different
value from fourth and fifth columns. The eighth column is the
improved value of makespan. The improved value is value that
fifth column minuses by sixth column.

From the table, the average error between NSA and NSA-
WT is 2676.2 for 15 jobs 15 machines problem. The average
error is 3501.8 for 20 jobs 15 machines problem and is 3662.8
for 20 jobs 20 machines problem. Last, the average error is
5169.5 for 30 jobs 15 machines problem. Almost data shows
that if the problems are applied by algorithm that ignores
machine availability constraint, the result has too much error.

TABLE I. COMPARISON OF EXPERIMENTAL DATA
problem | job | machine | NSA | NZA-applied | WT-MNSA | error | improve | % improve
115 15 | 1462 4105 3751 | 2643 354 | 9437483
2015 15 | 1446 3T 3395 | 2255 306 | 8.0M3255
315 15 | 1495 3926 2930 | 2431 995 | 33.99%7
415 15 | 1708 4188 2877 | 2480 1311 45 5683
518 15 | 1618 4443 3292 | 283 1197 | 3680512
615 15 | 1522 4526 2917 | 3004 1609 | 5515941
715 15 [1434 3442 3037 | 2008 405 | 1333553
g 15 15 | 1457 383 2751 | 2374 1080 | 39.25845
9/ 15 15 [1622 5362 3440 | 3740 1922 | 5587209
10 15 15 | 1697 4693 3260 | 2996 1433 | 43.95706
11| 20 15 | 1865 5243 3555 | 3378 1685 | 47.35807
12| 20 15 | 1667 037 3EET | 3370 1370 | 37.36024
13| 20 15 | 1802 =803 4189 | 4007 1620 | 386720
14| 20 15 | 1635 4918 3813 | 3283 1105 | 2597951
15| 20 15 | 1835 2339 3735 | 3504 1604 | 4294311
16| 20 15 [1965 2920 4065 | 3555 1452 | 3569322
17 | 20 15 | 2059 5963 3927 | 3904 2036 | 51.84619
15| 20 15 | 1808 4919 3T 3N 1042 | 2657645
19 20 15 [1788 SE43 4137 | 3854 1506 | 3640319
20| 20 15 11710 4762 3682 | 3052 1080 | 29.33188
21| 20 20 2175 BOGT 4636 | 3892 1411 | 30.30495
22| 20 20 | 1965 E118 4867 | 4153 1251 | 2570372
23] 20 201933 SE74 4091 | 3741 1583 38 6947
24| 20 20| 2230 5719 4469 | 3489 1250 | 27 97046
25| 20 20| 1950 5724 4431 | 3774 1293 | 2918077
26 | 20 20 | 2188 EO03 4263 | 3815 1740 | 4081633
27| 20 20 | 2096 SRR 3907 | 3568 1757 | 4497057
25| 20 20 | 1968 5344 4737 | 3376 EO7 | 1281402
29| 20 20 166 2396 4407 | 3230 9539 | 224457
30 20 2011999 5589 4101 | 3580 1485 | 36.28383
3| 30 15 | 2335 738 2903 | 4983 1409 | 2354495
32| 30 15 | 2432 7535 4835 | 5163 2760 | 5708376
33| 30 15 | 2453 7834 4915 | 5381 2919 | 59.38962
34| 30 15 | 2434 7854 2234 | 5450 2650 | 5063049
35| 30 15 | 2497 150 5385 | 5653 2765 | 51.34633
36| 30 15 | 2445 7934 5416 | 5489 2518 | 4649188
37| 30 15 | 2664 8218 2452 | 5555 2737 | 4982703
38| 30 15 | 2155 7100 4885 | 4945 2212 | 4525365
33| 30 15 | 2477 7479 5349 | 5002 2130 | 3982053
40 30 15 1 2301 E375 5222 | 4074 1153 | 2207966
AN 36.82297

