
A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

Modeling Of Combinational Circuits Based On
Ternary Multiplexer Using VHDL

A. Sathish kumar
Dept. of Electronics & Communication Engineering,

Amrita Vishwa Vidyapeetham,
Amrita School of Engineering,

Bangalore, India.

A. Swetha Priya
Dept. of Electronics & Communication Engineering,

Amrita Vishwa Vidyapeetham,
Amrita School of Engineering,

Bangalore, India.

Abstract—This paper presents a novel method for defining,
analyzing, testing and implementing the basic combinational
circuitry with VHDL Simulator. This paper shows the potential
of VHDL modeling and simulation that can be applied to
Ternary switching circuits to verify its functionality and timing
specifications. A novel method is brought out for implementing
the basic combinational circuitry with minimum number of
multiplexers. It also includes 1-bit and 2-bit position shifter and
Barrel shifter. Method of coding is illustrated with respect to
block diagram. An intention is to show how proposed simulator
can be used to simulate MVL circuits and to evaluate system
performance.

Keywords-MVL; 9-state logic system; Reliability-Unreliability
model; VHDL

I. INTRODUCTION

The binary logic is limited to only two states ‘1’ and ‘0’,
where as Multi-Valued Logic (MVL) is a set of finite or
infinite number of values [1]. The MVL is implemented in two
modes i.e. current mode and voltage mode. In current mode,
MVL states are defined in terms of output current, which is an
integral multiple of reference current and in voltage mode,
MVL states are in terms of distinct voltage levels. Today’s
VLSI technology offers ways to realize MVL circuits in order
to bring their full potential into many operational circuits.
Many authors have directed their efforts to the implementation
of Multi-Valued logic looking for benefit from all advantages
it possess over the binary logic. It is possible for ternary logic
to achieve simplicity and energy efficiency in digital design
since the logic reduces the complexity of interconnects and
chip area, in turn, reducing the chip delay [2, 3]. It also offers
better utilization of transmission channels because of the
higher information content carried by each line. It gives more
efficient error detection and correction codes and possesses
potentially higher density of information storage. One of the
main advantages of ternary logic is that it reduces the number
of required computation steps. Furthermore, serial and serial-
parallel arithmetic operations can be carried out faster if the
ternary logic is employed.

In 1964, Alexander showed that natural base e=2.71828,
where e is called Euler constant is the most efficient radix for
implementation of switching circuits [4,5]. The base
r=e2=7.389056099 is considered to be more advantageous and

most often used in electronic computers till 20th century with
digits 0 and 1 only. The 20th century brought an alternative to
base-2(binary) with focus on ternary radix r=e3=20.08553692.
As the value of radix increases, the information carrying
capacity of each connection also increases. Hence, multi-
valued logical systems, for instance, a three-valued (radix 3)
digital realization would be more appropriate than binary.
Ternary(or three-valued) means a switching element, which
switches among 3 levels namely true, false and intermediate or
correspondingly 0, 1 and 2 voltage levels [6].

Figure 1. Levels of switching Algebra

Expanding the existing logic levels to ternary and higher
levels as shown in Fig.1, higher processing rates could be
achieved in various applications like memory management,
communication throughput and domain specific computation.
An evident advantage of a ternary representation over binary
is economy of digits. To represent a number in binary system,
one needs 58% more digits than that of ternary. For example,
to represent a 15-digit decimal number, one requires 34
ternary digits instead of 54 binary digits. Ternary
representation admits sign convention also. This is the reason
why ternary is casting its applications in the field of Fuzzy
logic, Machine Learning, Artificial Intelligence, Data Mining,
Robotics, Digital signal processing, Digital control systems
and Image Processing [7]. It is mainly applied in new
transforms for encoding and compression, error correction,
state assignment, representation of discrete information and in
automatic telephony. These benefits have been shown to be
useful for the design of ternary computers, for digital filtering.

The proposed work in this paper deals with the use of Very
High-Speed Integrated Circuit Hardware Description
Language (VHDL) as a logic simulator to evaluate the
performance of MVL circuits [8]. Here we present a concept
to model the ternary combinational and arithmetic circuits
with minimum number of multiplexers showing the potential

ISSN : 0975-3397 1777

A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

and ease in the design of ternary circuits as well as its
modeling using EDA tool for its performance with respect to
verification of desired functionality of MVL. In Section II,
preliminaries to ternary algebra and VHDL for MVL circuits
are introduced. In Section III, 3x1 MUX is taken as a basic
building block to explore the realization of circuits like 9x1
MUX, 27x1 MUX, Half Adder, Half Subtractor, Full Adder,
Full Subtractor, Multiplier, 1-bit and 2-bit Comparator, Ripple
Carry adder and Carry Save adder, 1-bit and 2-bit Position
shifter and Barrel shifter. Conclusion is given in Section VI
and Annexure gives the corresponding codes for circuits given
in section III.

II. VHDL FOR TERNARY ALGEBRA

VHDL can be used to model, simulate and describe ternary
system where signals inside the circuit can take tristate logic
i.e., the usual true and false states, with a third transparent
high impedance state. The third (intermediate) state can be
metaphorically thought of as either an unambiguously true or
unambiguously false. In real life situations also uncertainty in
decisions (probabilistic decisions) occur rather than a clear cut
decision of yes/no requirement such as yes/no/may be,
open/close/half open or half close, up/down/straight or
left/right/straight. This emphasizes that there is always an
uncertainty in deciding the values. Rather, one would come
across situations wherein one has to accept multiple decisions
like the extent to which the decision may be true or may be
false. The Reliability-Unreliability model [9] is sufficient
enough to support the decision methodology statistically as
shown in Fig. 2. Mathematically, it implies that reliability will
be interpreted by the inequality 0≤R≤1. If R=1, it is interpreted
to be absolutely true and if R=0, it is interpreted to be
absolutely false. If R being in the vicinity of 0.5 could be
interpreted as neither true nor false and above 0.5 is said to be
reliability level and below 0.5 is said to be unreliability level.

Figure 2. Truth value decision based on Reliability-Unreliability model

The proposed VHDL simulator can be used to synthesize &
to verify the performance of ternary logic circuits with the
help of technology dependent package called 9-state
StdLogic_1164 package [10] whose levels are listed in Table I
which allows the description of circuits based on TTL, CMOS,
GaAs, NMOS, PMOS and ECL devices. To demonstrate the
use of VHDL as a ternary logic simulator, we have used

Logic-0 to represent 0 volt, High impendence Z to represent
1volt and Logic-1 to represent 2 volts.

VHDL provides an effective way to connect several logic
outputs to a single input, where all but one is forced to the
high impedance state, allowing the remaining outputs to
operate in the normal binary sense. This concept is commonly
used for memory bank connection in computers and other
similar devices to a common data bus where a large number of
devices can communicate over the same channel, simply by
ensuring only one is enabled at a time.

TABLE I. 9-STATE LOGIC SYSTEM

Symbols Values
U Uninitialized
X Unknown
0 Logic 0
1 Logic 1
Z High impedance
W Weak unknown
L Weak zero
H Weak one
- Don’t care

III. DESIGN AND VERIFICATION OF TERNARY CIRCUITS

In this paper, 3x1 MUX is taken as a basic building block to
explore the realization of circuits with minimum number of
ternary 3X1 MUX (Multiplexer) with techniques of EDA
tools. The design concept is implemented based on ternary K-
map method for ternary function minimization.
A. Design of Basic Gates

To design ternary multiplexer, we start with the basic gates
and design of decoder which are building blocks for any
circuitry. The basic building gates are Ternary Inverter,
Ternary OR (TOR), Ternary AND (TAND) and Ternary XOR
(TXOR) [11-13] which is symbolized and represented as given
in Fig.3 and Eq. (1-7) respectively.

