
Santhi Baskaran et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1746-1753

Power Aware Scheduling for Resource Constrained
Distributed Real-Time Systems

Santhi Baskaran
Department of information Technology, Pondicherry

Engineering College
Puducherry – 605 008, India

P. Thambidurai
Department of Computer Science and Engineering,

Pondicherry Engineering College
Puducherry – 605 008, India

Abstract—Power management has become popular in
mobile computing as well as in server farms. Although a
lot of work has been done to manage the energy
consumption on uniprocessor real-time systems, there is
less work done on their multicomputer counterparts. For a
set of real-time tasks with precedence and resource
constraints executing on a distributed system, we propose
a dynamic slack management technique for feedback
control scheduling (FCS) algorithm known as modified
FCS algorithm. This algorithm schedules dependant
periodic real-time task sets by effectively managing
exclusive access resources with strict timing constraints
along with energy efficiency. Simulation results show that,
in comparison to commonly used greedy technique, the
proposed technique achieves 28 percent less power
consumption when validated with random task graphs.

Keywords - Real-time; resource reclaiming; slack; precedence
constraints; resource constraints.

I. INTRODUCTION

Energy consumption is an important design issue for
battery-operated systems. In these systems, processor is the
major energy consumer of energy. Dynamic voltage scaling
(DVS) is an effective technique to reduce CPU energy. DVS
takes advantage of the quadratic relationship between supply
voltage and energy consumption [1], which can result in
significant energy savings. By reducing processor clock
frequency and supply voltage, it is possible to reduce the
energy consumption at the cost of performance of processors.
Processors with the ability of dynamic voltage scaling are
currently available [2] [3]. Traditional real-time scheduling
theories depend on accurate a priori knowledge of the system
workload, or worst-case execution times of tasks. Any
variations in those values are undetected and unmanaged and
they may lead to either under-utilization of system resources,
which increases excessive system cost; or over-utilization of
system resources when unpredictable events occur, which
impairs greatly real-time performance of the system [4].
Therefore, it is necessary to introduce resource management
mechanisms that can adapt to dynamic changes in resource

availability and requirements. A promising solution is
feedback control scheduling (FCS), which employs software
feedback loops that dynamically control resource allocation in
response to changes in input workload and resource
availability.

A distributed real-time system consists of two or more
devices that are collectively responsible for the execution of
an application with specified requirements on performance
and Quality of Service. The ready availability of inexpensive
processors, large memory capacities and high bandwidth
communication networks attracted the use of distributed
systems for many of the real-time applications. Distributed
real-time systems have emerged as a popular platform for
applications such as multimedia, mobile computing and
information appliances. An important problem that arises from
using distributed systems is how to assign tasks and resources
to the processors so as to fully utilize the processors, while
ensuring that the timing constraints of the tasks are met along
with energy efficiency. Hence in this paper we address energy
efficiency in the context of homogeneous distributed real-time
systems, targeting variable speed processor architectures.

The primary contributions of this work are four-fold:

1) We derive a dynamic model that describes distributed
real-time systems with precedence and resource
constraints,

2) We develop an modified feedback control scheduling
algorithm with efficient resource reclaimer and
resource manager,

3) We propose a dynamic distributed energy
management technique which adapts and maintains
end-to-end, latencies within specified timeliness
requirements (deadlines) and enhances energy
savings at the nodes, and

4) We present simulation results which demonstrate that
the proposed scheduling algorithm can provide real-
time performance guarantees efficiently along with
energy savings.

This paper is organized in the following way. The related
work is addressed in Section II. The application, system, power

ISSN : 0975-3397 1746

Santhi Baskaran et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1746-1753

and resource models are described in Section III. Proposed
algorithm is described in Section IV. Section V discusses the
simulation and analysis of results. Finally Section VI concludes
this paper with future work.

