
Ajay Khunteta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1314-1326

An Analysis of Checkpointing Algorithms for
Distributed Mobile Systems

Ajay Khunteta1, Praveen Kumar2

1Singhaniya University

Pacheri, Rajasthan, India
Email: ajay_khunteta@rediffmail.com

2 Department of Computer Science & Engineering

Meerut Institute of Engineering & Technology, Meerut, India, Pin-125005

Abstract: Distributed snapshots are an important building
block for distributed systems, and are useful for constructing
efficient checkpointing protocols, among other uses. Direct
application of these algorithms to mobile systems is not
feasible, however, due to differences in the environment in
which mobile systems operate, relative to general distributed
systems. The mobile computing environment introduces new
challenges in the area of fault-tolerant computing. Compared
to traditional distributed environments, wireless networks are
typically slower, providing lower throughput and latency,
comparing to wireline networks. In addition, the mobile
hosts have limited computation resources, are often exposed
to harsh operating environment that makes them more likely
to fail, and can roam while operating. Over the past two
decades, intensive research work has been carried out on
providing efficient checkpointing protocols in traditional
distributed computing. Recently, more attention has been
paid to providing checkpointing protocols for mobile
systems. Some of these protocols have been adapted from
the traditional distributed environment; others have been
created from scratch for mobile systems. Checkpoint is
defined as a designated place in a program at which normal
processing is interrupted specifically to preserve the status
information necessary to allow resumption of processing at a
later time. Checkpointing is the process of saving the status
information. This paper surveys the algorithms which have
been reported in the literature for checkpointing in Mobile
Distributed systems.

Keywords: Checkpointing, rollback recovery, fault
tolerant systems, Mobile host, Mobile support station etc.

1. Introduction

A distributed system consists of several processes that
execute on geographically dispersed computers and
collaborate via message -passing with each other to achieve
a common goal. In a traditional distributed system all hosts
are stationary. Recent advances in portable computers with
wireless communication interfaces and satellite services have
made it possible for mobile users (mobile computers) to
perform distributed applications and to access information
anywhere and at anytime. This new computing environment
where some hosts are mobile computers connected by
wireless communication networks and some are stationary
computers connected by a fixed network is called a

distributed mobile computing environment. Thus, a
distributed mobile system can be considered as a special
kind of general distributed systems where some of its hosts
are not fixed in their location. This new paradigm is
distributed mobile computing. Clearly, a mobile system is
not necessarily a distributed system, and mobile computing
is not necessarily distributed computing.
A distributed mobile system is characterized by the mobility
and poor resource of mobile hosts. These two distinct
features raise various new issues and constraints not faced in
a stationary distributed system [16], [15]. When designing a
protocol involving mobile hosts, there are some issues which
have to be taken consideration like limited and vulnerable
mobile host local storage, low bandwidth and high channel
contention and voluntary disconnection/connection, location
cost of mobile help station and energy consumption. All
these issues and challenges have made those algorithms
devised for traditional distributed system not applicable.
A large class of important problems in distributed systems
can be cast as periodically calculating consistent global
states and executing some reactions based on the global state
that have been taken. This paradigm requires consistently
recording the global state of a distributed computing. A
global state is a collection of the local states, one from each
process of the computation, recorded by a process. The
global state is said to be consistent if it looks to all the
processes as if it were taken at the same instant everywhere
in the system.
There have been many papers on finding consistent global
states of a distributed application [17]. However, the
constraints imposed by the mobility and poor resource of
mobile hosts as outlined above complicate the design of
distributed algorithms and applications, and make them
inappropriate for distributed mobile computing
environments. Besides its use to recover from failures,
checkpointing is also used in debugging distributed
programs and migrating processes in a multiprocessor
system. In debugging distributed programs state changes of a
process during execution are monitored at various time
instances. Checkpoints assist in such monitoring.
Checkpointing a process periodically provides the
information necessary to move it from one processor to
another. The main objective of this paper is to survey
checkpointing algorithms used in mobile distributed systems.

ISSN : 0975-3397 1314

Ajay Khunteta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1314-1326

2. Aspects of Checkpointing

Upon a failure, checkpoint-based rollback recovery restores
the system state to the most recent consistent set of
checkpoints, i.e. the recovery line [Randell 1975]. It does not
rely on the PWD assumption, and so does not need to detect,
log, or replay nondeterministic events. Checkpoint-based
protocols are therefore less restrictive and simpler to
implement than log-based rollback recovery. But checkpoint
based rollback recovery does not guarantee that pre failure
execution can be deterministically regenerated after a
rollback. Therefore, checkpoint-based rollback recovery is ill
suited for applications that require frequent interactions with
the outside world, since such interactions require that the
observable behavior of the system through failures and
recoveries be the same as during a failure-free execution.
Checkpoint-based rollback-recovery techniques can be
classified into three categories: uncoordinated
checkpointing, coordinated checkpointing, and
communication-induced checkpointing.

2.1 Uncoordinated Checkpointing:

Uncoordinated checkpointing allows each process the
maximum autonomy in deciding when to take checkpoints.
The main advantage of this autonomy is that each process
may take a checkpoint when it is most convenient. For
example, a process may reduce the overhead by taking
checkpoints when the amount of state information to be
saved is small [Wang 1993].
But there are several disadvantages. First, there is the
possibility of the domino effect, which may cause the loss of
a large amount of useful work, possibly all the way back to
the beginning of the computation. Second, a process may
take a useless checkpoint that will never be part of a global
consistent state. Useless checkpoints are undesirable because
they incur overhead and do not contribute to advancing the
recovery line. Third, uncoordinated checkpointing forces
each process to maintain multiple checkpoints, and to invoke
periodically a garbage collection algorithm to reclaim the
checkpoints that are no longer useful. Fourth, it is not
suitable for applications with frequent output commits
because these require global coordination to compute the
recovery line, negating much of the advantage of autonomy.
In order to determine a consistent global checkpoint during
recovery, the processes record the dependencies among their
checkpoints during failure-free operation [Bhargava and
Lian, 1988].

2.2 Coordinated Checkpointing

Coordinated checkpointing requires processes to orchestrate
their checkpoints in order to form a consistent global state.
Coordinated checkpointing simplifies recovery and is not
susceptible to the domino effect, since every process always
restarts from its most recent checkpoint. Also, coordinated
checkpointing requires each process to maintain only one
permanent checkpoint on stable storage, reducing storage
overhead and eliminating the need for garbage collection. Its
main disadvantage, however, is the large latency involved in
committing output, since a global checkpoint is needed

before messages can be sent to out side world. A
straightforward approach to coordinated check- pointing is
to block communications while the checkpointing protocol
executes [Tamir and Sequin 1984]. A coordinator takes a
checkpoint and broadcasts a request message to all
processes, asking them to take a checkpoint. When a process
receives this message, it stops its execution, flushes all the
communication channels, takes a tentative checkpoint, and
sends an acknowledgment message back to the coordinator.
After the coordinator receives acknowledgments from all
processes, it broadcasts a commit message that completes the
two-phase checkpointing protocol. After receiving the
commit message, each process removes the old permanent
checkpoint and atomically makes the tentative checkpoint
permanent.
The process is then free to resume execution and exchange
messages with other processes. This straightforward
approach, however, can result in large overhead, and
therefore non-blocking checkpointing schemes are preferable
[Elnozahy et al. 1992].

2.3 Non-blocking Checkpoint Coordination

A fundamental problem in coordinated checkpointing is to
prevent a process from receiving application messages that
could make the checkpoint inconsistent. If channels are
FIFO, this problem can be avoided by preceding the first
post-checkpoint message on each channel by a checkpoint
request, and forcing each process to take a checkpoint upon
receiving the first checkpoint-request message. An example
of a nonblocking checkpoint coordination protocol using this
idea is the distributed snapshot [Chandy and Lamport 1985],
in which markers play the role of the checkpoint- request
messages. In this protocol, the initiator takes a checkpoint
and broadcasts a marker (a checkpoint request) to all
processes. Each process takes a checkpoint upon receiving
the first marker and rebroadcasts the marker to all processes
before sending any application message. The protocol works
assuming the channels are reliable and FIFO. If the channels
are non-FIFO, the marker can be piggybacked on every post-
checkpoint message. Alternatively, checkpoint indices can
serve the same role as markers, where a checkpoint is
triggered when the receiver's local checkpoint index is lower
than the piggybacked checkpoint index [Elnozahy, et al.
1992; Silva 1997].