Figure 3. Symbols for basic gates

XXSTI  21 (1)









i X if2

i X if
,

i

i
XNTIPTI i (2)

The VHDL package is built as shown in Annex I. The VHDL
code given in Annex II-case I for unary functions is built as
shown in Fig. 4(a) and Table II. The simulation results are
shown in Fig. 4(b). Similarly, Annex II-case II shows the code
for ternary Inverter which functions as tabulated in Table II
and Fig. 5 shows the simulation result.

ISSN : 0975-3397 1778

A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

Figure 4(a). Circuit for obtaining unary functions

TABLE II. OPERATING TABLE OF UNARY FUNCTIONS

X X0 XZ X1 X0Z XZ1 X01 0X
NTI

ZX
STI

1X
NTI

0 1 0 0 1 0 1 1 1 1

Z 0 1 0 1 1 0 0 Z 1

1 0 0 1 0 1 1 0 0 0

Figure 4(b). Simulation result of unary functions

Figure 5. Simulation result of Ternary Inverter

Logic Sum or TOR:
Xn…X2X1  = MAX(Xn,…,X2,X1) (3)

Logic Product or TAND:
Xn…X2X1  = MIN(Xn,…,X2,X1) (4)

Similarly, TNAND is
Xn …X2X1  = MIN(Xn …X2X1 ) (5)

TNOR is
Xn ..X2X1  =MAX(Xn ..X2X1 ) (6)

Annex II-case III shows the code for basic ternary gates which
functions as tabulated in Table III and Fig. 6 shows the
simulation results.

Figure 6. Simulation result of basic ternary gates

Ternary Ex-OR function is mod-3 addition of ternary
numbers and is represented as shown in Fig.7(a) and Eq. (7).

Modulo-3 sum [14] is the sum of two integers ignoring the
carry digits in the addition as shown in Table IV. Annex II-
case IV shows the coding of Modulo-Sum and simulation
result is shown in Fig. 7(b). Redundant code techniques use
half-adding functions which require Modulo-3 addition.

3mod)(),(YXYXMODSUMYX  (7)

Figure 7(a). Symbols of TXOR & TEQV gates

TABLE IV. OPERATING TABLE OF MODULO-3 SUM OPERATORS

A B TXOR STEQV PTEQV NTEQV

0 0 0 1 1 1

0 Z Z Z 1 0

0 1 1 0 0 0

Z 0 Z Z 1 0

Z Z 1 0 0 0

Z 1 0 1 1 1

1 0 1 0 0 0

1 Z 0 1 1 1

1 1 Z Z 1 0

Figure 7(b). Simulation results of TXOR & TEQV gates

B. Design of 3x1Multiplexer

An approach for implementing ternary function is to
convert given ternary variable into unary variable using
ternary to unary decoder as shown in Fig.8. A decoder shown
in Fig.9(a) is a combinational circuit that converts the ternary
information from n input lines to a maximum of 3n unique
output lines [15-18]. The code is given in Annex II-case V
which functions as given in Table II and the simulation results
as shown in Fig. 9(b).

Figure 8. Implementation of ternary function

A ternary multiplexer is a combinational circuit that selects
one of the 3n input lines based, on a set of n selection lines and
directs it to a single output line. Normally, there are 3n inputs
which come from a decoder and n select lines whose bit
combinations determine which input to select. The design of
3X1 multiplexer (MUX) is as presented in Fig.10 and operates
as given in Table V. The structural model is given in Annex
II-case VI and the simulation results in Fig. 10(b).

ISSN : 0975-3397 1779

A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

Figure 9(a). Block diagram and Circuit diagram of 1x3 Decoder

Figure 9(b). Simulation result of 1x3 Decoder

Figure 10(a). Block and circuit diagram for 3x1 Multiplexer

TABLE V. FUNCTION TABLE OF 3X1 MULTIPLEXER

S Y

0 I0

Z I1

1 I2

Figure 10(b). Simulation result of 3x1 Multiplexer

C. Design of 9x1Mux Using 3x1MUX

A 9x1 MUX is built using four 3x1 MUX as shown in
Fig.11(a). A 9x1 MUX has 2 select lines to give an output
among 9 inputs as given in Table VI and Fig.11(a) shows the
simulation result for structural coding given in AnnexIII-caseI.

D. Design of Half Adder and Subtractor using 3x1 MUX

A ternary half adder (HA) is a circuit that adds two bits
and generates a sum and carry using Modulo-3 addition. The
HA functions as shown in Table VII and can be realized as
given in Fig.12 (a). Annex III-case II shows the coding model
which on simulation gives waveform shown in Fig 12(b).
Similarly, ternary half subtractor (HS) is a circuit that will
subtract one from the other number (i.e., A-B) and generate a
difference and borrow using ternary logic. It functions as
shown in Table VIII and can be realized as given in Fig.13(a).
Annex-III-case III gives the code for HS which is illustrated
with wave form as shown in Fig.13(b).

E. Design of Full Adder & Full Subtractor using 3x1 MUX

A full adder (FA) is a circuit that will add three bits and
generates a sum and a carry. Fig.14(a-b) shows the design of

FA and simulation results respectively as given in Table IX.
Annex III-case IV gives the code for FA. Similarly, Full
Subtractor (FS) is a circuit that will subtract three bits (i.e., (A-
(B-Bin)), and generates a difference and borrow. Fig.15(a-b)
shows the design of FS and simulation results respectively, as
given in Table X. Annex III-case V gives the code for FS.

F. Design of 1-bit Multiplier using 3x1 MUX

A Multiplier multiplies two bits and generates the product
as shown in Table XI. The structural modeling is given in
Annex III-case VI according to the design in Fig.16(a) and the
simulation results are given in Fig.16(b).

G. Design of 1-bit Comparator using 3x1 MUX

A magnitude comparator is a combinational circuit that
compares two bits A & B and determines their relative
magnitudes. The comparison of two bits is an operation that
determines if one number is greater than, less than or equal to
other number as tabulated in Table XII. The design of 1-bit
comparator is shown in Fig.17(a). It gives Y=f(A>B) when
en=0, Y=f(A=B) when en=1 and Y=f(A<B) when en=2.
Fig.17(b) shows the simulation results with respect to Annex
III-case VII.

H. Design of 2-bit Comparator using 27x1 MUX

The design of 27x1 MUX is shown in Fig.18(a)
functioning as in Table XIII. The structural modeling is given
in Annex III-case VIII and the simulation result is given in
Fig.18(b). The design of 2-bit Comparator needs three 27x1
MUX and one 3x1 MUX which selects one of the function as
given in the Fig.19(a). If en=0, Y=f(A1A0>B1B0), if en=1,
Y=f(A1A0=B1B0) and if en=2, Y=f(A1A0<B1B0) and Table
XIV shows the operation. The structural modeling is given in
Annex III-case IX and simulation result is shown in Fig.19(b).

