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Abstract: 
Elliptic Curve Cryptography recently gained a lot of 
attention in industry. The principal attraction of ECC 
compared to RSA is that it offers equal security for a 
smaller bit size, thereby reducing processing overhead.    
ECC is ideal for constrained environment such as pager, 
PDAs, cellular phones and smart cards. For the 
implementation of elliptic curve cryptography (ECC) the 
plaintext encoding should be done before encryption and 
decoding should be done after decryption. ECC Encryption 
and Decryption methods can only encrypt and decrypt a 
point on the curve and not messages. The 
Encoding(converting message to a point) and Decoding 
(converting a point to a message) are important functions in 
Encryption and Decryption in ECC. The paper discusses 
Koblitz’s method to represent a message to a point and vice-
versa. The paper also describes implementation results of 
Koblitz’s Encoding and Decoding methods. 
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Introduction: 
Elliptic Curve Cryptography[2] is a public key 
Cryptography. ECC is ideal for environments such as pager, 
PDAs, cellular phones and smart cards. Moreover, because 
of the apparent hardness of the underlying elliptic curve 
discrete logarithm problem (ECDLP), ECC systems are also 
well suited for applications that need long-term security 
requirements. Elliptic Curve Cryptography (ECC) is a 
public key technology that offers performance advantages at 
higher security levels. Every user taking part in public key 
cryptography will take a pair of keys, a public key and a 
private key. Only the particular user knows the private key 
whereas the public keys are distributed to all users taking 
part in the communication. Some public key algorithm may 
require a set of predefined constants to be known by all the 
devices taking part in the communication. In ECC we call 
these predefined constants as ‘Domain Parameters.   
 

Understanding ECC needs full mathematical 
background on elliptic curves. Elliptic curves are not 
ellipses. The general cubic equation of elliptic curves is 

y2+axy+by=x3+cx2+dx+e. But for our purpose it is sufficient 
to limit the equation to the form  y2 = x3 + ax + b. Say 
EP(a,b) consisting of all the points (x,y) that satisfy the 
above equation together with element at infinity O. A group 
can be defined based on the set EP(a,b) for specific values of 
a and b[8]. If P,Q R are points on EP(a,b) the relations 
commutativity, associativity, existence of an identity 
element and existence of inverse hold good[4].  The heart of 
ECC is discrete logarithm problem that can be stated as “it 
should be very hard to find  a value k such that Q=kP  
where P and Q are known’. But ‘it should be relatively easy 
to find Q where k and P are known’ P, Q are points on the 
elliptic curve [5]. 
 
Elliptic Curve Example: 

Let the equation of the curve is  
y2  mod  p  =  x3 + ax + b mod   p 
Inputs : a,  b,  p (p is key of the ECC algorithm) 
Choose two non-negative integers a, b and a large prime 
number such that   4a3 + 27b2 mod p !=0. For Example, the 
following figure (fig 1) shows the elliptic curve, y2 mod 23 
= x3 + x + 1  mod 23 . Here points P, Q lie on the curve and 
P+Q gives another point that lie on the line that connects P 
and Q as shown in the fig 1 below.  
 
Fig 1 
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The set of points on the above curve are  
{  
[0 1],[0 22] ,[1 7], [1 16], [3 10], [3 13],[5 4], [5 19] ,[6 4], 
[6 19] ,[7 11],[7 12], [9 7],[9 16],  
[11 3],[1120],[12 4],[12 19], 
[13 7],[13 16],[17 3],[17 20], 
[18 3],[18 20],[19 5],[19 18]  
} 

 
Multiplication of a point with a positive integer k is 

defined as the sum of copies of P, k times. This operation is 
called Point Multiplication[1] in ECC. So 3P=P+P+P. 
 

The above points form the Group ie Ep(a,b). Each  
X and Y coordinate ranges between 0 and 22 . The addition 
of the two points on the curve and the inverse of a point on 
the curve are defined in the field using modular arithmetic. 
The point at the infinity is identity point on the curve. 
 
ECC Public Key Cryptosystem 
In the public key elliptic curve cryptosystems, we assume 
that entity A wants to send a message m to entity B 
securely. Order of a point on the curve can be defined as a 
value n such that  
nP  = P+P+..+P..  n times = O (infinity)[9]. 
 
Key generation:  
Both the entities in the cryptosystem agree upon  a,b,p,G,n 
which are called ‘Domain Parameters’ of ECC[3]. G is 
called generator point and n is the order of G. Now A 
generates a random number nA < n as his private Key and 
calculates his public key Set PA = G+G+G…+nA times. B 
generates a random number nB < n as his private Key and 
calculates his public key, set PB = G+G+G…+nB times. 
 
Key Exchange: 
Entity A computes his Shared Key by  Computing K = PA + 
PA +..+… nB times 
Entity A computes his Shared Key by Computing K = PB + 
PB +..+… nA times 
The two above keys have same value because: 
nA*PB = nA* (nB*G)= nB*(nA *G)= nB * PA 

 

Encryption: 
A sends Cm = 2 ciphertext points those are { kG, Pm + k PB) 
}.    
Where  G    -  generator Point 
 Pm   -  plaintext point on the curve 
 k     -   a random number chosen by A  
 PB   -   public key of B 
 
Decryption: 
Pm + kPB - nB(kG) =   Pm + k(nB)G - nB(kG)   =    Pm 

 

Encoding and Decoding a message in the implementation 
of ECC  

ECC Encryption and Decryption methods   can only encrypt 
and decrypt a point on the curve not messages. 
Unfortunately, there are no known polynomial time 
algorithms for finding a large number of points on an 
arbitrary curve. We are not simply looking for random 
points on E, here. We want a systematic way of  finding 
points on Ep(a,b) relating somehow to the plaintext 
message. Therefore, we are forced to use probabilistic 
algorithms to do this, where the chance of failure is 
acceptably small. Thus Encoding(message to a point) and 
Decoding (point to a message) methods are important while 
Encryption and Decryption. 
   