2.4 Checkpointing with Synchronized Clocks

Loosely synchronized clocks can facilitate checkpoint
coordination [Cristian and Jahanian 1991; Tong et al. 1992].
More specifically, loosely synchronized clocks can trigger
the local checkpointing actions of all participating processes
at approximately the same time without a checkpoint
initiator [Cristian and Jahanian 1991]. A process takes a
checkpoint and waits for a period that equals the sum of the
maximum deviation between clocks and the maximum time
to detect a failure in another process in the system. The
process can be assured that all checkpoints belonging to the
same coordination session have been taken without the need
of exchanging any messages. If a failure occurs, it is

ISSN : 0975-3397 1315

Ajay Khunteta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1314-1326

detected within the specified time and the protocol is
aborted.

2.5 Minimal Checkpoint Coordination

Coordinated checkpointing requires all processes to
participate in every checkpoint. This requirement generates
valid concerns about its scalability. It is desirable to reduce
the number of processes involved in a coordinated
checkpointing session. This can be done since only those
processes that have communicated with the checkpoint
initiator either directly or indirectly since the last checkpoint
need to take new checkpoints. The following two-phase
protocol achieves minimal checkpoint coordination. During
the first phase, the checkpoint initiator identifies all
processes with which it has communicated since the last
checkpoint and sends them a request. Upon receiving the
request, each process in turn identifies all processes it has
communicated with since the last checkpoints and sends
them a request, and so on, until no more processes can be
identified. During the second phase, all processes identified
in the first phase take a checkpoint. The result is a consistent
checkpoint that involves only the participating processes. In
this protocol, after a process takes a checkpoint, it cannot
send any message until the second phase terminates
successfully, although receiving a message after the
checkpoint has been taken is allowable.

2.6 Communication-induced Checkpointing

Communication-induced checkpointing avoids the domino
effect while allowing processes to take some of their
checkpoints independently [14]. However, process
independence is constrained to guarantee the eventual
progress of the recovery line, and therefore processes may be
forced to take additional checkpoints. The checkpoints that a
process takes independently are called local checkpoints,
while those that a process is forced to take are called forced
checkpoints. Communication-induced checkpointing
piggybacks protocol-related information on each application
message. The receiver of each application message uses the
piggybacked information to determine if it has to take a
forced checkpoint to advance the global recovery line. The
forced checkpoint must be taken before the application may
process the contents of the message, possibly incurring high
latency and overhead. It is therefore desirable in these
systems to reduce the number of forced checkpoints to the
extent possible. In contrast with coordinated checkpointing,
no special coordination messages are exchanged.

2.7 Model-based Checkpointing

Model-based checkpointing relies on preventing patterns of
communications and checkpoints that could result in
inconsistent states among the existing checkpoints. A model
is set up to detect the possibility that such patterns could be
forming within the system, according to some heuristic. A
checkpoint is usually forced to prevent the undesirable
patterns from occurring. Model-based checkpointing works
with the restriction that no control (out-of band) messages

are exchanged among the processes during normal operation.
All information necessary to execute the protocol is
piggybacked on top of application messages. The decision to
force a checkpoint is done locally using the information
available. Therefore, under this style of checkpointing it is
possible that two processes detect the potential for
inconsistent checkpoints and independently force local
checkpoints to prevent the formation of undesirable patterns
that may never actually materialize or that could be
prevented by a single forced checkpoint. Thus, this style of
checkpointing always errs on the conservative side by taking
more forced checkpoints than is probably necessary, because
without explicit coordination, no process has complete
information about the global system state. 13 The literature
contains several domino-effect-free checkpoint and
communication models. The MRS model [50] avoids the
domino effect by ensuring that within every checkpoint
interval all message-receiving events precede all message-
sending events. This model can be maintained by taking an
additional checkpoint before every message-receiving event
that is not separated from its previous message-sending event
by a checkpoint [60]. Another way to prevent the domino
effect is to avoid rollback propagation completely by taking
a checkpoint immediately after every message-sending event
[47]. Recent work has focused on ensuring that every
checkpoint can belong to a consistent global checkpoint and
therefore is not useless [5][24][25][41].

2.8 Index-based Communication Induced
Checkpointing

Index-based communication – induced check pointing works
by assigning monotonically increasing indexes to
checkpoints, such that the checkpoints having the same
index at different processes form a consistent state [14]. The
indexes are piggybacked on application messages to help
receivers decide when they should force a checkpoint. For
instance, the protocol by Briatico et al forces a process to
take a checkpoint upon receiving a message with a
piggybacked index greater than the local index [14]. More
sophisticated protocols piggyback more information on top
of application messages to minimize the number of forced
checkpoints [24].

3. System Model

Most of the algorithms in distributed mobile systems use the
common system model in which the system is composed of a
set of n nodes, and a network of communication links
connecting the nodes. Some of the nodes may change their
location with time. They will be referred to as mobile hosts
or MH [1, 3]. The static nodes are connected to each other
by a static network. An MH can be directly connected to at
most one MSS at any given time and can communicate with
other MHs and MSSs only through the MSS to which it is
directly connected. The links in the static network support
FIFO message communication. As long as an MH is
connected to an MSS, the channel between them also
ensures FIFO communication in both the directions.
Message transmission through these links takes an

ISSN : 0975-3397 1316

Ajay Khunteta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1314-1326

unpredictable, but finite amount of time. During normal
operation, no messages are lost or modified in transit. The
system does not have any shared memory or a global clock.
Hence, all communication and synchronization takes place
through messages. A distributed application consists of
processes that communicate asynchronously with each other.
These processes run on different nodes of the mobile system.
The processes exchange information with each other through
messages. For the application to run successfully, all the
nodes on which the modules of the application are running
should function properly. Node failures in the system are
assumed to be fail-stop in nature. Henceforth, the term node
will be used for both MHs and MSSs, unless explicitly stated
otherwise. The messages generated by the underlying
distributed application will be referred to as the computation
messages. Messages generated by the nodes to advance
checkpoints, handle failures, and for recovery will be
referred to as the system messages. Also, when a message of
either type reaches a node, the node has the ability to peek at
the message contents before actually processing it. Hence the
reception/arrival of a message and its processing by the
receiving node may not necessarily happen at the same time.
They are two distinct events. The arrival of a message is
recorded only on its processing.
4 Checkpointing algorithms for Distributed Mobile
Systems
Chandy and Lamport [9] in 1985 were the first persons who
present the algorithm for global snapshot in distributed
systems. They give algorithm using FIFO channel.
4.1 Chandy-Lamport Algorithm [9]: they use a control
message know as marker for the node which has recorded its
state. After it recorded it state, it send marker to all of its’
outgoing links. The role of marker is to act as delimiters for
the messages in the channels so that the channel state
recorded by the process at the receiving end of the channel.
Marker-Sending Rule for a Process p: For each channel c,
incident on, and directed away from p:
p sends one marker along c after p records its state and
before p sends further messages along c.
Marker-Receiving Rule for a Process q: On receiving a
marker along a channel c:
if (q has not recorded its state) then
begin
q records its state;
q records the state c as the empty sequence
end
else q records the state of c as the sequence of messages
received along c after q state
was recorded and before q received the marker along c.
The recorded local snapshots can be put together to create
the global snapshot in several ways. One policy is to have
each process send its local snapshot to the initiator of the
algorithm. Another policy is to have each process send the
information it records along all outgoing channels, and to
have each process receiving such information for the first
time propagate it along its outgoing channels. All the local
snapshots get disseminated to all other processes and all the
processes can determine the global state.
4.2 Optimization of Chandy-Lamport Algorithm: Several
solutions of the global state detection have been proposed.
Many of them are based on optimization of Chandy-Lamport