II. RELATED WORK

Many hardware and software techniques have been
proposed to reduce the energy consumption of such systems.
The two most commonly used techniques are DVS [5] and
Dynamic Power Management (DPM) [6]. The application of
these energy management techniques can be exploited to the
maximum if we can take advantage of all the idle time and
slack time in between processor busy times. In a distributed
system, if each node’s DVS mechanism aggressively reduces
the node’s CPU speed, the induced latencies can cause an end-
to-end deadline to be missed, or if DVS mechanisms are
uncoordinated, they can prevent nodes where energy savings
are most required from utilizing DVS, thereby limiting their
energy-savings. Hence resource adaptation techniques for
energy management in distributed real-time systems need to
be coordinated to meet global energy and real-time
requirements. This issue is addressed based on feedback-based
techniques to allocate the overall slack in the entire system.
The slack allocated to a node is based on the end-to-end
latencies, its pay-off factor which represents the relative
benefits or significance of conserving its energy, and the
energy management objective of the system. The allocated
slack is then used by each node’s DVS mechanism to scale
down its CPU frequency accordingly [7]. There has been an
extensive study on low power scheduling of periodic tasks,
aperiodic tasks, and their combinations on single processors
[8], [9], [10], [11]. However, relatively little work has been
done in the area of low-power scheduling for multiprocessors
and distributed systems, assuming the tasks to be independent
and known a priori. Power conscious algorithms for joint
scheduling of periodic task graphs and aperiodic tasks are
proposed [12], [13]. Recently, several DVS based algorithms
for slack allocation have been proposed for tasks with
precedence relationships in a multiprocessor real time system
[14, 15, 16]. A linear programming (LP) based formulation is
to used to solve the continuous voltage DVS [17], and
extended to incorporate the communication time between
tasks [18].

III. MODELS

In this section, we briefly discuss the system, application,
power and resource models that we have used in our work.

A. System and Application Model

A distributed system with n homogeneous processors each
with its private memory is considered for scheduling the given
real-time application. Each processing element (PE) in the
system can support discrete voltage and speed changes. We
assume that the energy consumption, when the processor is
idle, is ignored. The real-time applications can be modeled by

a task graph G = (V,E), where V is the set of vertices each of
which represents one computation (task), and E is the set of
directed edges that represent the data dependencies between
vertices. For each vertex vi, we associate it a worst case
execution time (wcet) at the reference (highest) voltage that
can be obtained a priori by profiling. For each directed edge
(vi, vj), there is a significant inter-processor communication
(IPC) cost when the data from vertex vi in one PE is
transmitted to vertex vj in another PE. The data
communication cost in the same processor can be ignored. We
consider a distributed real-time application T with an end-to-
end deadline is executed as a series of local tasks {T1, ..., Tn}
on these PEs. Each real-time application has an end-to-end
deadline D, by which it has to complete its execution and
produce the result. Each local task Ti executed at node i have a
specified local deadline di by which the task has to be
processed. The local deadlines assigned must satisfy

Dd
n

i

i
1

The latency at a node (source, sink, or intermediate) is

expressed by Lnode and includes delays such as for processing
and communicating. Each Lnode depends on the speed of the
PE as determined by the DVS algorithm. A message from a
parent node to child node experiences a transmission delay
over each communication link represented by Llink that
consists of propagation delays and delays for retransmissions
or other error correcting measures, etc. The term slack (S)
specifies by how much the sink node finishes processing
before the end-to-end deadline (positive slack) or by how
much the deadline is missed (negative slack). It can be
expressed as:

S = D − Ltotal, where

Ltotal =

1

11

n

j

j

n

i

linknode LLi

The proposed mechanism in this work adapts the

local deadlines based on the allocated slack to affect the
decisions made by the DVS algorithm. The frequency
selection is influenced by making a task more or less urgent by
shifting its deadline back and forth. The range within which
the local deadline at node i can be varied is bounded by [Si

−,
Si

+]. The values for S can be derived from the local task
parameters. If wceti represents the worst-case execution times
of the local task at node i, then

Si
− = wceti

Si
+= D −

n

ij

jwcet
1

We also consider preemptive scheduling, but we consider
no migration. For simplicity, we ignore overheads of speed
adjustments and preemptions.