I. Design of Ripple Carry Adder and Carry Save Adder

Two binary words, each of n bits, can be added using
ripple carry adder as shown in Fig.20(a). The carry input is
connected to the least significant bit and the carry output of
each full adder is connected to carry input of the next most
significant FA. It is a typical example of iterative circuit which
is slow, since in the worst case a carry must propagate from
least significant FA to the most significant one. The structural
modeling is given in Annex III-case X and simulation result is
shown in Fig.20(b). Carry save adder computes the sum of 3
or more n-bit numbers which gives the sequence of partial sum
and carry bits. The structural modeling is given in Annex III-
case XI and simulation result is shown in Fig.21(b).

J. Design of 1-bit & 2bit position shifter and Barrel Shifter

The shifter circuit is designed as shown in Fig. 22(a), shifts
the bits of n input vectors by 1-bit position to the right. It fills
the vacant bit on the left side with zero. Table XV gives the
function table of shifter circuit. If S=0, the input is loaded as
output which is said to work in parallel mode, if S=1, the input
is shifted by one bit position and if S=2, the input is shifted by
two-bit positions padded by zeros in the left position. The

ISSN : 0975-3397 1780

A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

more versatile shifter circuit will be able to shift by more bit
positions at a time. If the bits that are shifted out are placed
into the vacated positions on the left, then the circuit
effectively rotates the bits of input vector by a specified
number of bit positions. Such a circuit is often called a Barrel
shifter. Barrel shifter [19] works as given in Table XVI and
design is as given in Fig. 23(a). The shifter takes the parallel
load for S=0 and for S=1, the output is shifted by one position
and values are rotated. Similarly for S=2, the output is shifted
by two bit position and rotated circularly. Annex II-case XII
and case XIII shows the VHDL code for position shifter and
barrel shifter respectively. The simulation result for shifter
circuitry and Barrel shifter is shown in Fig.22(b) and
Fig.23(b), respectively.