algorithms. One is given by Nigamanth and A.G. Sivilotti
[2]. They optimize the algorithms and presented their lazy
snapshots algorithm.
4.2.1 Lazy Algorithm [2]: The new algorithm works as
follows. On receiving a marker from process p, process q
“remembers” the reception of a marker from p. It sends
markers on all outgoing channels as usual. However, q does
not need to record its local snapshot as yet. It postpones the
recording of the local snapshot to a later time. q is forced to
take a local snapshot only if q receives a message from a
process p, from which it has already received a marker. By
delaying the recording of a local snapshot, the number of in-
transit messages is decreased. Thus, a process can reduce the
amount of channel state that it needs to record with the
snapshot. The ability to postpone recording local state also
has the advantage of giving process flexibility in scheduling
this potentially expensive task. There is one technical
problem with the postponement as described, however.
Consider the case of a process r that does not communicate
with the rest of the system. This process could just perform
some local computation, never sending or receiving
messages to the other processes. In such a case, all other
processes in the system could take their local snapshots, but
the global snapshot cannot be calculating until records its
local state. In order to force the global state collector to
terminate, a third event can be added: A marker has been
received on every incoming channel. The local snapshot
triggered by this event will record the state of every
incoming channel as empty. The global state that this
algorithm collects is indeed consistent. The algorithm can be
seen as a generalization of the Chandy-Lamport algorithm. It
reduces the space complexity of the recorded channel state
and permits flexibility in scheduling the potentially
expensive task of recording local state.
4.2.2 Spezialetti - Kearns Algorithm [3]: they proposed an
optimization of the Chandy-Lamport algorithm to combine
concurrently initiated snapshots. This way, if multiple
processes initiate snapshot windows concurrently, the
processes will only need to take one local snapshot and
distribute the same local snapshot to the different initiators.
This algorithm assumes bidirectional channels in the system.
The message complexity of snapshot recording is O(e)
irrespective of the number of concurrent initiations of the
algorithm. The message complexity of assembling and
disseminating the snapshot is O(n2) where r is the number of
concurrent initiations.
4.2.3 Venkatesan’s Incremental Snapshot method [4]:
Venkatesan [4] proposed an incremental approach to
collecting global snapshots. Using this solution, each process
maintains the most recent snapshot taken. A new local
snapshot would then just involve combining the local state
changes since the last snapshot with the most recent
snapshot. This algorithm, however, assumes the presence of
only a single initiator process.
The incremental snapshot algorithm assumes bidirectional
FIFO channels, the presence of a single initiator, a fixed
spanning tree in the network, and four types of control
messages: initsnap, snap-completed, regular, and ack
.initsnap and snap-completed messages traverse spanning
edges. regular and ack messages which serve to record states
of non-spanning edges are not sent on those edges on which

ISSN : 0975-3397 1317

Ajay Khunteta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1314-1326

no computation message has been sent since the previous
snapshot. Venkatesan’s algorithm achieves lower bound in
message complexity.
4.2.4 Helary algorithm [7]: Another extension to the
Chandy-Lamport algorithm was proposed by Helary [7] in
1989. In this algorithm, snapshot windows are marked by
using message waves. Every process in the system is visited
by a wave control message, and this triggers the recording of
local state at the process. As soon as a wave terminates, the
next wave is initiated. It uses message inhibition to avoid an
inconsistency in a global snapshot. After a process i has sent
a marker on the outgoing channel to process j, it does not
send any messages on this channel until it is sure that j has
recorded its local state. This algorithm has a message
complexity of O(e) to record a snapshot.

4.2.5 Ten H. Lai and Tao H. Yang algorithm [6]: Lai and
yang proposed a basic algorithm for non FIFO channel in
1987. Their algorithm piggybacks markers on messages,
computes states of channel by the differences of message
history, and needs no control messages. They fulfill the
requirement of marker by coloring scheme on computation
message. They purposed that every process is initially white
and become red during the recording of snapshot. In their
algorithm every white process takes its snapshot at time
when it received a red message. This ensure that no message
sent by a process after it become red. Thus an explicit
marker message is not required in this algorithm and the
marker is piggybacked on computation messages using a
colouring scheme. Each process has to record the entire
message history on each channel as part of its local snapshot,
thus increase the requirement of the space. So they suggested
that only current sent and received message are required to
store because previous snapshot is available but still they
relies upon that each process can take a snapshot
spontaneously.
4.2.6 Letian He – Yongqiang Sun algorithm [8]: in 1997
they presented their snapshot algorithm called general
repeated snapshot algorithm. They presented a repeated
snapshot algorithm for non FIFO asynchronous distributed
systems.
Repeated Snapshot Algorithm: they assumed that the
processes in the system form a ring and a initial process is a
process in the underlying computation. When a process Pi is
to initiate a snapshot (i,sno), it sends a token marked with
snapshot number(i,sno) to itself. When a process Pj receives
a token (i,sno), if it has not gotten snapshot (i,sno), it records
its local states , marks all following basic messages and
passes token (i,sno) to successor of Pj. Before a process
receives a message marked with (i, sno) if it has not gotten
snapshot (i, sno), it records its local states and receives the
message, or else it just receives the message. When token
(i,sno) return to Pi, Pi computes the global state. They used a
counter to count the record message. Message sending is
counted adding one and receiving is counted minus one.
Thus the sum of all counters is the number of messages in
channels. The algorithm has two parts one is server side and
other is client side. Server side runs on initiator and client
side run on all processes in the system.
To get one snapshot this algorithm needs n pieces of control
messages to transmit local states and message counters. Each

process needs extra space for store and maintained a
message counter and an integer vector of snapshot number
for each process.
4.2.7 Mattern Algorithm for distributed snapshots with
global time approximation [10] in 1993: This algorithm
does not require channels to be FIFO or messages to be
acknowledged. Only a small amount of storage is needed.
An important application of a snapshot algorithm is global
virtual time determination for distributed simulation.
In this algorithm he assumed that a single process initiates
the snapshot algorithm. The initiating process becomes red
spontaneously and then starts a virtual broadcast scheme by
directly or indirectly sending (red) control messages to all
processes in order to ensure that eventually all processes
become red. Virtual broadcast schemes can be implemented
in various ways, for example by superimposing a control
computation on the underlying basic computation which uses
a ring, a spanning tree, or a flooding scheme. Note that a
white process can receive a red basic message before
receiving a control message.
Because processes do not know whether and when they will
receive red basic messages, a white process must be able to
take a local snapshot at the moment it receives a red basic
message. This local snapshot must reflect the local state
before the receipt of the message. In practice, this should not
be a problem. If it is not possible to "peek" at the message
contents before actually receiving it in order to determine its
color, it might be possible to take a local snapshot just after
receiving the message and before changing the local state.
Otherwise a white process must save relevant parts of the
local state before receiving a message in order to reproduce
the state before the receipt event of a red message. To catch
the messages Lai and Yang proposed that a process keeps a
record of all messages sent and all messages received along
its incident channel. This scheme requires a large amount of
space. But in Mattern method the messages in transit are
precisely the white messages which are received by red
processes. Therefore, whenever a red process gets a white
message it can send a copy of it to the snapshot initiator.
(This message may be sent directly to the initiator or routed
on a superimposed control topology). After the snapshot
initiator has received the last copy of all in-transit messages
(and the local snapshots of all processes) it knows the
complete snapshot of the system.
Actually the Mattern algorithm is based on vector clocks.
The initiator ticks its local clock and selects a future vector
time s for the global snapshot. It then broadcasts s and
freezes all activity until it receives an acknowledgement
from every process. After all acknowledgements are
received, the initiator increases its vector clock to s and
broadcast a dummy message to all processes. Each process
increases its clock to a value upon receiving the dummy
message.
4.2.8 Michel Raynal algorithm [11]: in 1989 Michel
Raynal presented his work using the prime number as a tool
to design snapshot algorithm. He has shown that one of
major drawback in designing snapshot algorithm lies in
inability for one or several processes to catch
instantaneously some part of the global state of the system.
He has shown that in some cases prime number can be used
to make distributed observation allowing making consistent