ISSN : 0975-3397 1747

Santhi Baskaran et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1746-1753

B. Power Model

The DVS technique reduces the dynamic power dissipation
by dynamically scaling the supply voltage and the
clock frequency of processors. The relationship
between power dissipation Pd, supply voltage Vdd, and
frequency f is represented by

Pd = Cef X V2

dd X f and

f = k X (Vdd −Vt
2)/Vdd ,

where Cef is the switched capacitance, k is the constant of
circuit, and Vt is the threshold voltage [19]. The energy
consumed to execute task Ti, Ei, is expressed by Ei = Cef X
V2

dd X ci, where ci is the number of cycles to execute the task.
The supply voltage can be reduced by decreasing the
processor speed. It also reduces energy consumption of task.
Here we use the task’s execution time at the maximum supply
voltage during assignment to guarantee deadline constraints.

C. Resource Model

To model non-CPU resources and resource requests, we make
the following assumptions:

1) Resources are reusable and can be shared, but have
mutual exclusion constraints. Thus, only one task can
be using a resource at any given time. If multiple
identical resources or multiple instances of the same
resource are available, each identical instance of a
resource should be considered as a distinct resource.
This applies to physical resources, such as disks and
network segments, as well as logical resources, such
as critical code sections that are guarded by mutexes.

2) Only a single instance of a resource is present in the
system. This requires that a task explicitly specify
which resource it wants to access. This is exactly the
same resource model as assumed in protocols such as
the Priority Inheritance Protocol and Priority Ceiling
Protocol [20].

3) A task can only request a single instance of a
resource. If multiple resources are needed for a task
to make progress, it must acquire all the resources
through a set of consecutive resource requests.

During the lifetime of a task, it may request one or more
resources. In general, the requested time intervals of holding
resources may be overlapped. We assume that a task can
explicitly release resources before the end of its execution.
Thus, it is necessary for a task that is requesting a resource to
specify the time to hold the requested resource. We refer to
this time as HoldTime. The scheduler uses the HoldTime
information at run time to make scheduling decisions.

IV. PROPOSED ALGORITHM

The overall framework for the proposed algorithm is shown
in Figure 1.

A. Modified FCS Algorithm

A modified FCS (feedback control scheduling) algorithm
has been proposed for homogeneous distributed real-time
systems, which include tasks supporting both precedence and
resource constraints. The algorithm is based feedback control
scheduling. This algorithm can provide real-time performance
guarantees efficiently, even in open environments. The
feedback control scheduling algorithm framework has three
components; Monitors that track the CPU utilization of each
processor; Resource reclaimer that computes difference
between task’s actual execution time and worst case execution
time for local and global slack adjustment; and Feedback
scheduler that performs resource reclaimer recommended
schedule adaptations dynamically. For this, an end-to-end task
model implemented by many distributed real-time applications
is adopted. An application is comprised of m periodic tasks {Ti
| 1≤ i ≤ m} executing on n processors, and m ≥ n. Task Ti is
composed of a chain of subtasks {Tij | 1 ≤ j ≤ si} located on
different processors. The release of subtasks is subject to
precedence constraints, i.e., subtask Tij (1 < j ≤ si) cannot be
released for execution until its predecessor subtask Tij-1 is
completed. The FCS architecture for distributed system is
shown in Figure 2.

Figure 1 Overall Architecture of Energy-efficient FCS algorithm

Each task Ti is subject to an end-to-end relative deadline
equal to its period. A processor in the distributed system
receives subtasks of different tasks, arrived to the global

ISSN : 0975-3397 1748

Santhi Baskaran et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1746-1753

Feedback scheduler. Within each processor the tasks are
scheduled by the Basic scheduler using Earliest Deadline First
algorithm (EDF), since EDF has been proven to be an optimal
uniprocessor scheduling algorithm [21]. A task set is
schedulable under EDF, if and only if it satisfies the condition
that the total processor utilization U is less than 1. For a set of
periodic real-time tasks {T1, T2, . . ., Tm}, EDF schedulability
criterion is expressed as:

U =

m

i

ii pe
1

/ ≤ 1

where ei is the worst case execution time and pi is the period of
the task Ti and m is the total number of tasks in the set. EDF
algorithm allows dynamic rescheduling and preemption in the
queues and processing nodes. In the scheme, the task sets are
kept in the queue in the order of their approaching deadlines.
The pseudo code for inserting task sets in EDF is given in
Figure 3.