Figure 11(a). Block diagram using 3x1 MUX

TABLE VI. FUNCTION TABLE OF 9X1MULTIPLEXER

S1 S0 OUT

0 0 I0

0 Z I1

0 1 I2

Z 0 I3

Z Z I4

Z 1 I5

1 0 I6

1 Z I7

1 1 I8

Figure 11(b). Simulation result of 9x1 MUX using 3x1 MUX

Figure 12(a). Block diagram of half adder using 3x1 MUX

TABLE VII. FUNCTION TABLE FOR HALF ADDER

A B SUM CARRY

0 0 0 0

0 Z Z 0

0 1 1 0

Z 0 Z 0

Z Z 1 0

Z 1 0 Z

1 0 1 0

1 Z 0 Z

1 1 Z Z

Figure 12(b).Simulation result of Half Adder

Figure 13(a). Block diagram of Half Subtractor using 3x1 MUX

TABLE VIII. FUNCTION TABLE FOR HALF SUBTRACTOR

A B DIFF BORR

0 0 0 0

0 Z 1 Z

0 1 Z Z

Z 0 Z 0

Z Z 0 0

Z 1 1 Z

1 0 1 0

1 Z Z 0

1 1 0 0

Figure 13(b). Simulation result of Half Subtractor

Figure 14(a). Block diagram of Full Adder using 3x1 MUX

TABLE IX. FUNCTION TABLE FOR FULL ADDER

ISSN : 0975-3397 1781

A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

A B Cin SUM CARRY

0 0 0 0 0

0 0 Z Z 0

0 0 1 1 0

0 Z 0 Z 0

0 Z Z 1 0

0 Z 1 0 Z

0 1 0 1 0

0 1 Z 0 Z

0 1 1 Z Z

Z 0 0 Z 0

Z 0 Z 1 0

Z 0 1 0 Z

Z Z 0 1 0

Z Z Z 0 Z

Z Z 1 Z Z

Z 1 0 0 Z

Z 1 Z Z Z

Z 1 1 1 Z

1 0 0 1 0

1 0 Z 0 Z

1 0 1 Z Z

1 Z 0 0 Z

1 Z Z Z Z

1 Z 1 1 Z

1 1 0 Z Z

1 1 Z 1 Z

1 1 1 0 1

Figure 14(b). Simulation result of Full Adder

Figure 15(a). Block diagram of Full Subtractor

TABLE X. FUNCTION TABLE FOR FULL SUBTRACTOR

A B Bin DIFF BORR

0 0 0 0 0

0 0 Z 1 Z

0 0 1 Z Z

0 Z 0 1 Z

0 Z Z Z Z

0 Z 1 0 Z

0 1 0 Z Z

0 1 Z 0 Z

0 1 1 1 1

Z 0 0 Z 0

Z 0 Z 0 0

Z 0 1 1 Z

Z Z 0 0 0

Z Z Z 1 Z

Z Z 1 Z Z

Z 1 0 1 Z

Z 1 Z Z Z

Z 1 1 0 Z

1 0 0 1 0

1 0 Z Z 0

1 0 1 0 0

1 Z 0 Z 0

1 Z Z 0 0

1 Z 1 1 Z

1 1 0 0 0

1 1 Z 1 Z

1 1 1 Z Z

ISSN : 0975-3397 1782

A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

Figure 15(b). Simulation result of Full Subtractor

Figure 16(a). Block diagram of 1-bit Multiplier using 3x1 MUX

TABLE XI. FUNCTION TABLE FOR 1-BIT MULTIPLIER
A B PROD CARRY

0 0 0 0

0 Z 0 0

0 1 0 0

Z 0 0 0

Z Z Z 0

Z 1 1 0

1 0 0 0

1 Z 1 0

1 1 Z Z

Figure 16(b). Simulation result of 1-bit Multiplier using 3x1 MUX

Figure 17(a). Block diagram of 1-bit Comparator

TABLE XII. FUNCTION TABLE FOR 1-BIT COMPARATOR
A B A>B A=B A<B

0 0 0 1 0

0 Z 0 0 1

0 1 0 0 1

Z 0 1 0 0

Z Z 0 1 0

Z 1 0 0 1

1 0 1 0 0

1 Z 1 0 0

1 1 0 1 0

Figure 17(b). Simulation results of 1-bit Comparator using 3x1 MUX

Figure 18(b). Simulation result of 27x1 MUX

ISSN : 0975-3397 1783

A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

TABLE XIV. FUNCTION TABLE FOR 2-BIT COMPARATOR
A1 A0 B1 B0 A>B A=B A<B

0 0 0 0 0 1 0

0 0 0 Z 0 0 1

0 0 0 1 0 0 1

0 0 Z 0 0 0 1

0 0 Z Z 0 0 1

0 0 Z 1 0 0 1

0 0 1 0 0 0 1

0 0 1 Z 0 0 1

0 0 1 1 0 0 1

0 Z 0 0 1 0 0

0 Z 0 Z 0 1 0

0 Z 0 1 0 0 1

0 Z Z 0 0 0 1

0 Z Z Z 0 0 1

0 Z Z 1 0 0 1

0 Z 1 0 0 0 1

0 Z 1 Z 0 0 1

0 Z 1 1 0 0 1

0 1 0 0 1 0 0

0 1 0 Z 1 0 0

0 1 0 1 0 1 0

0 1 Z 0 0 0 1

0 1 Z Z 0 0 1

0 1 Z 1 0 0 1

0 1 1 0 0 0 1

0 1 1 Z 0 0 1

0 1 1 1 0 0 1

Z 0 0 0 1 0 0

Z 0 0 Z 1 0 0

Z 0 0 1 1 0 0

Z 0 Z 0 0 1 0

Z 0 Z Z 0 0 1

Z 0 Z 1 0 0 1

Z 0 1 0 0 0 1

Z 0 1 Z 0 0 1

Z 0 1 1 0 0 1

Z Z 0 0 1 0 0

Z Z 0 Z 1 0 0

Z Z 0 1 1 0 0

Z Z Z 0 1 0 0

Z Z Z Z 0 1 0

Z Z Z 1 0 0 1

Z Z 1 0 0 0 1

Z Z 1 Z 0 0 1

Z Z 1 1 0 0 1

Z 1 0 0 1 0 0

Z 1 0 Z 1 0 0

Z 1 0 1 1 0 0

Z 1 Z 0 1 0 0

Z 1 Z Z 1 0 0

Z 1 Z 1 0 1 0

Z 1 1 0 0 0 1

Z 1 1 Z 0 0 1

Z 1 1 1 0 0 1

1 0 0 0 1 0 0

1 0 0 Z 1 0 0

1 0 0 1 1 0 0

1 0 Z 0 1 0 0

1 0 Z Z 1 0 0

1 0 Z 1 1 0 0

1 0 1 0 0 1 0

1 0 1 Z 0 0 1

1 0 1 1 0 0 1

1 Z 0 0 1 0 0

1 Z 0 Z 1 0 0

1 Z 0 1 1 0 0

1 Z Z 0 1 0 0

1 Z Z Z 1 0 0

1 Z Z 1 1 0 0

1 Z 1 0 1 0 0

1 Z 1 Z 0 1 0

1 Z 1 1 0 0 1

1 1 0 0 1 0 0

1 1 0 Z 1 0 0

1 1 0 1 1 0 0

1 1 Z 0 1 0 0

1 1 Z Z 1 0 0

1 1 Z 1 1 0 0

1 1 1 0 1 0 0

1 1 1 Z 1 0 0

1 1 1 1 0 1 0

ISSN : 0975-3397 1784

A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

Figure 22(b). Simulation result of 1 & 2 bit Position Shifter

Figure 19(b). Simulation result of 2-bit Comparator

Figure 20(a). Block diagram of Ripple Carry Adder

Figure 20(b). Simulation result of Ripple Carry Adder

Figure 21(a). Block diagram of Carry Save Adder

Figure 21(b). Simulation result of Carry Save Adder

Figure 22(a). Block diagram of 1-bit & 2-bit Position Shifter

TABLE XV. FUNCTION TABLE FOR 1-BIT & 2-BIT POSITION SHIFTER

Figure 23(a). Block diagram of Barrel Shifter

TABLE XVI. FUNCTION TABLE FOR BARREL SHIFTER

S Y0 Y1 Y2

0 (PARALLEL LOAD) W0 W1 W2

Z

(SHIFTS BY 1-BIT POSITION TO
RIGHT)

W2

W1

W0

W0

W2

W1

W1

W0

W2

1

(SHIFTS BY 2-BIT POSITION TO
RIGHT)

W1

W2

W0

W2

W0

W1

W0

W1

W2

Figure 23(b). Simulation result of Barrel Shifter

IV. CONCLUSION

MVL provides means of increasing data processing
capability per unit chip area. One of the main advantage of
ternary logic is that it reduces the number of required
computation steps. The number of digits required in a ternary
family is log32 times less than that required in binary logic. It
is assumed that ternary-logic elements can operate at a speed
approaching that of the corresponding binary-logic elements.
However, if the ternary and binary logic gates are used to take
advantage of their respective merits, performance could be

ISSN : 0975-3397 1785

A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

significantly improved because ternary logic gates are a good
candidate for decoding block since it requires less number of
gates while binary logic gates are a good candidate for fast
computation modules. Thus, ternary logic gate design
technique combined with the conventional binary logic gate
design technique also provides an excellent speed and power
consumption characteristics in data path circuit such as full
adder and multiplier. In this paper, design of combinational
and arithmetic circuits is designed with minimum number of
ternary multiplexers. VHDL simulator has been used to
simulate MVL Systems which provide enough information to
verify functionality and timing specifications. The simulation
results with the code are furnished.

REFERENCES
[1] A.P.Dhande, R.C.Jaiswal and S.S.Dudam, “Ternary Logic Simulator

Using VHDL”, 4th International Conference: Sciences of Electronic,
SETIT 2007-TUNISIA, March 25-29, pp.1-6, 2007.

[2] Sheng Lin, Yong-Bin Kim, and Fabrizio Lombardi, “CNTFET-Based
Design of Ternary Logic Gates and Arithmetic Circuits”, IEEE
Transactions on Nanotechnology, Vol. PP, Issue.99, Nov.23, 2009, pp.1-
1.

[3] S.L.Hurst, “Multivalued logic - Its status and its future”, IEEE Trans.On
Computers, vol. C-33, 1984, pp. 1160-1179.

[4] C. Rozon, On the Use of VHDL as a Multi-Valued Logic Simulator,
26th International Symposium on Multiple-Valued Logic (ISMVL '96),
IEEE, 1996, pp.110-115.

[5] Raymond E.Miller,” Switching Theory, Vol. I, John Wiley & Sons,1966,
pp.8-9.

[6] M. Yoeli and G. Rosenfeld, “Logical Design of Ternary Switching
Circuits”, IEEE Transactions on Electronic Computers, Vol.EC-14,
Issue.1, Feb.1965, pp.19-29.

[7] Marek Perkowski, Presentation on “Introduction to multivalued logic”.
Available as: http://web.cecs.pdx.edu/~mperkows/
temp/JULY/006.Introduction-to-MV-logic.ppt

[8] Sudhakar Yalamanchili, Presentation on ”Basics of VHDL”, Georgia
Institute of Technology, 2006.

[9] D. Venkat Reddy, Ch. D. V. Paradesi Rao and E. G. Rajan, “Sequential
Circuits In The Framework Of (2n+1)-ary Discrete Logic”, IJCSNS
International Journal of Computer Science and Network Security, Vol.8
No.7, July 2008, pp.175-181.

[10] A. P. Dhande and V. T. Ingole, “Design And Implementation Of 2 Bit
Ternary ALU Slice”, 3rd International Conference: Sciences of
Electronic (SETIT 2005), IEEE Transc., March 2005, pp.1-11.

[11] H.T. Mouftah, “A Study On The Implementation Of Three-valued
Logic”, University of Toronto, Toronto, Ontario, Canada, pp.123-126.

[12] Kenneth C. Smith, “Multiple-Valued Logic: A Tutorial and
Appreciation”, Survey & Tutorial Series, IEEE Transc. in
computers,Vol.21, Issue.4, Apr.1988, pp.17-27.

[13] D. I. Porat, “Three-valued digital systems”, PROC. IEE Inst. Elect Eng,
Vol. 116, No. 6, JUNE 1969, pp.947-954.

[14] R. P. Hallworth and F. G. Heath, “Semiconductor Circuits For Ternary
Logic”, The Institution of Electrical Engineers, Monograph No. 482 E,
IEEE trans.,VOL. 109, PART C.,Nov. 1961, pp.219-225.

[15] Richard F.Tinder, “Engineering Digital Design”, Second Edition,
Academic Presss,2000.

[16] Neil H.E.Weste,David Harris, Ayan Banerjee, “CMOS VLSI Design”,A
circuit and systems perspective, third Edition, pearon Education,2007.

[17] John F.Wakerly, “Digital Design, principles & practices, third edition,
prentice Hall of India Private Limited (EEE),2005.

[18] Nazeih M.Botros, “HDL Programming VHDL and verilog”,dreamtech
press, 2006.