ISSN : 0975-3397 1318

Ajay Khunteta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1314-1326

decision. They purposed two approaches one is mutual
exclusion and second is termination detection algorithms.
4.2.9 Minwen Ji algorithm [12]: in 2005 Minwen Ji from
HP laboratories published his work for instant snapshots in a
Federated array of Bricks. In a federated array of bricks
(FAB), a snapshot may involve tens to thousands of
independent controllers or processors, and may be taken at a
high frequency, e.g., once every 30 seconds for atomic
updates in remote mirroring. Therefore, he has given an
efficient distributed snapshot algorithm that can make the
snapshot operations transparent to applications in FAB.
They proposed such an algorithm, which avoids pausing or
aborting write requests by the novel use of a tentative data
structure during the two phases commit of a snapshot
creation. The snapshot operations are serializable with data
operations (i.e., reads and writes), hence ensure consistency
of the snapshots. Read-only operations on snapshots are
optimized in common cases, only requiring communications
to a small subset of the bricks, in particular, a single replica
set or three bricks in FAB. The algorithm has been
prototyped in FAB and has been tested with trace based
experiments.
This algorithm handles external messages as well as internal
ones also. In algorithm old state leaves in the original
location and stores the new state in a new location.

4.2.10 Arup Acharya and B.R. Badrinath Algorithm[1]:
they presented a simple algorithm that relies on causal
delivery of messages to record a distributed snapshot of
systems with N processes. Then this requires N control
messages. The snapshot algorithm is:
1. Token transmission by the initiator process, Pinit : Pinit
multicasts a token message to every process in the system,
including itself. At Pinit, the multicast is followed by
delivery of the token message.
2. Token delivery at a recipient process Pj, j 2 {1. . .N}: On
delivery of the token message, Pj executes the following
actions.
a. Pj records its local snapshot, LSj, which consists of
• its local state, local_statej,
• current values of RECDj and SENTj.
i.e, LSj: = {local_statej, RECDj, SENTj}
b. Pj sends reply(LSj) to Pinit .
3. Assembling a global snapshot at Pinit: The initiator, Pinit,
waits till the delivery of reply (LSj) message from every
process Pj. The local state of each process has already been
recorded and is available at Pinit. The channel states are
computed by Pinit as a sequence of message ids, using the
values of SENT and RECD arrays recorded by every process
as part of its local snapshot. Thus, the global snapshot GS
is computed as :
a. j 2 {1. . .N}, local_statej 2 GS.
Local_statej is available at Pinit with the delivery of
reply(LSj) message from Pj.
b. j 2 {1. . .N}, state(Cinit,j) := _
i.e., the channel Cinit,j does not contain any
in-transit messages. This claim is validated
in the next section (Claim C3).
c. i 2 {1. . .N},8 j 2 {1. . .N}, i 6= init,
state(Ci,j) := {(RECDj[i] + 1),. . ., SENTi[j]}
i.e., SENTi[j] represents the number of messages

sent by Pi to Pj, before Pi recorded its local snapshot;
RECDj[i] is the number of messages sent from Pi that were
delivered at Pj before Pj recorded its local snapshot. Thus,
the sequence of messages sent on the channel Ci,j, whose
message-ids range from RECDj[i]+1 to SENTi[j], are
considered to be in-transit on channel Ci,j in the global
snapshot GS.
Note that the values of the SENT and RECD arrays used
above are the recorded values, and not the current values.
This protocol relies on causal order of message delivery to
record a consistent snapshot of systems of N processes with
N messages. In this protocol, the state of a channel is
computed by the initiator, as the sequence of message-ids of
the in-transit messages. The initiator does not know directly
the contents of those messages. To find the contents, it must
rely either on sender having kept copies of the messages they
sent, or on receivers collecting those messages as they arrive;
the initiator then needs to send a second round of control
messages to all the processes, incurring an additional
overhead of O(N) messages, to collect the contents of the in-
transit messages.
4.2.11 Alagar Venkatesan Algorithm[13]: In 1994 the
Alagar-Vmkatesan algorithm, channel states are recorded as
follows.
(i) When a process receives the token, it takes its snapshot,
initializes the state of all channels to empty, and returns a
Done message to the initiator. Now onwards, a process
includes a message received on a channel in the channel state
only if it is an old message.
(ii) After the initiator has received a Done message from all
processes, it broadcasts a Terminate message.
(iii) A process stops the snapshot algorithm after receiving a
Terminate message.
An interesting observation is that a process receives all the
old messages in its incoming channels before it receives the
Terminate message. This is ensured by the underlying causal
message delivery property.
Causal ordering property ensures that no new message is
delivered to a process prior to the token and only old
messages are recorded in the channel states.
4.2.12 Franco Zambonelli [14] Domino free Snapshot
algorithm: To permit one process to consistently restore its
execution from its latest local checkpoint before the fault,
one must grant that all its local checkpoints are useful can
belong to at least one consistent global checkpoint.
Otherwise, the execution of the process must be rolled back
in the past until a useful local checkpoint is found from
which to build a consistent global checkpoint. Rollback
propagation, often called the domino effect because of its
recursive nature, limits forward execution progresses in
presence of faults.
Franco zambonelli algorithm deals with on-line algorithms
that grant domino-free recovery by monitoring the
application execution and by forcing additional local
checkpoints in processes, when the arrival of one message is
likely to make some local checkpoint useless. Several well
known checkpoint algorithms are presented and integrated
within a single theoretical framework. The effectiveness of
the algorithms was evaluated in a heterogeneous set of
message passing applications. The main result was that none
of the algorithms shows itself capable of reasonably limiting

ISSN : 0975-3397 1319

Ajay Khunteta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1314-1326

the number of forced checkpoints, thus introducing a high
overhead on applications.

4.2.13 Prakash - Singhal [18]: Ravi Prakash and Mukesh
Singhal proposed Maximum Global Snapshot with
concurrent initiators in 1994. They proposed snapshot
algorithm to handle multiple concurrent snapshot initiations.
They referred to the two approaches as the intersection
approach and the union approach respectively. In the union
approach the latest local snapshots at the nodes are selected.
Therefore, the global snapshot obtained is more recent than
that obtained from the intersection approach. They showed
that unlike Spezialetti and Kearns algorithm, the propagation
of snapshot, requests by various initiators is not suppressed.
The effect is equivalent to letting multiple nodes collect
global snapshot concurrently and independently, and then
combining the snapshots to obtain a maximal global
snapshot.

4.2.14 Ravi Prakash and Mukesh Singhal algorithm[15]:
in 1996 Ravi prakash and Mukesh Singhal presented Low
cost checkpointing and failure recovery in Mobile computing
systems. They presented a synchronous snapshot collection
algorithm for mobile systems that neither forces every node
to take a local snapshot, nor blocks the underlying
computation during snapshot collection. They also proposed
a minimal rollback algorithm in which the computation at a
node is rolled back only if it depends on operations that have
been undone due to the failure of node. Both algorithms
have low communication and storage overheads and meet
the low energy consumptions and low bandwidth constraints
of mobile computing systems.
4.2.15 Cao-Weijia Jia- Cheung algorithm [19]: in 1997
Cao-Jia-Cheung presented their work for an algorithm for
coordinated checkpointing in distributed systems. In the
algorithm message propagation is replaced by multi stage
multicasting where only the initiator disseminates the
checkpointing request and the final decision. For the first
phase, the algorithm works in stages. In each stage, the
initiator constructs a set of processes to which the
checkpointing request will be sent next. In this way the
initiator can eliminate unnecessary message propagation by
merging the cohorts’ sets and resolving redundancy in
message.