1923

Kanate Ploydanai et. al. / (IJCSE) International Journal on Computer Science and Engineering

Moreover, we can present that the result is improved
obviously when the problems are applied by new algorithm
that designed for machine availability constraint. The average
of percentage improvement is calculated by averaging the
different value of the fifth column and sixth column. For 15
jobs 15 machines problem, the average of percentage
improvement is 34.24 percentages. For 20 jobs 15 machines
problem, the average of percentage improvement is 37.54
percentages. For 20 jobs 20 machines problem, the average of
percentage improvement is 30.92 percentages. For 30 jobs 15
machines problem, the average of percentage improvement is
44.59 percentages.

000

000 =g

000

000

5000

izl

3000

2000

Problem number
Figure 3. Graph of makesapn from three algorithms

Figure 3 depicts trend of makespan for problems. The
horizontal axis presents number of problem. The first column
from table 1 is the value in the horizontal axis. The vertical
axis presents makespan of each problem. The makespan in
forth column is used to draw graph NSA. The makespan in
fifth column is used to draw graph NSA-WT. The makespan
in sixth column is used to draw graph WT-NSA.

From this graph, graph from NSA is good quality value
because the makespan is from algorithm that ignores machine
availability constraint. Graph NSA-WT is bad quality value.
The graph is from the sequence of NSA that applied machine
availability constraint. Graph WT-NSA is from the algorithm
that design for machine availability constraint. The result is
better form graph NSA-WT.

The lowest graph is from data in forth column. The middle
graph is from data in sixth column. The highest graph is from
fifth column. Definitely, the WT-NSA is well performance
when compare with NSA. The experiment suggests that we
could design algorithm by considering machine availability
constraint when the machines in the factory perform depend
on machine availability constraint.

V. CONCLUSION

In this paper, we propose that algorithm could be designed
by considering machine availability constraint. Data and
graph form the experiment illustrate algorithm that consider
machine availability constraint give the good result for all of
test problems. So, the factories could use algorithm that

ISSN : 0975-3397

Vol. 02, No. 05, 2010, 1919-1925

designed by consider machine availability constraint if
machines work and stop depending on period of working time.
In addition, we suggest that other algorithm that use to
factories that have machine availability constraint could be
designed by considering machine availability constraint. In
future research, the machine availability constraint is extended
to the flexible job shop scheduling problem. The future
problem is high complexity. We add machine availability
constraint condition to the problem and solve by new
developed algorithm.

REFERENCES

[1] F.S. Al-Anzi,Y. N. Sotskov, A. Allahverdi, and G. V. Andreev, “Using
mixed graph coloring to minimize total completion time In job shop
scheduling problem”, Applied mathematics and computation vol.182,
pp. 1137-1148, 2006.

[2] I. Choi and D. Choi, “A local search algorithm for job shop scheduling
problems with alternative operations and sequence dependent setups”,
Computer and industrial engineering, vol. 42, pp. 43-58, 2002.

[3] D. A. Koonce and S. C. Tsai, “Using data mining to find patterns in
genetic algorithm to a job shop schedule”, Computer and industrial
engineering vol. 38, pp. 361-374, 2000.

[4] O. Holthaus and C. Rajendran, “A comparative of study of dispatching
rules in dynamic flow shops and job shops”, European journal of
operational research vol.116, pp. 156-170, 1990.

[5] H. Ohtaand T. Nakatani, “A heuristic job shop scheduling algorithm to
minimize total holding cost of completed and in progress products
subject to no tardy job”, International journal production economics ,
vol. 11, pp. 19-29, 2006.

[6] A. Caumond, P. Lacomme, and N. Tchernev, “A memmetic algorithm
for job shop with time lag”, Computer and operational research.

[7] K. Jansen, M. Mastrolilli, and R. S. Oba, “Approximation scheme for
job shop scheduling problem with controllable processing time”,
European journal of operational research, vol. 1672, pp. 97-319, 2005.

