
N. Badal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1111-1118

Frequent Data Itemset Mining Using VS_Apriori
Algorithms

N. Badal

Department of Computer Science & Engineering,
Kamla Nehru Institute of Technology,

Sultanpur (U.P.), India
n_badal@hotmail.com

Shruti Tripathi

Department of Computer Science & Engineering,
Feroze Gandhi Institute of Engineering and Technology,

Raebareli (U.P.), India
shru_tri@yahoo.com

Abstract—The organization, management and accessing of
information in better manner in various data warehouse
applications have been active areas of research for many
researchers for more than last two decades. The work presented
in this paper is motivated from their work and inspired to reduce
complexity involved in data mining from data warehouse.

A new algorithm named VS_Apriori is introduced as
the extension of existing Apriori Algorithm that intelligently
mines the frequent data itemset in large scale database.
 Experimental results are presented to illustrate the role
of Apriori Algorithm, to demonstrate efficient way and to
implement the Algorithm for generating frequent data itemset.
Experiments are also performed to show high speedups.

Keywords:- Frequent data itemsets, Apriori

I. INTRODUCTION

The world around us is full of information. The latest
computer systems are allowing us to gather and store that
information in the large scale Data Warehouse (DW).
However, the ability to process and retrieve that information
lags far beyond the abilities as gatherers. Most of the real
problems of this time are to extract the meaningful patterns
from datasets and Dataset Item from DW.

The work presented in this paper is oriented about
intelligent data mining process for depended and demanded
Item datasets. These processes contain the extraction of
meaningful information from massive datasets. The data sets of
item have the relationship between them. Even quite defining
what is a meaningful relationship among these item data is non-
trivial; but, that said, determining sets of items that co-occur
frequently throughout the data is a very good start.

The work is initiated with classic Apriori algorithm for the
problem to find the frequent data itemsets. Further, the concept
of ‘sorting’ the consequence is being introduced with classic
Apriori to provide more reliable and specific results.

The real problem of processing and retrieving useful data
itemset in intelligent manner from the large scale dataset was
left unattended. The classical Apriori algorithm is a popular
and foundational member of the correlation based intelligent
data mining kernels used today for data itemset. However, it is
a computationally expensive algorithm in terms of multiple
passes. Therefore, it is required to analyze the classical Apriori

algorithm for better efficiency in a good space complexity.
Further, there is a need of a new algorithm to improve the
efficiency of existing one and able to provide the intelligent
data mining of itemset.

Section II reviews the literature on frequent data itemset
mining techniques. Section III produces a new algorithm
VS_Apriori as an extension of classic Apriori algorithm with
details of quite thoroughly how the work modifies the original
algorithm in order to achieve the better efficiency. Experiments
done in support of the proposed algorithm for frequent data
itemset mining on sample test dataset is given in Section IV.
Finally, in Section V conclusion and future scope of the work is
given.

II. BACKGROUND

Before explaining the sorting method, let’s first
review the problem definition and the previous attempts at
addressing the problem, especially including the basic flow of
the Apriori algorithm.

The task of frequent data itemset mining was first
introduced by Agrawal & Srikant in [11]. A frequent data is
the set of one or more items that often occur in a database, and
often occurs together in the same basket within the database if
it consists of more than one item. Each set of data has a
number of items and is called a transaction. The output of
Apriori is sets of rules that tell us how often items are
contained in sets of data. Here is an example:

Each transaction is a set of items

TABLE I. A Figure Example Of A Dataset In Which {A,
B} Is Frequent, Designed To Illustrate The Frequent Data

Itemset Mining Problem

Transaction Data Itemset

t1 a b c

t2 a b d

t3 a b e

t4 a b d

100% of sets with a also contain b

ISSN : 0975-3397 1111

N. Badal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1111-1118

25% of sets with a, b also have c
50% of sets with a, b also have d
25% of sets with a, b also have c

The associations that Apriori finds are called
Association rules. An association rule has two parts. The
Antecedent is a subset of items found in sets of data. The
Consequent is an item that is found in combination with the
antecedent. Two terms describe the significance of the
association rule. The Confidence is a percentage of data sets
that contain the antecedent. The Support is a percentage of the
data sets with the antecedent that also contain the consequent.