4.2.16 Yang-Sun-Sattar-Yang algorithm [20]: in 1998
Zhonghua Yang, Chengheng Sun, Abdul Sattar and Yanyan
Yang have presented the algorithm for consistent global state
for distributed mobile computations. They presented two
algorithms for finding consistent global states of a
distributed mobile system. The first is Prepare and Cut
algorithm and second is Cut-Along-Tree algorithm. In both
algorithms three set of messages, Prepare, cut and Resume
are sent from the initiator to all processes and back to the
initiator and back to processes. The sending of application
messages is disabling during taking snapshot. Both
algorithms use very low message overhead to handle
mobility issues and in disconnection operations.

4.2.17 Quaglia-Ciciani-Baldoni algorithm [21]: in 1998
QCB presented their work on analysis of several

communication induced checkpointing protocol working in a
mobile computing systems. They compared with varying
both the mobility assumptions and disconnection rate of the
mobile hosts. They simulated also heterogeneous
environments to point out the performance of the protocols
in a broad variety of scenarios. They produced the result
showing that index based protocols perform better than the
two phase one and well address the scalability issue of a
mobile setting. They also shows that among the index based
protocols, the QBC (Quaglia-Baldoni-Cicini Protocols)
shows the best performance due to the reduction of the
differences between sequence numbers in different mobile
hosts, which is obtained without adding control information.

4.2.18 Cao-Singhal [22] Mutable Checkpoint algorithm:
in 2001 Cao and Singhal presented the concept of mutable
checkpoint which is neither a tentative checkpoint nor a
permanent checkpoint, to design efficient checkpointing
algorithms for mobile computing systems. Mutable
checkpoints can be saved anywhere, e.g., the main memory
or local disk of MHs. In this way, taking a mutable
checkpoint avoids the overhead of transferring large amounts
of data to the stable storage at MSSs over the wireless
network. They presented techniques to minimize the number
of mutable checkpoints. By simulation results they show that
the overhead of taking mutable checkpoints is negligible.
Based on mutable checkpoints, non-blocking algorithm
avoids the avalanche effect and forces only a minimum
number of processes to take their checkpoints on the stable
storage.
4.2.19 Yoshifumi - Manabe algorithm [23]: in 2001
Yoshifumi Manabe presented his work for Consistent Global
Checkpoint algorithm for distributed Mobile System. He
shown that a checkpoint algorithm in which the amount of
information piggybacked on program messages does not
depend on the number of mobile processes. The number of
checkpoints is minimized under two assumptions one is
consistent global checkpoint is taken for concurrent
checkpoint initiations second is a checkpoint is initiated at
each handoff by mobile processes. It was just optimal among
the generalizations of Chandy and Lamport distributed
snapshot algorithm.

4.2.20 Cao-Chen-Zhang-He algorithm for Hybrid
Systems [26]: in 2004 Jiannong Cao, Yifeng Chen, Kang
Zhang and Yanxiang He presented an algorithm which was
developed for integrating independent and coordinated
checkpointing for application running in a hybrid distributed
system containing multiple heterogeneous systems. The
algorithm has many advantages mainly its easy to
implement, no change is required for subsystems with
coordinated checkpointing schemes and low extra workload
for the coordinated checkpointing subsystem.

4.2.21 Neogy-Sinha-Das CCUML algorithm [27]: in 2004
Sarmistha Neogy, Anupam Sinha, and Pradip K Das
presented CCUML Coordinated Checkpointing with
Unacknowledged Message Logging algorithm. The
algorithm constructs consistent checkpoints in a distributive
manner. The protocol eliminates the occurrences of both
missing and orphan messages. Also each checkpoint taken

ISSN : 0975-3397 1320

Ajay Khunteta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1314-1326

by a process contributes to a consistent global snapshot and
hence only the last global snapshot has to be retained.

4.2.22 Agbaria - Sanders algorithm [28]: in 2004 Adnan
Agbaria and William H.Sanders presented their works for a
new distributed snapshot for mobile computing systems,
which often have limited bandwidth and long latencies, and
where the mobile hosts may roam among the different cells
within the system. In addition they also proved the live ness
and safety. In order to minimize the overhead of protocol
they tried not to minimize the communication through the
wireless bandwidth. They also keep the major work of the
protocol to be done by MSSs not by the MHs. On the other
hand because the protocol does not take any additional
checkpoints the recovery line is limited to the latest cut of
checkpoint. The protocol does not use the CIC technique
which complicates the recovery mechanism so there are no
timeouts. This algorithm has not any type of forced
checkpoints.

4.2.23 Vinit A. Ogale, Try Algorithm [29]: in 2004 the
Vinit A. Ogale presented his algorithm called Try, try till
you succeed: multiple checkpointing and rollback in
distributed systems. In this he presented a multiple
checkpointing and recovery protocol for fault tolerance in
distributed systems. It assumed that the fault trigger occurs
in rare circumstances and it is highly probable that the fault
will not reoccur in another run. He has given an online
distributed algorithm for slicing a distributed computation.
This can be used for predicate detection also. The proposed
scheme is practical and the overhead for fault tolerance is
reasonably low.

4.2.24 Adnan Agbaria algorithm [30]: in 2006 adnan
agbaria presented his worked for new distributed snapshot
protocols which was just improvement of Lamport and
Chandy algorithm in 1985. This algorithm has significant
benefits in reducing the software and hardware overheads of
distributed snapshots. It reduces the number of accesses to
the secondary storage due to message logging. He also
compared it with CL and SaS algorithm and show that it
reduce access to the secondary storage by more than 95 %.

4.2.25 Garg -Vijay Garg – Sabharwal [32]: in 2006 Rahul
Garg, Vijay K, Garg and Yogish Sabharwal proposed the
scalable algorithms for global snapshots in distributed
systems. They has given three algorithms first is Grid Base
second was Tree based and third was Centralized algorithm
for global snapshot. The grid based algorithm uses O(N)
space but only root of N messages per processor. The tree
based algorithm required only O(1)space and O(log N low
w)messages per processor where w is the average number of
messages in transit per processor. The centralized algorithm
requires only O(1) space and O(log w) messages per
processor. They also show that their algorithms have
applications in checkpointing, detecting stable predicates and
implementing synchronizers. They implemented and
recorded the total latency, message sizes and counts, initial
deficit and number of rounds for three algorithms.

4.2.26 Bidyut – Rahimi- Liu algorithm [31]: in 2006
Bidyut Gupta, Shahram Rahimi and Ziping Liu presented
their work for mobile computing systems. In that work they
presented a single phase non blocking coordinated
checkpointing suitable for moble systems. This algorithm
produces a consistent set of checkpoints without the
overhead of temporary checkpoints.
4.2.27 Lalit - P. Kumar algorithm for mobile distributive
systems [37]: in 2007 Lalit Kumar Awasthi and P. Kumar
presented a new algorithm for synchronous checkpointing
protocol for mobile distributed systems. In the algorithm
they reduced the useless checkpoints and blocking using a
probabilistic approach that computes an interacting set of
processes on checkpoint initiation. A process checkpoint if
the probability that it will get a checkpoint request in current
initiation is high. A few processes may be blocked but they
can continue their normal computation and may send
messages. They also modified methodology to maintain
exact dependencies. They show that their algorithm imposes
low memory and computation overheads on MHs and low
communication overheads on wireless channels. It avoids
awakening of a MH if it not required to take its checkpoint.
A MH can remain disconnected for an arbitrary period of
time without affecting checkpointing activity.