Figure 2. Feedback Control Scheduling for Distributed System

The Monitor module periodically checks the processor

utilization and sends message to the global feedback
scheduler, which on arrival of a new task decides to assign the
task to a processor where the utilization criterion for the local
EDF scheduler is still satisfied.

Figure 3. EDF Pseudo Code

Resource reclaiming [22] refers to the problem of utilizing
resources left unused by a task when it executes less than its
wcet, because of data-dependent loops and conditional
statements in the task code or architectural features of the
system, such as cache hits and branch predictions, or both.
Resource reclaiming is used to adapt dynamically to these
unpredictable situations so as to improve the system’s resource
utilization and thereby improve its schedulability. The
resource reclaiming algorithm used is a restriction vector (RV)
based algorithm proposed in [23] for tasks having resource
and precedence constraints. Two data structures namely
restriction vector (RV) and completion bit matrix (CBM) are
used in the RV algorithm. Each task Ti has an associated n-
component vector, RVi[1 . . . n], where n is the number of
processors. RVi[j] for a task Ti contains the last task in T< i(j)
that must be completed before the execution of Ti begins,
where T< i(j) denotes the set of tasks assigned to processor Pj
that are scheduled in feasible schedule (prerun schedule) to
finish before Ti starts. CBM is an m X n Boolean matrix
indicating whether a task has completed execution, where m is
the number of tasks in the feasible schedule. The pseudo code
for the resource reclaiming RV algorithm is given in Figure 4.

Figure 4. RV Resource Reclaiming Algorithm

B. Resource Management

A dynamic real-time system is composed of a variety of
software components, as well as a variety of physical
(hardware) components that govern the real time performance.
The physical components of a real-time system can be
described by a set of computational resources and an
interconnection network, and other devices. It is generally
assumed that the properties of the computational resources, the
network resources and other resources are known.

The resource manager plans actions that include which
software to use which resources to achieve the maximum
system level benefit and to optimizes the real-time performance
of sets of application software. As input, it is given the static
characteristics of both the hardware system and the software
system. Based on these, it makes resource allocation decisions

ISSN : 0975-3397 1749

Santhi Baskaran et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1746-1753

and has the ability to modify certain performance parameters
such as service attributes.

C. Slack Management through DVS

Dynamic voltage scaling and dynamic frequency scaling
(DFS) allow adjusting processor voltage and frequency at
runtime. Usually, higher processor voltage and frequency
leads to higher system throughput while energy reduction can
be obtained using lower voltage and frequency. Recent trends
in modern processor architecture provide support for these two
mechanisms. For example, Intel Mobile Processors with
SpeedStep technology [24] and AMD Mobile Processors with
PowerNow! Technology [25], etc. Instead of lowering
processor voltage and frequency as much as possible, energy-
efficient real-time scheduling adjusts voltage and frequency
according to some optimization criteria, such as low energy
consumption or high throughput, while still meeting the timing
constraints of real-time tasks. However, reduction of processor
voltage and frequency increases the circuit delay, causing
slowdown in the execution of programs. Hence, power-aware
real-time scheduling makes a trade off between energy saving
and system performance. It is required to schedule properly
where to change the processor voltage and frequency to have
the best energy-efficient performance.

The real-time scheduling problem with power optimization
constraints is NP-hard [26]. It is time consuming to find an
optimal schedule where energy consumption is minimized and
all timing constraints along with precedence and resource
constraints are met. Many previous works either proposed
offline scheduling for large energy reduction, or used heuristic
methods to reduce scheduling overhead. However, while the
former approaches are inflexible and too costly to store in
memory, the latter ones may not realize the full potential of
energy savings.

Figure 5. System Slack Times

As shown in Figure 5, the slack of a task with deadline at

di at any time t < di is equal to (di−t) minus the time required
to complete the remaining portion of the task. Conventional
real-time systems are usually overestimated to schedule and
provide resources using the wcet. In average case, real-time

tasks rarely execute up to their wcet. In many applications,
actual execution time (aet) is often a small fraction of their
wcet. However, such slack times are only known at runtime
through resource reclaimers. This slack is passed to schedulers
to determine whether the next job should utilize the slack time
or not.