[19] Stephen Brown and Zvonko Vranesic, “Fundamentals of Digital Logic
with Verilog Design”, second edition, Tata McGraw-Hill Publishing
Company Limited, New Delhi,2008.

A.Sathish Kumar received Bachelors in
Electronics and Communication Engineering
from Sona College of Technology, Salem,
Tamilnadu in the year 2009 and currently
pursuing Masters in VLSI Design at Amrita

School of Engineering, Bangalore, India. He is a member of
IETE.

A. Swetha Priya received Bachelors in
Electronics and Instrumentation Engineering
from Amrita School of Engineering, Bangalore in
the year 2009 and currently pursuing Masters in
VLSI Design at Amrita School of Engineering,

Bangalore, India.

ANNEXURE
ANNEX I : CODE OF TERNARY PACKAGE
Library IEEE;
Use IEEE.STD_LOGIC_1164.ALL;
PACKAGE ternary_types IS
TYPE ternarylogic IS ('0','Z','1');
TYPE t_logic_vector is array (natural range <>) of ternarylogic;
function stnot (l: ternarylogic) return ternarylogic;
function ptnot (l: ternarylogic) return ternarylogic;
function ntnot (l: ternarylogic) return ternarylogic;
function litzero (l:ternarylogic) return ternarylogic;
function litone (l:ternarylogic) return ternarylogic;
function littwo (l:ternarylogic) return ternarylogic;
function lit01 (l:ternarylogic) return ternarylogic;
function lit12 (l:ternarylogic) return ternarylogic;
function lit02 (l:ternarylogic) return ternarylogic;
function stand (l: ternarylogic; r: ternarylogic) return ternarylogic;
function stor (l: ternarylogic; r: ternarylogic) return ternarylogic;
function stnand (l: ternarylogic; r: ternarylogic) return ternarylogic;
function ptnand (l: ternarylogic; r: ternarylogic) return ternarylogic;
function stor3 (l: ternarylogic; r: ternarylogic; u:ternarylogic) return ternarylogic;
function stand3 (l: ternarylogic; r: ternarylogic; u:ternarylogic) return ternarylogic;
function ntnand (l: ternarylogic; r: ternarylogic) return ternarylogic;
function stnor (l: ternarylogic; r: ternarylogic) return ternarylogic;
function ptnor (l: ternarylogic; r: ternarylogic) return ternarylogic;
function ntnor (l: ternarylogic; r: ternarylogic) return ternarylogic;
function txor (l: ternarylogic; r: ternarylogic) return ternarylogic;
END ternary_types;

PACKAGE BODY ternary_types is
type t_logic_ld is array (ternarylogic) of ternarylogic;
type t_logic_table is array (ternarylogic, ternarylogic) of ternarylogic;
type t_logic_table3 is array (ternarylogic, ternarylogic,ternarylogic) of ternarylogic;
constant stand_table : t_logic_table := (('0', '0', '0'),('0', 'Z', 'Z'),('0', 'Z', '1'));
constant stnand_table : t_logic_table :=(('1', '1', '1'),('1', 'Z', 'Z'),('1', 'Z', '0'));
constant ptnand_table : t_logic_table := (('1', '1', '1'),('1', '1', '1'),('1', '1', '0'));
constant ntnand_table : t_logic_table := (('1', '1', '1'),('1', '0', '0'),('1', '0', '0'));
constant stor_table : t_logic_table :=(('0', 'Z', '1'),('Z', 'Z', '1'),('1', '1', '1'));
constant stnor_table : t_logic_table :=(('1', 'Z', '0'),('Z', 'Z', '0'),('0', '0', '0'));
constant ptnor_table : t_logic_table :=(('1', '1', '0'),('1', '1', '0'),('0', '0', '0'));
constant stor3_table : t_logic_table3 :=((('0', 'Z', '1'),('Z', 'Z', '1'),('1', '1', '1')),(('Z',
'Z', '1'),('Z', 'Z', '1'),('1', '1', '1')),(('1', '1', '1'),('1', '1', '1'),('1', '1', '1')));
constant stand3_table : t_logic_table3 :=((('0', '0', '0'),('0', '0', '0'),('0', '0', '0')),(('0',
'0', '0'),('0', 'Z', 'Z'),('0', 'Z', 'Z')),(('0', '0', '0'),('0', 'Z', 'Z'),('0', 'Z', '1')));
constant ntnor_table : t_logic_table :=(('1', '0', '0'),('0', '0', '0'),('0', '0', '0'));
constant txor_table : t_logic_table :=(('0', 'Z', '1'),('Z', '1', '0'),('1', '0', 'Z'));
constant stnot_table : t_logic_ld := ('1','Z','0');
constant ptnot_table : t_logic_ld := ('1','1','0');
constant ntnot_table : t_logic_ld := ('1','0','0');
constant litzero_table : t_logic_ld := ('1','0','0');
constant litone_table : t_logic_ld := ('0','1','0');
constant littwo_table : t_logic_ld := ('0','0','1');

ISSN : 0975-3397 1786

A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

constant lit01_table : t_logic_ld := ('1','1','0');
constant lit12_table : t_logic_ld := ('0','1','1');
constant lit02_table : t_logic_ld := ('1','0','1');

--lit zero
function litzero (l: ternarylogic)
return ternarylogic is
begin
return (litzero_table(l));
end litzero;
--lit one
function litone (l: ternarylogic)
return ternarylogic is
begin
return (litone_table(l));
end litone;
--lit two
function littwo (l: ternarylogic)
return ternarylogic is
begin
return (littwo_table(l));
end littwo;
--lit01
function lit01 (l: ternarylogic)
return ternarylogic is
begin
return (lit01_table(l));
end lit01;
--lit02
function lit02 (l: ternarylogic)
return ternarylogic is
begin
return (lit02_table(l));
end lit02;
--lit12
function lit12 (l: ternarylogic)
return ternarylogic is
begin
return (lit12_table(l));
end lit12;
--stand
function stand (l: ternarylogic; r: ternarylogic)
return ternarylogic is
begin
return (stand_table(l, r));
end stand;
--stor
function stor (l: ternarylogic; r: ternarylogic)
return ternarylogic is
begin
return (stor_table(l, r));
end stor;
--stnand
function stnand (l: ternarylogic; r: ternarylogic)
return ternarylogic is
begin
return (stnand_table(l, r));
end stnand;
--stor3
function stor3 (l: ternarylogic; r: ternarylogic; u: ternarylogic)
return ternarylogic is
begin
return (stor3_table(l, r, u));
end stor3;
--stand3
function stand3 (l: ternarylogic; r: ternarylogic; u: ternarylogic)
return ternarylogic is
begin
return (stand3_table(l, r, u));
end stand3;
--ptnand
function ptnand (l: ternarylogic; r: ternarylogic)
return ternarylogic is
begin
return (ptnand_table(l, r));

end ptnand;
--ntnand
function ntnand (l: ternarylogic; r: ternarylogic)
return ternarylogic is
begin
return (ntnand_table(l, r));
end ntnand;
--stnor
function stnor (l: ternarylogic; r: ternarylogic)
return ternarylogic is
begin
return (stnor_table(l, r));
end stnor;
--ptnor
function ptnor (l: ternarylogic; r: ternarylogic)
return ternarylogic is
begin
return (ptnor_table(l, r));
end ptnor;
--ntnor
function ntnor (l: ternarylogic; r: ternarylogic)
return ternarylogic is
begin
return (ntnor_table(l, r));
end ntnor;
--txor
function txor (l: ternarylogic; r: ternarylogic)
return ternarylogic is
begin
return (txor_table(l, r));
end txor;
--simple not
function stnot (l: ternarylogic)
return ternarylogic is
begin
return (stnot_table(l));
end stnot;
--positive not
function ptnot (l: ternarylogic)
return ternarylogic is
begin
return (ptnot_table(l));
end ptnot;
--ntnot
function ntnot (l: ternarylogic)
return ternarylogic is
begin
return (ntnot_table(l));
end ntnot;
END ternary_types;