Message Encoding and Decoding  
Let us suppose a text file has to be  encrypted, a user can 
encrypt the ASCII code of each and every printable 
character on the keyboard , let us say he has to encrypt an 8-
bit number , can represent 128 characters on the keyboard. 
Fig 2 shows the sequence of steps to be followed when a 
message to be encrypted and decrypted using elliptic Curve 
Cryptography.  
 

All the points on the elliptic curve can be directly 
mapped to an ASCII value, select a curve on which we will 
get a minimum of 128 points, so that we fix each  point on 
the curve to an ASCII value. For example, ‘ENCRYPT’ can 
be written as sequence of ASCII characters that is  ‘ 69’ ‘78’ 
‘67’ ‘82’ ‘89’ ‘80’ ‘84’ we can map these values to fixed 
points on the curve. This is easiest method for embedding a 
message but less efficient in terms of security.  The steps to 
be followed during encoding and decoding are given the 
following flowchart ie Fig 2 
Fig 2. 
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Koblitz’s Method for Encoding Plaintext[6]: 
 
Step1: Pick an elliptic curve Ep(a,b).  
Step 2: Let us say that E has N points on it.  
Step 3: Let us say that our alphabet consists of the digits 
0,1,2,3,4,5,6,7,8,9 and the letters A,B,C,. . . , X,Y,Z coded 
as 10,11,. . . , 35.  
Step 4: This converts our message into a series of numbers 
between 0 and 35.  
Step 5: Now choose an auxiliary base parameter, for 
example k = 20. ( both parties should agree upon this) 
Step 6: For each number mk (say), take x=mk + 1 and try to 
solve for y.  
Step 7: If you can't do it, then try x = mk +2 and then x = mk 
+3 until you can solve for y. 
Step 8: In practice, you will find 
 such a y before you hit x = mk + k - 1. Then take the point 
(x,y). This now converts the number m into a point on the 
elliptic curve. In this way, the entire message becomes a 
sequence of points.  
 
Decoding: 
Consider each point (x,y) and set m to be the greatest integer 
less than (x-1)/k. Then the point (x,y) decodes as the symbol 
m.  
 
Example: 
Say the parameters of curve are: 
 p(751),a(-1),b(188),n(727). 
 
1. Say we have to send character ‘b’. 
2. ‘B’ is first encoded as number 11.  
3. x=mk+1 ie 11*20+1=221cannot 
solve it for a y such that y2= x3 + ax+ b    mod p . 
4. So go for x=mk+2  , x=222 , no y exists. x=mk+3, x=223, 
no y exists. 
5. x=mk+4 so x=224 can solve it for y and y=248. 
6. Now the point (224,248) is point is encrypted and 
decrypted as a message. 
7. To decode  just compute (x-1)/k ie (224-1)/20=223/20  ie   
11.15. 
8. Return 11 as original plaintext(greatest integer less than  
(x-1)/k ,that is  11.  
9. The number 11 is now decoded to character ‘B’. 
10. The probability that we fail to find a square (and hence 
fail to associate m to a point) is about 1/2k[10]. 
 
How to select Curve Parameters for  Koblitz’s Method: 
In Koblitz’s method the maximum possible value for m is 
128, if an 8-bit number is encrypted.  Say value of k=10. 
Now the minimum value of x is mk+1 ie 128*10+1=1280 to 
represent a character.   
 

To get a point on the curve whose x-coordinate is 
above 1280, we need to select an elliptic curve with p value 

not less than 1280.  So depending on the value of k(>=10) 
we need to select the curve parameters. 
 
Implementation Results : 
The Encoding and Decoding times are specific to the 
processor. The observations are recorded on a machine with 
1GB RAM and 1.6 GHz processor speed on Win XP 
platform. The following table (table 1) shows CPU Times 
for Encoding and Decoding when implemented in 
MATLAB[7], and a character  ‘a’ is being encrypted and 
decrypted for different domain parameters of elliptic curves. 
 
Table 1. 

 
p 

 
a 

 
 b 

CPU TIMES(secs) 

Encoding Decoding 

2011 9 7 0.01 0.000001 

4093 9 7 1.11    0.000003   
8191 10 17 0.85 0.000003   

16381 1 17 3.7 0.000002   
65521 7 29 0.7 0.000004 

The above CPU times for encoding and decoding are show 
the following graph fig 3.  

Fig 3. 
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Conclusions: 
The Execution time for encoding and decoding functions 
will not vary according to the value of a,b,p(domain 
parameters ecc).The execution time for encoding is different 
for different values of  ecc domain parameters. The 
Execution time taken for decoding is constant for different 
values of a,b,p. The Execution time for Decoding is 
negligible compared to that of  Encoding. 
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