4.2.28 Mandal –Mukhopadhyaya algorithm [33]: in 2007
Partha sarathi Mandal and Krishnendu Mukhopadhyaya
presented the algorithm for checkpointing using Mobile
agents in Distributed Systems. Mobile agents offer an
attractive option for designing checkpointing schemes. When
a process want to take a checkpoint, it just creates one
mobile agent. Concurrent initiations by multiple processes
are allowed in this algorithm. The mobile agents intelligently
move from one process to an other and take checkpoints for
host proceses without any useless checkpoints. An agent
moves along a DFS tree rooted at the creator of the agent.
4.2.29 Qiangfeng Jiang and D. Manivannan algorithm
[34]: in 2007 the Qiangfeng Jiang and D. Manivannan
presented an optimistic checkpointing and selective message
logging approach for consistent global checkpoint collection
in distributed systems. In this work they presented a novel
quasi-synchronous checkpointing algorithm that makes
every checkpoint belong to a consistent global checkpoint.
Under this algorithm every process takes tentative
checkpoints and optimistically logs messages received after a
tentative checkpoint is taken and before the tentative
checkpoint is finalized. Since tentative checkpoint can be
taken any time and sorted in local memory, tentative
checkpoints taken can be flushed to stable storage anytime
before that checkpoint is finalized.

4.2.30 Bidyut-Rahimi-Ziping Liu algorithm for ring
Network [35]: in 2008 Bidyut Gupta, Shahram Rahimi and
Ziping Liu presented non blocking checkpointing and
recovery algorithms for bidirectional networks. The
purposed algorithm allowed the process to take permanent
checkpoints directly, without taking temporary checkpoints

ISSN : 0975-3397 1321

Ajay Khunteta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1314-1326

S.No. Algorithm Complexity Features Channel Approach

1 Chandy &
Lamport [9], 1985

Message complexity
is O(e) and O(d) is
time where d is
diameter of graph.

Basic algorithm for
global snapshot
algorithm

FIFO Centralized

2 Nigamanth and
A.G. Sivilotti [2]

Less than Chandy and
Lamport

flexibility of postponed
a local snapshot,
improvement in
Chandy & Lamport
algorithm

FIFO Centralized

3 Spezialetti-Kearns
[3], 1986

Message Complexity
of recording is O(e)
and assembling and
disseminating the
snapshot is O(r n2)

Two Phase algorithm,
support concurrent
initiators, advanced of
Chandy & Lamport
algorithm

Bidirectional Centralized

4 Venkatesan’s
Incremental
Snapshot [4], 1989

Message complexity
is (number of edges
+ number of process)

snapshot windows are
marked by using
message waves vector
information with
regular messages

Bidirectional
FIFO

Centralized

5 Helary
algorithm[7],1989

Message complexity
is O(e)

snapshot windows are
marked by using
message waves ,
snapshot windows are
marked by using
message waves

Non FIFO Centralized

6. Ten H. Lai and
Tao H. Yang
algorithm [6],
1987

O(|c|), here c is the set
of channels in the
systems

Marker systems, use
Markers piggybacked
on messages

Non FIFO Distributive

7. Letian He –
Yongqiang Sun
algorithm [8],
1997

Message complexity
of control messages is
O(n)

Repeated snapshot
algorithm, attached
number of snapshot to
messages, uses token
passing.

Non FIFO Distributive

8. Mattern Algorithm
[10], 1993

Total no of message
is O(|c|)], response
time is 2n, total
message space is
O(n2)

No message history
required

Non FIFO Distributive

9. Michel Raynal
algorithm [11],
1989

Same as Chandy &
Lamport algorithm

Use concepts of prime
number and give
consistent state always

FIFO Distributive

10. Minwen Ji
algorithm [12],
2005

Less with compare to
others because only
global quorum of
responses is required

Two Phase commit
protocol, developed for
FAB(federated array of
bricks)

Non FIFO Distributive

11. Arup Acharya and
B.R. Badrinath
Algorithm [1],
1992

O(n) Basic algorithm using
causal order of
message, channel
message contents are
not known

Causal order Centralized

12. Alagar Venkatesan
Algorithm[13],
1993

Requires 3n
messages, 3 time
units

Small messages used in
snapshot process

Causal order Distributive

ISSN : 0975-3397 1322

Ajay Khunteta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1314-1326

13. Franco Zambonelli
[14],1998

Intolerable overhead Domino free snapshot
algorithm, forcefully
take additional check
point in process

NON FIFO Distributive

14. Ravi Prakash &
Mukesh Singhal
[18], 1994

Message complexity
is O(m*n2), where n
is number of node
and m is concurrently
initiate snapshot
collection

It can handle
concurrent initiation of
snapshot collection by
multiple nodes.

FIFO Distributive

15. Ravi Prakash &
Mukesh Singhal
[15], 1996

Low cost checkpoint Every node is not
required to take local
snapshot, introduced
inter node
dependencies

FIFO Distributive

16. Cao, Jia, Jia,
Cheung [19], 1997

Message complexity
is 3n(n-1), and time
complexity is 3n.

Less time and space
complexity, also used
for synchronous
rollback operations

FIFO Distributive

17. Yang, Sun, Sattar,
and Yanyan Yang
[20], 1998

Message O(3*n*d)
for Prepare-and-Cut
algorithm and
O(3(n-1)) for Cut-
Along- Tree
algorithm

Give two algorithms
first is Prepare and Cut
and second is Cut
Along Tree

Not required
to be FIFO

Distributive

18. Cao and Mukesh
Singhal [22], 2001

Message overheads is
around 2*Nmin * Cair
+ min(Nmin*Cair,
Cbroad).
Blocking time is 0.

Introduced Mutable
checkpoint, which is
neither tentative or
permanent checkpoint.

FIFO Distributive

19. Yoshifumi manabe
[23], 2001

O(n2) Advancement in
Lamport and Chandy
algorithm, in this
amount of information
not depend on no of
processor

FIFO Centralized

20 Cao, Chen, Zhang
and Yanxiang He
[26], 2004

Introduce low extra
overhead to hybrid
system

Algorithm for hybrid
distributed systems

- Distributed

21. Sarmistha,
Anupam and Das
[27], 2004

Total cost is N*Cair +
2* Cbroad

Checkpointing with
unacknowledged
message logging, no
useless checkpoint,
nonblocking algorithm

FIFO Distributive

22. Vinit A Ogale
[29], 2004

Extra Message
required is O(mn)
here m is maximum
number of events at
each process where a
local checkpoint is
stored.

Online algorithm for
slicing a computation

FIFO Distributive

23. Adnan Agbaria
and Sanders [28],
2004

O(n2) No timeout, no
additional checkpoints,
no forced checkpoints

Non FIFO Distributive

24. Adnan Agbaria,
[30] 2006

O(n2) reduced
number of access to
secondary storage due
to message logging.

Modified lamport and
Chandy algorithm

FIFO Distributive

ISSN : 0975-3397 1323

Ajay Khunteta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1314-1326

25. Bidyut, Rahimi
and Liu[31], 2006

Total beta cost is Nmin

* Cair
Produce consistent set
of checkpoint without
overhead of temporary
checkpoints, with no
useless checkpoint, non
blocking algorithm

Channel can
loss
messages

Distributive

26. Rahul Garg,
VijayGarg, and
Yogish sagharwal
[32], 2006

Grid base uses O(n)
space and only
O(n1.5)messages per
processor.
Tree base uses O(1)
space and only O(Log
n log w)messages per
processor and
centralized required
only O(1) space and
O(low w)messages
per processor

Produced three
algorithm tree base,
grid base and
centralized algorithm
and simulate them

Gird, tree
base

Distributive

27. Mandal and
Mukhopadhyaya
[33], 2007

Time complexity is
O(n), Control
message size for k
concurrent initiations
is O(n/k)

Uses intelligent mobile
agents in distributed
system over network
topology

FIFO Distributive

28. Qiangfeng and
Manivannan [34],
2007

fast response time
and reduce overheads
of checkpoints

Every process can take
their local tentative
checkpoint and store in
local memory

Non FIFO Distributive

29. Bidyut, Rahimi
and Liu [35], 2008

Control message is
n+1 and execution
time is (n/2 +1)

Directly permanent
checkpoint without any
temporary checkpoints
in ring network

FIFO Distributive

30. Subba Rao,
Naidu[36], 2008

Minimize every type
of overheads

Messages are logged
only within a specified
interval

FIFO distributive

31. Gao, Deng and
Che[38], 2008

Control message is
zero

Use time to indirectly
coordinate the creation
of consistent state

FIFO distributive

32. Ajay D
Kshemkalyani[39]
, 2009

Response time is
O(log n), message is
O(n log n)

Useful in large scale
systems

Non FIFO distributive

33. Ajay D
Kshemkalyani,
[40], 2010

In Simple tree
messages are O(n)
and response time is
O(log n). in
Hypercube requires
O(n log n) messages
and has O(log n)
response time.