ANNEX II : CODE FOR BASIC BUILDING GATES

CASE I : PROGRAM FOR UNARY OPERATORS
library ieee;
use ieee.std_logic_1164.all;
use work.ternary_types.ALL;
entity literals is
port(x:in ternarylogic;
x02,x0,cx2,cx1,x2,x1,x01,x12:inout ternarylogic);
end literals;
architecture dataflow of literals is
begin
x0<=ntnot(x); -- gives

0X & X0

cx2<=ptnot(x); -- gives
1X

cx1<=stnot(x); -- gives
ZX

x2<=ntnot(cx2); -- gives X
1

x1<=ntnor(x0,x2); -- gives X
Z

x01<=stor(x0,x1); -- gives X
0Z

x12<=stor(x2,x1); -- gives X
Z1

x02<=stor(x0,x2); -- gives X
01

end dataflow;

CASE II: PROGRAM FOR TERNARY INVERTERS

ISSN : 0975-3397 1787

A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE WORK.ternary_types.ALL;
ENTITY TI IS
PORT (I : IN ternarylogic; STO,NTO,PTO : OUT ternarylogic);
END TI;
ARCHITECTURE BEH OF TI IS
BEGIN
NTO <= ntnot(I); -- Negative Ternary Inverter
PTO <= ptnot(I); -- Positive Ternary Inverter
STO <= stnot(I); -- Simple Ternary Inverter
END BEH;

CASE III: PROGRAM FOR BASIC TERNARY GATES
library ieee;
USE IEEE.std_logic_1164.ALL;
USE WORK.ternary_types.ALL;
ENTITY ANDALL IS
PORT (I1,I2 : IN ternarylogic;
a,b,c,d:INOUT ternarylogic;
o1,o2,o3,o4,o5,o6,o7,o8: OUT ternarylogic);
END ANDALL;
ARCHITECTURE BEH OF ANDALL IS
BEGIN
--ternary or
a <= stor(I1,I2);
o1 <= stnot(a); --simple nor
o2<= ptnot(a); --positive nor
o3 <= ntnot(a); --negative nor
--ternary nor
b <= stnor(I1,I2);
o4<= stnot(b);--simple or
-- ternary and
c <= stand(I1,I2);
o5 <= stnot(c); --simple nand
o6 <= ptnot(c); --positive nand
o7 <= ntnot(c); --negative nand
--ternary nand
d<= stnand(I1,I2);
o8 <= stnot(d); --simple and
END BEH;

CASE IV: PROGRAM FOR MODULO-3 SUM OPERATORS
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE WORK.ternary_types.ALL;
ENTITY tequ1 IS
PORT (I0,I1 : IN ternarylogic;
y,y1,y2: OUT ternarylogic);
END tequ1;
ARCHITECTURE BEH OF tequ1 IS
signal O:ternarylogic;
BEGIN
O <= txor(I0,I1);y<=stnot(O);
y1<=ptnot(O);y2<=ntnot(O);
END BEH;

CASE V: PROGRAM FOR DECODER
library ieee;
use ieee.std_logic_1164.all;
use work.ternary_types.ALL;
entity decoder is
port(x:in ternarylogic; a,b,c:inout ternarylogic);
end decoder;
architecture archdecoder of decoder is
signal d:ternarylogic;
begin
a<=ntnot(x); -- gives X

0
d<=ptnot(x);c<=ntnot(d); -- gives X

1
b<=ntnor(a,c); -- gives X

Z
end archdecoder;

CASE VI: PROGRAM FOR 3x1 MULTIPLEXER
library ieee;
use ieee.std_logic_1164.all;

USE WORK.ternary_types.ALL;
ENTITY mux3_1 IS
port(a,b,c:in ternarylogic;
s:in ternarylogic;
y:out ternarylogic);
end mux3_1;
architecture struct of mux3_1 is
signal s0,s1,s2,a1,b1,c1,y1:ternarylogic;
component decoder
PORT (x : in ternarylogic; a,b,c: inout ternarylogic);
END component;
component stand1
PORT (I0,I1 : IN ternarylogic; O : OUT ternarylogic);
END component;
component stor1
PORT (I0,I1 : IN ternarylogic; O : OUT ternarylogic);
END component;
begin
a01:decoder port map(s,s0,s1,s2);
a11:stand1 port map(a,s0,a1);
a21:stand1 port map(b,s1,b1);
a31:stand1 port map(c,s2,c1);
a41:stor1 port map(a1,b1,y1);
a51:stor1 port map(y1,c1,y);
end struct;

ANNEX III : CODE FOR COMBINATIONAL CIRCUIT MINIMIZATION
USING 3X1 MUX

CASE I: PROGRAM FOR 9x1 MUX USING 3x1 MUX
library ieee;
use ieee.std_logic_1164.all;
USE WORK.ternary_types.ALL;
ENTITY mux9_1 IS
port(a0,a1,a2,a3,a4,a5,a6,a7,a8:in ternarylogic;
s0,s1:in ternarylogic; y:out ternarylogic);
end mux9_1;
architecture beh of mux9_1 is
signal y1,y2,y3:ternarylogic;
component mux3_1
port(a,b,c:in ternarylogic; s:in ternarylogic; y:out ternarylogic);
end component;
begin
a00:mux3_1 port map(a0,a1,a2,s1,y1);
a11:mux3_1 port map(a3,a4,a5,s1,y2);
a22:mux3_1 port map(a6,a7,a8,s1,y3);
a33:mux3_1 port map(y1,y2,y3,s0,y);
end beh;

CASE II: PROGRAM FOR HALF ADDER USING 3x1 MUX
library ieee;
use ieee.std_logic_1164.all;
USE WORK.ternary_types.ALL;
ENTITY ha_mux is
port(a,b:in ternarylogic; sum,cy:out ternarylogic);
end ha_mux;
architecture beh of ha_mux is
signal x,x1,y1,y2:ternarylogic;
component txor1
PORT (I0,I1 : IN ternarylogic; O : OUT ternarylogic);
END component;
component stand1
PORT (I0,I1 : IN ternarylogic; O : OUT ternarylogic);
END component;
component mux3_1
port(a,b,c:in ternarylogic; s:in ternarylogic; y:out ternarylogic);
end component;
begin
y1<=littwo(b);
z0:txor1 port map(a,b,x);
z12:stand1 port map('Z',y1,y2);
z11:stand1 port map('Z',b,x1);
z1:mux3_1 port map(b,x,x,a,sum); --Sum
z2:mux3_1 port map('0',y2,x1,a,cy); --Carry
end beh;