In real-time system designs, Slack Management is
increasingly applied to reduce power consumption and
optimize the system with respect to its performance and time
overheads. This slack management technique exploits the idle
time and slack time of the system through DVS in order to
achieve the highest possible energy consumption. The main
challenge is to obtain and distribute the available slack in
order to achieve the highest possible energy savings with
minimum overhead. Many energy-efficient slack management
techniques were designed in the literature. But most of these
do not address dynamic task inputs. Only a few that attempt to
handle dynamic task inputs assume no resource constraints
among tasks. But in reality, few tasks need exclusive accesses
to a resource. In exclusive mode no two real-time tasks are
allowed to share a common resource. If a resource is accessed
by a real-time task, it is not left free until the task’s execution
is completed. Other tasks in need of the same resource must
wait until the resource gets freed. Our proposed algorithm
handles this issue through the RV algorithm mentioned above.

 Hence, given a periodic task graph, with all the tasks
assigned to processors, our slack management algorithm
decides when and at which voltage should each task be
executed in order to reduce the system's energy consumption
while meeting the timing and other constraints. Our solution
includes two phases: First we use static power management
schemes based on wcet to statically assign a time slot to each
task. Then we apply dynamic scheduling algorithm to further
reduce energy consumption by exploiting the slack arising
from the run-time execution time variation. Here a small
amount of slack time called unit slack is added to all the tasks
and finally we find the subset of tasks that can be allocated
this slack time so that total energy consumption is minimized
while the deadline constraint is also met.

V. SIMULATION AND ANALYSIS OF RESULTS

A simulator was developed to simulate voltage scalable
processor which dynamically adjusts the processor speed
according to the proposed algorithm, given input of a
hardware profile and workload. The hardware profile
describes the multiple operating points of the processor, each
with a separate frequency and power consumption. Unless
otherwise specified, the following hardware profile {(1.6,
1.484), (1.4, 1.420), (1.2, 1.276), (1.0, 1.164), (800, 1.036),
(600, 0.956)}, is used where 1.6, 1.4, 1.2, 1.0, 800, 600 denote
the processor frequency in GHz and MHz, and 1.484, 1.420,
1.276, 1.164, 1.036, 0.956 denote the corresponding voltage.

ISSN : 0975-3397 1750

Santhi Baskaran et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1746-1753

For simulation, scheduling task sets and task graphs are
generated using the following approach:

 Task sets are randomly generated with parameters
such as arrival time, actual execution time, worst case
execution time and resource constraints.

 The actual execution time is taken randomly and
worst case execution time is also randomly generated
such that it is always greater than the actual execution
time.

 The overall deadline is generated such that it is
always greater than or equal to the sum of all the
actual execution time.

Task graph is randomly generated using adjacency matrix
where 0 represents the tasks that are not dependent on any
other tasks and 1 represents the dependency, with varying
breadth and depth.

It is necessary to compare the performance of the proposed
slack distribution technique mentioned as modified FCS
against other existing slack distribution techniques. For our
study, we have considered the most commonly used slack
management scheme Greedy slack management with other
components of the algorithm remaining the same. This
algorithm is denoted as FCS. The performance metric used for
comparison is percentage of power consumption. For each set
of tasks the number of processors is kept constant and the
energy consumption for a minimum of ten DAGs are noted.
The average values of all those DAGs were calculated. Each
point in the above graphs is the average value of such DAGs.
This method was repeated by changing the number of
processors (varied between 2 to 10) and comparisons were
made between the existing and proposed algorithms. A few
sample results of those comparisons are shown in the graphs
below. It can be seen from the results that the proposed
algorithm had less power consumption than the existing one,
thus leading to more energy efficiency.

Figure 6. Power Cosumption of FCS and Modified FCS for n = 2

Figure 7. Power Cosumption of FCS and Modified FCS for n = 4

Figure 8. Power Cosumption of FCS and Modified FCS for n = 6

Figure 9. Power Cosumption of FCS and Modified FCS for n = 8

From the graphs it is inferred that the proposed algorithm

yield more energy savings than the existing algorithm. The

ISSN : 0975-3397 1751

Santhi Baskaran et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1746-1753

modified algorithm outperform existing one by reducing on an
average 28 percent of power consumption. This is due to the
addition of resource reclaiming technique in the proposed
algorithm.