Useful in large
distributive systems
like supercomputers,
MIMD, required less
message and response
time.

Non FIFO Distributive

Cair is cost of sending a message form one process to another process.
Cbroad : is cost of broadcasting a message to all processes.
Nmin : is number of processes that need to take checkpoints
w: is the average number of in-transit messages when the snapshot is taken.
e stands for number of edges in the graph.
n stands for number of processes.
 r is number of concurrent initiations.
Table 1: showing comparison of different snapshot algorithms for distributed systems

ISSN : 0975-3397 1324

Ajay Khunteta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1314-1326

global snapshot algorithms for large scale distributed
systems. He compared his algorithm with Garg[32] and
and whenever a process is busy it takes a checkpoint after
completing its current procedure. The algorithm was
designed and simulate for Ring network.

4.2.31 Suba Raoand and Naidu algorithm [36]: in 2008
Ch. D.V. Subba Rao and M.N. Naidu presented their
work for checkpointing algorithm combined with
selective sender based message logging. This algorithm is
free from problem of lost messages. This algorithm
tolerates permanent faults in the presence of spare
processors. In their absence it tolerates only transient
failures. The term selective implies that messages are
logged only within a specified interval known as active
interval, thereby reducing message logging overhead. This
algorithm minimizes different overheads like
checkpointing overhead, message logging overhead,
recovery overhead and blocking overhead.

4.2.32 Gao-Deng-Che algorithm [38]: in 2008 Yanping
Gao, ChanghuiDeng and Yandong Che Presented their
work for an indes based algorithm using time coordination
in mobile computing. They use integration of time base
and index based checkpointing algorithm. The proposed
algorithm does not use any control message. It is more
efficient because it takes lesser number of checkpoints
and does not need to compute dependency relationship. In
time based checkpointing protocols there is no need to
send extra coordination messages. However they have to
deal with the synchronization of timers. This type of
algorithm is suitable for applications where processes
have low message sending rate.

4.2.33 Ajay D Kshemkalyani algorithm [39]: in 2010
Ajay D. Kshemkalyani presented a fast and message
efficientshow that new algorithm is more efficient. He
presented two new algorithms Simple Tree and
Hypercube that use fewer message and have lower
response time and parallel communication times. In
addition the hypercube algorithm is symmetrical and has
greater potential for balanced workload and congestion
freedom. This algorithm have direct applicable in large
scale distributed systems such as peer to peer and MIMD
supercomputers which are a fully connected topology of a
large number of processors. This algorithm is also useful
for determine checkpoint in large scale distributed mobile
systems.

4.2.34 Ajay D. Kshemkalyani algorithm [40]: in 2010
Ajay D. Kshemkalyani has presented his work on large
scale distributed systems and give two approaches, first
are Simple Tree and second is Hypercube. He has shown
that the response time and message complexity is
minimum in these cases. Both algorithms are fast and
required small numbers of message, this property make
them highly scalable. The applications of this algorithm
are in supercomputers and in MIMD processors.

5. Conclusion
A survey of the literate on checkpointing algorithms for
distributed systems shows that a large number of papers
have been published. A majority of these algorithms are
based on the seminal article by chandy and lamport and
have been obtained by relaxing many of the assumptions
made by them. The table 1 gives a comparison of the
salient features of various snapshot recording algorithms.
Clearly, the higher the level of abstraction provided by a
communication model, the simpler the snapshot
algorithm. The requirement of global snapshots finds a
large number of applications like: detection of stable
properties, checkpointing, monitoring, debugging,
analyses of distributed computation, discarding of
obsolete information, etc. We have reviewed and
compared different approaches to checkpointing in mobile
distributed systems with respect to a set of properties
including the assumption of piecewise determinism,
performance overhead, storage overhead, ease of output
commit, ease of garbage collection, ease of recovery,
useless checkpointing, low energy consumptions.

References
[1] A. Acharya and B.R. Badrinath, ªCheckpointing Distributed

Applications on Mobil Computers,º Proc. Third Int'l Conf. Parallel
and Distributed Information Systems, Sept. 1994.

[2] Nigamanth Sridhar and Paolo A.G. Siviloti: Lazy Snapshots
[3] Spezialetti M and Keams P 1986 Efficient distributed snapshots Proc.

6th Int. Conz on Distributed Computing Systems pp 382-8
[4] Venkatesan S 1993 Message-optimal incremental snapshots J.

Comput. Sofnvare Engineering 1 211-31
[5] B. Bhargava, S.R. Lian, and P.J. Leu, ªExperimental Evaluation of

Concurrent Checkpointing and Rollback-Recovery Algorithms,º
Proc. Int'l Conf. Data Eng., pp. 182-189, 1990.

[6] Lai T H and Yang T H 1987 On distributed snapshots Informarion
Processing Leu. 25 153-8

[7] Helary I-M 1989 Observing global states of asynchronous distributed
applications Proc. 3rd Inr. Workhop on Disrribured A/gorirhnu,
LNCS 392 (Berlin: Springer) pp 124-34

[8] Letian He and Yongqiang Sun: A General Repeated Snapshot
Algorithm IEEE, 1997

[9] K.M. Chandy and L. Lamport, ªDistributed Snapshots: Determining
Global States of Distributed Systems,º ACM Trans. Computer
Systems, Feb. 1985. Mattem F,1993 Efficient algorithms for
distributed snapshots and global virtual lime approximation

[10] J,Parallel Disrribured Computing 18 423-34
[11] Michel Raynal : Prime Number as a tool to design distributed

algorithms
[12] Minwen Ji: Instant Snapshots in a Fedeerated Arrary of Bricks,

2005
[13] Alagar S and Venkatesan S 1994 An optimal algorithm for

distributed snapshots with causal message ordering Infomation
Processing Lert. 50 3116

[14] Franco Zambonelli: On the Effectiveness of Distributed Checkpoint
Algorithms for Domino Free Recovery, IEEE, Proceeding of
HPDC-7,98, July 1998, at Chicago

[15] R. Prakash and M. Singhal, ªLow-Cost Checkpointing and Failure
Recovery in Mobile Computing Systems,º IEEE Trans. Parallel and
Distributed Systems, pp. 1035-1048, Oct. 1996.

[16] M. Satyanarayanan. Fundamental challenges in mobile computing
In Fifteenth ACM Symposium on Principles of Distributed
Computing, Philadelphia, PA, May, 1996

[17] Z.Yang and T.A. Marsland Global state and Time in Distributed
Systmes. IEEE Computer Society Press 1994

ISSN : 0975-3397 1325

Ajay Khunteta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1314-1326

[18] R. Prakash and M. Singhal, ªMaximal Global Snapshot with
Concurrent Initiators,º Proc. Sixth IEEE Symp. Parallel and
Distributed Processing, pp. 344-351, Oct. 1994.