ISSN : 0975-3397 1788

A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

CASE III: PROGRAM FOR HALF SUBTRACTOR USING 3x1 MUX
library ieee;
use ieee.std_logic_1164.all;
USE WORK.ternary_types.ALL;
ENTITY hsub_mux is
port(a,b:in ternarylogic;
dif,bor:out ternarylogic);
end hsub_mux;
architecture beh of hsub_mux is
signal x,x2,x3,x1,y1,y2:ternarylogic;
component txor1
PORT (I0,I1 : IN ternarylogic; O : OUT ternarylogic);
END component;
component stand1
PORT (I0,I1 : IN ternarylogic; O : OUT ternarylogic);
END component;
component mux3_1
port(a,b,c:in ternarylogic; s:in ternarylogic; y:out ternarylogic);
end component;
begin
y1<=stnot(a);
z0:txor1 port map(y1,b,x);
y2<=stnot(x);
z1:mux3_1 port map(y2,y2,y2,a,dif); --Difference
x1<=stand('Z',b); x2<=littwo(b); x3<=stand('Z',x2);
z2:mux3_1 port map(x1,x3,'0',a,bor); --Borrow
end beh;

CASE IV: PROGRAM FOR FULL ADDER USING 3x1 MUX
library ieee;
use ieee.std_logic_1164.all;
USE WORK.ternary_types.ALL;
ENTITY fadd_mux is
port(a,b,c:in ternarylogic;
sum,cy:out ternarylogic);
end fadd_mux;
architecture beh of fadd_mux is
signal x,x2,x1,x3,x4,x01,x11,sum1,sum2,sum3,cy1,cy2,cy3:ternarylogic;
component mux3_1
port(a,b,c:in ternarylogic; s:in ternarylogic; y:out ternarylogic);
end component;
begin
x<=txor('0',c); x01<=txor('1',c); x11<=txor('Z',c);
z1:mux3_1 port map(x,x11,x01,b,sum1);
z2:mux3_1 port map(x11,x01,x,b,sum2);
z3:mux3_1 port map(x01,x,x11,b,sum3);
z03:mux3_1 port map(sum1,sum2,sum3,a,sum); --Sum
x1<=stand('Z',c); x2<=littwo(c); x3<=stand('Z',x2);
x4<=stor(c,'1');
z4:mux3_1 port map('0',x3,x1,b,cy1);
z5:mux3_1 port map(x3,x1,'Z',b,cy2);
z6:mux3_1 port map(x1,'Z',x4,b,cy3);
z7:mux3_1 port map(cy1,cy2,cy3,a,cy); --Carry
end beh;

CASE V: PROGRAM FOR FULL SUBTRACTOR USING 3x1 MUX
library ieee;
use ieee.std_logic_1164.all;
USE WORK.ternary_types.ALL;
ENTITY fsub_mux is
port(a,b,c:in ternarylogic;
diff,bor:out ternarylogic);
end fsub_mux;
architecture beh of fsub_mux is
signal
x0,x2,x1,x3,x4,x5,y0,y1,y2,y3,y4,bor1,bor2,bor3,diff1,diff2,diff3:ternarylogic;
component mux3_1
port(a,b,c:in ternarylogic; s:in ternarylogic; y:out ternarylogic);
end component;
begin
x0<=txor('1',c); x1<=stnot(x0); x2<=txor('0',c);
x3<=stnot(x2); x4<=txor('Z',c); x5<=stnot(x4);
z1:mux3_1 port map(x1,x3,x5,b,diff1);
z2:mux3_1 port map(x5,x1,x3,b,diff2);

z3:mux3_1 port map(x3,x5,x1,b,diff3);
z4:mux3_1 port map(diff1,diff2,diff3,a,diff); --Difference
y0<=stand('Z',c); y1<=stor('Z',c); y3<=littwo(c); y4<=stand('Z',c);
z11:mux3_1 port map(y0,'Z',y1,b,bor1);
z12:mux3_1 port map(y4,y0,'Z',b,bor2);
z13:mux3_1 port map('0',y4,y0,b,bor3);
z14:mux3_1 port map(bor1,bor2,bor3,a,bor); --Barrow
end beh;

CASE VI: PROGRAM FOR 1-BIT MULTIPLIER USING 3x1 MUX
library ieee;
use ieee.std_logic_1164.all;
USE WORK.ternary_types.ALL;
ENTITY multiplier1bit_mux is
port(a,b:in ternarylogic;
pt,cy:out ternarylogic);
end multiplier1bit_mux;
architecture struct of multiplier1bit_mux is
signal x0,x2,x1,x3:ternarylogic;
component mux3_1
port(a,b,c:in ternarylogic;
s:in ternarylogic; y:out ternarylogic);
end component;
begin
x0<=txor('1',b); x1<=stnot(x0); x2<=littwo(b); x3<=stand(x2,'Z');
z1:mux3_1 port map('0',b,x1,a,pt); --Product
z2:mux3_1 port map('0','0',x3,a,cy); --Carry
end struct;

CASE VII: PROGRAM FOR 1-BIT COMPARATOR USING 3x1 MUX
library ieee;
use ieee.std_logic_1164.all;
USE WORK.ternary_types.ALL;
ENTITY comparator1bit_mux is
port(a,b,en:in ternarylogic; y:out ternarylogic; agtb,aeqb,altb:inout ternarylogic);
end comparator1bit_mux;
architecture beh of comparator1bit_mux is
signal x0,x2,x1,x3,x4:ternarylogic;
component mux3_1
port(a,b,c:in ternarylogic; s:in ternarylogic; y:out ternarylogic);
end component;
begin
x0<=littwo(b); x1<=litzero(b); x2<=litone(b); x3<=lit01(b); x4<=lit12(b);
z1:mux3_1 port map('0',x1,x3,a,agtb); -- A greater than B
z2:mux3_1 port map(x1,x2,x0,a,aeqb); --A equal to B
z3:mux3_1 port map(x4,x0,'0',a,altb); --A less than B
z4:mux3_1 port map(agtb,aeqb,altb,en,y); --selecting one function out of three
end beh;

CASE VIII: PROGRAM FOR 27x1 MUX
library ieee;
use ieee.std_logic_1164.all;
USE WORK.ternary_types.ALL;
ENTITY mux27x1 is
port(a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a20,a2
1,a22,a23,a24,a25,a26:in ternarylogic; s:in t_logic_vector(2 downto 0);
y:out ternarylogic);
end mux27x1;
architecture beh of mux27x1 is
begin
process(a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,a17,a18,a19,a2
0,a21,a22,a23,a24,a25,a26,s)
begin
case s is
when "000"=>y<=a0; when "00Z"=>y<=a1; when "001"=>y<=a2;
when "0Z0"=>y<=a3; when "0ZZ"=>y<=a4; when "0Z1"=>y<=a5;
when "010"=>y<=a6; when "01Z"=>y<=a7; when "011"=>y<=a8;
when "Z00"=>y<=a9; when "Z0Z"=>y<=a10; when "Z01"=>y<=a11;
when "ZZ0"=>y<=a12; when "ZZZ"=>y<=a13; when "ZZ1"=>y<=a14;
when "Z10"=>y<=a15; when "Z1Z"=>y<=a16; when "Z11"=>y<=a17;
when "100"=>y<=a18; when "10Z"=>y<=a19; when "101"=>y<=a20;
when "1Z0"=>y<=a21; when "1ZZ"=>y<=a22; when "1Z1"=>y<=a23;
when "110"=>y<=a24; when "11Z"=>y<=a25; when "111"=>y<=a26;
when others=>
end case; end process;

ISSN : 0975-3397 1789

A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

end beh;