TABLE I. AVERAGE POWER CONSUMPTION OF ALGORITHMS

From Table 1, it is noted that the proposed algorithm
consumes 28 percent less power on an average than the
existing one. This is due to the concept of unit slack concept
introduced dynamically.

VI. CONCLUSION AND FUTURE WORK

In this work, an energy efficient real-time scheduling
algorithm for distributed systems is presented. This scheduling
algorithm is capable of handling task graphs with precedence
and resource constraints in addition to timing constraints. The
major contribution of this work is the development of
modified feedback control scheduling algorithm with efficient
resource manager, resource reclaimer and dynamic slack
distribution technique. The static power reduction component
determines the minimum voltage at which each tasks can be
run. It also exploits the idle intervals by putting the processor
in power down modes to reduce the power consumption.
Simulation results show almost 28 percent less power is
consumed by the proposed algorithm compared with the
existing commonly used greedy algorithm.

For future work, security and fault tolerant issues can be
considered for such real-time distributed systems. Another
important future work is extending this technique for a
heterogeneous distributed real-time system.

REFERENCES
[1] T. D. Burd, T. Pering, A. Stratakos, and R. Brodersen, A dynamic voltage

scaled microprocessor system", IEEE J. Solid-State Circuits, Vol. 35, pp.
1571-1580, 2000.

[2] http://developer.intel.com/design/intelxscale
[3] http://www.transmeta.com
[4] C. Lu, J.A. Stankovic, G. Tao, and S.H. Son, Feedback Control Real- Time

Scheduling: Framework, Modeling, and Algorithms. Real-Time Systems
Journal, Special Issue on Control-theoretical Approaches to Real-Time
Computing, 23(1/2): 85-126, 2002.

[5] T. Ishihara and H. Yasuura, “Voltage Scheduling Problem for
Dynamically Variable Voltage Processors,” In Proc. International
Symposium on Low Power Electronics and Design, pp. 197-202, 1998.

[6] L. Benini, A. Bogliolo, and G. De Micheli, “A Survey of Design
Techniques for System-Level Dynamic Power Management,” IEEE
Trans. VLSI Systems, pp. 299-316, 2000.

[7] Dinesh Rajan, Christian Poellabauer, Andrew Blanford, and Bren
Mochocki, “Cooperative Dynamic Voltage Scaling using Selective Slack
Distribution in Distributed Real-Time Systems,”

[8] Y. Shin and K. Choi, “Power Conscious Fixed Priority Scheduling for
Hard Real-Time Systems,” Proc. Design Automation Conf., pp. 134-139,
1999.

[9] Y. Shin, K. Choi, and T. Sakurai, “Power Optimization of Real- Time
Embedded Systems on Variable Speed Processors,” Proc. Int’l Conf.
Computer-Aided Design, pp. 365-368, 2000.

[10] G. Quan and X. Hu, “Energy Efficient Fixed Priority Scheduling for
Real-Time Systems on Variable Voltage Processors,” Proc. Design
Automation Conf., pp. 828-833, June 2001.

[11] P. Pillai and K.G. Shin, “Real-Time Dynamic Voltage Scaling for Low-
Power Embedded Operating Systems,” Proc. ACM Symp. Operating
Systems Principles, Oct. 2001.

[12] J. Luo and N.K. Jha, “Static and Dynamic Variable Voltage Scheduling
Algorithms for Real-Time Heterogeneous Distributed Embedded
Systems,” Proc. Asia and South Pacific Design Automation Conf., Jan.
2002.

[13] J. Luo and N.K. Jha, “Power-Profile Driven Variable Voltage Scaling for
Heterogeneous Distributed Real-Time Embedded Systems,” Proc. VLSI
Design Conf., Jan. 2003.

[14] J. Luo and N. K. Jha, Power-conscious Joint Scheduling of Periodic Task
Graphs and Aperiodic Tasks in Distributed Real-time Embedded Systems,
Int. Conf. on Computer-Aided Design, Nov. 2000, pp. 357-364.