[19] Jiannong Cao, Weijia Jia, and Xiaohua Jia, To-yat Cheung: Design
and analysis of an efficient algorithm for coordinated
checkpointing in distributed systems, IEEE, 1997

[20] Zhonghua Yang, Chengzheng Sun, Abdul Sattar, and Yanyan
Yang: Consistent global states of distributed Mobile Computations,
Proceedings of international conference on Parallel and Distributed
Processing Techniques and Applications, Las Vegas, Nevada, Usa,
1998

[21] F. Quaglia, B. Ciciani, R. Baldoni: Checkpointing Protocol in
Distributed Systems with Mobile Hosts: a Performance Analysis,

[22] Guohong Cao, Mukesh Singhal “Mutable checkpoints: A new
checkpointing approach for mobile computing systems” IEEE
transactions on Parallel and distributed systems, 2001

[23] Yoshifumi Manabe: A Distributed Consistent Global Checkpoint
Alagorithm for Distributed Mobile Systems, IEEE, 2001

[24] M. Banâtre, P. Heng, G. Muller and B. Rochard. “How to design
reliable servers using fault-tolerant micro-kernel mechanisms.” In
Proceedings of the USENIX Mach Symposium, pp. 223—231, Nov.
1991.

[25] G. Barigazzi and L. Strigini. “Application-transparent setting of
recovery points.” In Proceedings of the Thirteenth International
Symposium on Fault-Tolerant Computing Systems, FTCS-13, pp.
48—55, 1983

[26] Jiannog Cao, Yifeng Chen, Kang Zhang, Yanixing He:
Checkpointing In Hybrid Distributed Systems, Proceedings of 7th
international symposium of Parallel architetures, Algorithms and
Network, IEEE, 2004

[27] Sarmistha Neogy, Anupam Siha, Pradip K Das: CCUML: A
checkpointing protocol for distributed system proceses, IEEE, 2004

[28] Adnan Agbaria, William H. Sanders “ Distributed snapshots for
mobile computing systems” IEEE conference on Pervasive
computing and communications, 2004.

[29] Vinit A. Ogale: Try,try till you succeed: Multiple checkpointing
and rollback in distributed systems, 2004

[30] Adnan Agbaria: Improvements and Reconsideration of distributed
snapshot protocols, 25th IEEE Symposium on Reliable Distributed
Systems, IEEE Computer Society, 2006

[31] Bidyut Gupta, Shahram Rahimi, Ziping Liu: A new high
performance checkpointing approach for mobile computing
systems, International Journal of Computer science and network
security, 2006

[32] Rahul Garg, Vijay K Garg, Yogish sabharwal “Scalable algorithms
for global snapshots in distributed systems” ACM 2006

[33] Partha Sarathi Mandal and Krishenendu Mukhopadhyaya:
Checkpointing using Mobile agents in distributed systems,
Proceeding of international conference on Computing by IEEE
Computer society, 2007

[34] Qiangfeng Jiang and D. Manivannan: An Optimistic Checkpointing
and selective message logging approach for consistent global
checkpoint collection in distributed systems, IEEE, 2007

[35] Bidyut Gupta, Shahram Rahimi, and Ziping Liu: Design of high
performance distributed snapshot/recovery algorithms for ring
network, Journal of Computing and information Technology-CIT,
2008

[36] Ch. D.V. Subba Rao and MM Naidu: A new, efficient corrdinated
checkpointing protocol combined with selective sender based
message logging, IEEE, 2008

[37] Lalit Kumar P. Kumar “A synchronous ckeckpointing protocol for
mobile distributed systems: probabilistic approach” Int Journal of
information and computer security 2007

[38] Yanping Gao, Changhui Deng, Yandong Che: an adaptive index
based algorithm using time coordination in mobile computing,
International symposiums on information processing, IEEE, 2008

[39] Ajay D Kshemkalyani: a symmetric O(n log n) message distributed
snapshot algorithm for large scale systems, IEEE, 2010

[40] Ajay D Kshemkalyani “ Fast and message efficient global snapshot
algorithms for large scale distributed systems” IEEE 2010

[41] J. Cao and K. C. Wang. “An abstract model of rollback recovery
control in distributed systems.” Operating Systems Review, pp.
62—76, Oct. 1992.

[42] R.E. Strom and S.A. Yemini, ªOptimistic Recovery In Distributed
Systems,º ACM Trans. Computer Systems, pp. 204-226, Aug.
1985.

[43] R. Koo and S. Toueg, ªCheckpointing and Rollback-Recovery for
Distributed Systems,º IEEE Trans. Software Eng., pp. 23-31, Jan.
1987.

[44] M. Banâtre, P. Heng, G. Muller and B. Rochard. “How to design
reliable servers using fault-tolerant micro-kernel mechanisms.” In
Proceedings of the USENIX Mach Symposium, pp. 223—231, Nov.
1991.

[45] G. Barigazzi and L. Strigini. “Application-transparent setting of
recovery points.” In Proceedings of the Thirteenth International
Symposium on Fault-Tolerant Computing Systems, FTCS-13, pp.
48—55, 1983

[46] N. Attig and V. Sander. “Automatic checkpointing of NQS batch
jobs on CRAY UNICOS systems.” In Proceedings of the Cray
User Group Meeting, 1993.

[47] L. Alvisi and K. Marzullo. “Message logging: Pessimistic,
optimistic and causal.” In Proceedings of the IEEE International
Conference on Distributed Computing Systems, May 1995.

[48] N. Attig and V. Sander. “Automatic checkpointing of NQS batch
jobs on CRAY UNICOS systems.” In Proceedings of the Cray
User Group Meeting, 1993.

[49] M.S. Algudady and C.R. Das. “A cache-based checkpointing
scheme for MIN-based multiprocessors.” In Proceedingsof the
International Conference on Parallel Processing, pp. 497—500,
1991.

[50] M. Choy, H. Leong, and M.H. Wong. “On distributed object
checkpointing and recovery.” In Proceedings of the ACM
Symposium on Principles of Distributed Computing, Aug. 1995

[51] I. Akyildiz, J. Mcnair, J. Ho, H. Uzunalioglu, and W. Wang,
ªMobility Management in Next-Generation Wireless Systems,º
IEEE, vol. 87, no. 8. pp. 1347-1384, Aug. 1999.

[52] B. Bhargava and S. Lian, ªIndependent Checkpointing and
Concurrent Rollback for Recovery in Distributed Systems,º Proc.
Seventh IEEE Symposium Reliable Distributed System, pp. 3-12,
Oct. 1988.

[53] M.S. Algudady and C.R. Das. “A cache-based checkpointing
scheme for MIN-based multiprocessors.” In Proceedings of the
International Conference on Parallel Processing, pp. 497—500,
1991.

[54] P. Ramanathan and K.G. Shin, ªUse of Common Time Base for
Checkpointing and Rollback Recovery in a Distributed System,º
IEEE Trans. Software Eng., pp. 571-583, June 1993.

[55] P.Y. Leu and B. Bhargava, ªConcurrent Robust Checkpointing and
Recovery in Distributed Systems,º Proc. Fourth IEEE Int'l. Conf.
Data Eng., pp. 154-163, 1988.

[56] L.M. Silva and J.G. Silva, ªGlobal Checkpointing for Distributed
Programs,º Proc. 11th Symp. Reliable Distributed Systems, pp.
155- 162, Oct. 1992.

[57] N. Vaidya, ªStaggered Consistent Checkpointing,º IEEE Trans.
Parallel and Distributed Systems, vol. 10, no. 7, pp.694-702, July
1999.

[58] Y. Wang and W.K. Fuchs, ªLazy Checkpoint Coordination for
Bounding Rollback Propagation,º Proc. 12th Symp. Reliable
Distributed Systems, pp. 78-85, Oct. 1993.

[59] Y. Deng and E.K. Park, ªCheckpointing and Rollback-Recovery
Algorithms in Distributed Systems,º J. Systems and Software, pp.
59- 71, Apr. 1994.

[60] A. Duda. “The effects of checkpointing on program execution
time.” In Information Processing Letters, no. 16, pp. 221—229,
1983.

[61] B. Crow, I. Widjaja, J. Kim, and P. Sakai, ªIEEE 802 11 Wireless
Local Area Networks,º IEEE Comm. Magazine, pp. 116-126,
Sept.1997.

[62] G.H. Forman and J. Zahorjan, ªThe Challenges of Mobile
Computing,º Computer, pp. 38-47, Apr. 1994

ISSN : 0975-3397 1326