CASE IX: PROGRAM FOR 2 BIT COMPARATOR USING 27x1 MUX
library ieee;
use ieee.std_logic_1164.all;
USE WORK.ternary_types.ALL;
ENTITY comp2bit_mux is
port(b0,en:in ternarylogic;
a:in t_logic_vector(2 downto 0); agtb,aeqb,altb:inout ternarylogic;
y:out ternarylogic);
end comp2bit_mux;
architecture beh of comp2bit_mux is
signal y1,y2,y3,y4,y5:ternarylogic;
component mux27x1 is
port(a0,a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,a15,a16,
a17,a18,a19,a20,a21,a22,a23,a24,a25,a26:in ternarylogic;
s:in t_logic_vector(2 downto 0); y:out ternarylogic);
end component;
component mux3_1
port(a,b,c:in ternarylogic; s:in ternarylogic; y:out ternarylogic);
end component;
begin
y1<=litzero(b0);y2<=littwo(b0);y3<=stnot(y2);y4<=lit12(b0);y5<=litone(b0);
z0:mux27x1 port map ('0','0','0',y1,'0','0',y3,'0','0','1','0','0','1',y1,'0','1',y3,
'0','1','1','0','1','1',y1,'1','1',y3,a,agtb);
z1:mux27x1 port map (y1,'0','0',y5,'0','0',y2,'0','0','0',y1,'0','0',y5,'0','0',y2,'0','0',
'0',y1,'0','0',y5,'0','0',y2,a,aeqb);
z2:mux27x1 port map (y4,'1','1',y2,'1','1','0','1','1','0',y4,'1','0',y2,'1','0',
'0','1','0','0',y4,'0','0',y2,'0','0','0',a,altb);
z3:mux3_1 port map(agtb,aeqb,altb,en,y);
end beh;

CASE X: PROGRAM FOR RIPPLE CARRY ADDER
library ieee;
use ieee.std_logic_1164.all;
USE WORK.ternary_types.ALL;
ENTITY rippleadder is
port(a0,a1,a2,b0,b1,b2,c:in ternarylogic; s0,s1,s2,c2:out ternarylogic);
end rippleadder;
architecture beh of rippleadder is
signal c0,c1:ternarylogic;
component fulladd
port(x,y,z:in ternarylogic; sum,cy:out ternarylogic);
end component;
begin
z0:fulladd port map(a0,b0,c,s0,c0);
z1:fulladd port map(a1,b1,c0,s1,c1);
z2:fulladd port map(a2,b2,c1,s2,c2);
end beh;

CASE XI: PROGRAM FOR CARRY SAVE ADDER
library ieee;
use ieee.std_logic_1164.all;
USE WORK.ternary_types.ALL;
ENTITY csa1 is
port(a,b:in t_logic_vector(1 downto 0); c:in ternarylogic;
p,q:in ternarylogic; s:out t_logic_vector(1 downto 0);
sum,cy:out ternarylogic);
end csa1;
architecture beh of csa1 is
signal s1,s2,s3,c1,c2,c3,c0:ternarylogic;
component fulladd
port(x,y,z:in ternarylogic; sum,cy:out ternarylogic);
end component;
component fulladd2bit
port(a,b:in t_logic_vector(1 downto 0); c:in ternarylogic;
s:out t_logic_vector(1 downto 0); c1:out ternarylogic);
end component;
component mux3_1
port(a,b,c:in ternarylogic; s:in ternarylogic; y:out ternarylogic);
end component;
begin
z0:fulladd2bit port map(a,b,c,s,c0);
u0:fulladd port map(p,q,'0',s1,c1);
u1:fulladd port map(p,q,'Z',s2,c2);

u2:fulladd port map(p,q,'1',s3,c3);
u3:mux3_1 port map(s1,s2,s3,c0,sum);
u4:mux3_1 port map(c1,c2,c3,c0,cy);
end beh;

--2-bit Fulladder
library ieee;
use ieee.std_logic_1164.all;
USE WORK.ternary_types.ALL;
ENTITY fulladd2bit is
port(a,b:in t_logic_vector(1 downto 0); c:in ternarylogic;
s:out t_logic_vector(1 downto 0); c1:out ternarylogic);
end fulladd2bit;
architecture beh of fulladd2bit is
signal c0:ternarylogic;
component fulladd
port(x,y,z:in ternarylogic; sum,cy:out ternarylogic);
end component;
begin
u0:fulladd port map(a(0),b(0),c,s(0),c0);
u1:fulladd port map(a(1),b(1),c0,s(1),c1);
end beh;

CASE XII: PROGRAM FOR 1-BIT & 2-BIT POSITION SHIFTER
library ieee;
use ieee.std_logic_1164.all;
use work.ternary_types.ALL;
entity shifter12 is
port(w0,w1,w2,s:in ternarylogic; y0,y1,y2:inout ternarylogic);
end shifter12;
architecture beh of shifter12 is
component mux3_1
port(a,b,c:in ternarylogic; s:in ternarylogic; y:out ternarylogic);
end component;
begin
z0:mux3_1 port map(w0,'0','0',s,y0);
z1:mux3_1 port map(w1,w0,'0',s,y1);
z2:mux3_1 port map(w2,w1,w0,s,y2);
end beh;

CASE X: PROGRAM FOR BARREL SHIFTER CIRCUIT
library ieee;
use ieee.std_logic_1164.all;
use work.ternary_types.ALL;
entity barrelshifter is
port(w0,w1,w2,s:in ternarylogic; y:inout t_logic_vector(0 to 2));
end barrelshifter;
architecture beh of barrelshifter is
type i is range 0 to 2;
component mux3_1
port(a,b,c:in ternarylogic; s:in ternarylogic; y:out ternarylogic);
end component;
begin
if(s='0') then
z0:mux3_1 port map(w0,w2,w1,'0',y(0));
z1:mux3_1 port map(w1,w0,w2,'0',y(1));
z2:mux3_1 port map(w2,w1,w0,'0',y(2));
elsif(s='Z')then
begin
i<=0;
lop1: for i in 0 to 2 loop begin
if(i=0) then
z10:mux3_1 port map(w0,w2,w1,'Z',y(0));
z11:mux3_1 port map(w1,w0,w2,'Z',y(1));
z12:mux3_1 port map(w2,w1,w0,'Z',y(2));
i:=i+1;
else y<=ror(y); i:=i+1;
end if; end loop;
else i<=0;
lop2: for i in 0 to 2 loop
 begin
if(i=0) then
z110:mux3_1 port map(w0,w2,w1,'1',y(0));
z111:mux3_1 port map(w1,w0,w2,'1',y(1));
z112:mux3_1 port map(w2,w1,w0,'1',y(2));

ISSN : 0975-3397 1790

A. Sathish kumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1777-1791

i:=i+1;
else
y<=rol(y); i:=i+1;
end if;
end loop; end if;

end beh;

Figure 19(a). Block diagram of 2-bit comparator

TABLE III. OPERATING TABLE OF BASIC GATES

A B TAND STNAND PTNAND NTNAND TOR STNOR PTNOR NTNOR

0 0 0 1 1 1 0 1 1 1

0 Z 0 1 1 1 Z Z 1 0

0 1 0 1 1 1 1 0 0 0

Z 0 0 1 1 1 Z Z 1 0

Z Z Z Z 1 0 Z Z 1 0

Z 1 Z Z 1 0 1 0 0 0

1 0 0 1 1 1 1 0 0 0

1 Z Z Z 1 0 1 0 0 0

1 1 1 0 0 0 1 0 0 0

ISSN : 0975-3397 1791