[15] J. Luo and N. K. Jha, Power-profile Driven Variable Voltage Scaling for
Heterogeneous Distributed Real-time Embedded Systems, Int. Conf. on
VLSI Design, Jan. 2003, pp. 369-375.

[16] M. T. Schmitz and B. M. Al-Hashimi, Considering Power Variations of
DVS Processing Elements for Energy Minimization in Distributed
Systems, Int. Sym. on System Synthesis, Oct. 2001, pp. 250-255.

[17] Y. Zhang, X. (Sharon) Hu, and D. Z. Chen, Task Scheduling and Voltage
Selection for Energy Minimization, Design Automation Conf., June 2002,
pp. 183-188.

[18] Jaeyeon Kang and Sanjay Ranka, “DVS based Energy Minimization
Algorithm for Parallel Machines,”

[19] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, Low-Power CMOS
Digital Design, IEEE Journal of Solid- State Circuits, 27(4), Apr. 1992,
pp. 473-484.

[20] L. Sha, R. Rajkumar, and J.P. Lehoczky, “Priority Inheritance Protocols:
An Approach to Real-Time Synchronization,” IEEE Trans. Computers,
vol. 39, no. 9, pp. 1175-1185, 1990.

[21] C.M. Krishna and Shin K. G., Real-Time Systems, Tata McGraw-Hill,
1997.

[22] C. Shen, K. Ramamritham and J.A. Stankovic, “ Resource reclaiming in
multiprocessor real-time systems”, IEEE Trans. Parallel and Distributed
Systems, vol. 4, no. 4, pp. 382-397, Apr. 1993.

[23] G. Manimaran, C. Siva ram Murthy, Machiraju Vijay, and K.
Ramamritham, “New algorithms for resource reclaiming from precedence
constrained tasks in multiprocessor real-time systems”, Journal of Parallel
and Distributed Computing, vol. 44, no. 2, pp. 123-132, Aug. 1997.

[24] Intel internet homepage, http://www.intel.com/index.htm, 2004.
[25] AMD internet homepage, http://www.amd.com/us-en, 2004.
[26] K. Chen and P. Muhlethaler, A scheduling algorithm for tasks described

by time value function, Journal of Real-Time Systems, 10(3):293–312,
May 1996.

AUTHORS PROFILE

Mrs. Santhi Baskaran received her B.E.
degree in Computer Science and Engineering
from University of Madras, Chennai, India in
1989 and M.Tech. degree in Computer Science
and Engineering from Pondicherry University,
Puducherry, India in 1998. She served as
Senior Lecturer and Head of the Computer
Technology Department, in the Polytechnic

ISSN : 0975-3397 1752

Santhi Baskaran et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 05, 2010, 1746-1753

Colleges, Puducherry. India, for eleven years, since 1989. She joined
Pondicherry Engineering College, Puducherry, India in 2000 and currently
working as Associate Professor in the Department of information Technology.
Now she is pursuing her PhD degree in Computer Science and Engineering.
Her areas of interest include Real-time systems, embedded systems and
operating systems. She has published research papers in International and
National Conferences. She is a Life member of Indian Society for Technical
Education and Computer Society of India.

Prof. Dr. P. Thambidurai is a Member of
IEEE Computer Society. He received his PhD
degree in Computer science from the Alagappa
University, Karaikudi, India in 1995. From
1999, he served as Professor and Head of the
Department of Computer Science &
Engineering and Information Technology,
Pondicherry Engineering College, Puducherry,
India, till August 2006. Now he is the Principal
for Perunthalaivar Kamarajar Institute of

Engineering and Technology (PKIET) an Government institute at Karaikal,
India. His areas of interest include Natural Language Processing, Data
Compression and Real-time systems. He has published over 50 research
papers in International Journals and Conferences. He is a Fellow of Institution
of Engineers (India). He is a Life member of Indian Society for Technical
Education and Computer Society of India. He served as Chairman of
Computer Society of India, Pondicherry Chapter for two years. Prof.
P.Thambidurai is serving as an Expert member to All India Council for
Technical Education (AICTE) and an Adviser to Union Public Service
Commission (UPSC), Govt. of India. He is also an Expert Member of IT Task
Force and Implementation of e-Governance in the UT of Puducherry.

ISSN : 0975-3397 1753