[8] A. Guinet, “Efficiency of reduction of job shop to flow shop problems”,
European journal of operational research, vol. 125 pp. 469-485, 2000.

[9] I. G. Drobouchevitch and V. A. Strusevich, “Heuristic for the two stage
job shop scheduling problem with a bottleneck machine”, European
journal of operational research, vol. 123, pp. 229-240, 2000.

[10] V. Kumar Ganesen, A. I. Sivakumar, and G. Srinivasan, “Hierarchical
minimization of completion time variance and makespan in jobshops”,
Computer and operations research, vol. 33, pp. 1345-1367, 2006.

[11] C. H. Jasan and J. S. Chen, “Mixed binary integer programming
formulations for the reentrant job shop scheduling problem”, Computer
and operational research, vol. 32, pp. 1197-1212, 2005.

[12] V. K. Ganesen and A. I. Sivakumar, “Scheduling in static jobshops for
minimizing mean flowtime subject to minimum total deviation of job
completion times”, International journal production economics, vol. 103,
pp. 633-647, 2006.

[13] D.N. Pham and A. Klingert,” Surgical case scheduling as a generalized
job shop scheduling problem ”, Europian journal of operational research,
vol.185, pp 1011-1025, 2008.

[14] M. Watanabe, K. Ida, and M. Gen, “A genetic algorithm with modified
crossover operator and search area adaptation for the job-shop
scheduling problem”, Computer and industrial engineering, vol. 48, pp.
743-752, 2005.

[15] D.A. Koonce and S.-C. Tsai, “Using data mining to find patterns in
genetic algorithm solutions to a job shop schedule”, Computer and
industrial engineering, vol. 38, pp. 361-374, 2000.

[16] V. K. Ganesen, A. I. Sivakumar, “Hierarchical minimization of
completion time variance and makespan in jobshops, Computer and
operational research, vol. 33, pp.1345-1367, 2006.

[17] V. K. Ganesen and A. I. Sivakumar, “Scheduling in static jobshops for
minimizing mean flowtime subject to minimum total deviation of job

1924

Kanate Ploydanai et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1919-1925

completion times”, International journal production economics, vol. 103,
pp. 633-647, 2006.

[18] A. El-Bouri and P. Shah, “A neural network for dispatching rule
selection in a job shop”, International journal advance manufacturing
technology, vol. 31, pp. 342-349, 2006.

[19] P. D. D. Dominic, S. Kaliyamoorthy, and R. Murugan, “A conflict-based
priority dispatching rule and operation-based approaches to job shops”,
International journal advance manufacturing technology, vol. 24, pp. 76-
80, 2004.

[20] H. Ohta and T. Nakatani, “A heuristic job-shop scheduling algorithm to
minimize the total holding cost of completed and in-process products
subject to no tardy jobs”, International journal production economics,
vol. 101, pp. 19-29. 2006.

[21] W. Xia and Z. Wu, “A hybrid particle swarm optimization approach for
the job-shop scheduling problem”, International journal advance
manufacturing technology, vol. 29, pp. 360-366, 2006.

[22] Askin and Standridge, Modeling and analysis of manufacturing systems,
John Wiley and sons Inc. 1993.

AUTHORS PROFILE

Kanate Ploydanai currently is Ph.D
student at the department
of Industrial Engineering at Kasetsart
University and he is lecturer at Industrial
Engineer technology at College of
industrial technology as King Mongkut ‘s
University of Technology North Bangkok.
His research interest includes production
planning and control, and operation
research.

Dr. Anan Mungwattana currently is an
associate professor at the department of
Industrial Engineering at Kasetsart
University. He is also the chairman of the
department. He earned the Ph.D. degree
in Industrial and Systems Engineering
from Virginia Tech. His research interest
includes lean manufacturing, logistics and
supply chain management, and facility

design.

ISSN : 0975-3397 1925