From the example of table I, we could find the
following association rules

consequence <- antecedent (confidence, support)
a <- b (100%, 100%) # b <- a is the same

c <- a b (100%, 25%)
d <- a b (100%, 50%)
c <- a b (100%, 25%)

A. Apriori Algorithm

Agrawal et al. proposed the classical Apriori
algorithm [10] to more efficiently solve it. Classical Apriori
algorithm can be divided into three sections. Initial frequent
item sets are fed into the system, and candidate generation,
candidate pruning, and candidate support is executed in turn.

If some set t contains some subset s, then it also
contains all subsets of s. Considering this on a grander scale, if
s is known to occur in, say, p transactions, then all subsets of s
occur in at least p transactions, since they must occur in those
transactions in which s occurs, even if no others. Stating this
alternatively gives the Apriori Principle:
Supp(si) ≥ supp(si ∪ sj), for all sets si, sj (1)

It is common place to refer to these three happenings
as Candidate Generation, Candidate Pruning, and Support
Counting, respectively. For detail refer [10]. The Apriori
algorithm works in following steps –

1) Candidate Generation Method:
How does one construct candidates of a particular

size from a set of frequent data itemsets? Just taking the union
of arbitrary sets is not going to produce new sets with exactly
k +1 elements. Although there are a number of ways to choose
sets to join, only one is used prominently and with much
success: the (k − 1) × (k − 1) method. Consider two data
itemsets of size k. Their union will contain precisely k+1 item
exactly when they share

 k + k − (k + 1) = k – 1 items. (2)

So, all candidates that are generated are done so from
frequent data itemsets of size k that share in common k − 1
items. But consider the data itemsets of Table I

In so doing, one guarantees that a candidate will be
generated only once.

2) Pruning the Search Space:
 By only generating candidates from frequent (k − 1)-
data itemsets as above, one makes use of the Apriori Principle.

Candidates can only be generated if two particular subsets are
frequent. If either happens to be infrequent, then the support of
their union is necessarily infrequent, too—and as such the
candidate is not generated.

3) Support Counting:
Finally, one must count the support of those candidate

(k+1)-data itemsets that survived the pruning phase in order to
determine whether they truly are frequent. Agrawal et al.
accomplished this with a hashing scheme. They construct an
array in which to store the counts for each candidate and a
hash function that maps the candidates onto the array. They
then scan the entire dataset and, for each transaction t in it,
extract every size k + 1 subset of t and apply the hash function
to the subsets. If a subset of t hashes to a candidate, they
increment that candidate’s support count. After proceeding
through the entire dataset, they make one pass through the
array and collect those candidates with support counts above
the threshold. These are the frequent (k + 1)-data itemsets. It is
important to note that the purpose of the hashing i for
indexing, not for compression. Each candidate still retains its
own support count.
B. Recent advances

A concise literature review of related work with mining of
frequent data itemset is being presented in this section. The
literature review is being partitioned in two sections. The first
section is concern with the work related to the progress on
frequent data itemset mining. The limitation of existing work
is being given in the subsequent section.

Some ideas that are designed to address the issue of
scalability are as follows.

1) Tries:
The first of these advances is, as introduced by Brin [14],

of storing candidates in a trie. A trie (alternatively known as a
prefix tree) is a data structure developed by Fredkin [7] which
takes advantage of redundancies in the keys that are placed in
the tree.

This approach has the potential to break down on large
datasets if the data structure no longer fits in main memory.
The depth of the trie is equal to the length of those candidates.
To fit all nodes into main memory requires those candidates to
overlap quite substantially. When they do not, the effect of the
trie’s heavily pointer-based makeup is very poor localisation
and cache utilisation. Consequently, traversing it causes one to
thrash on disk and the efficiency of the structure is quickly
consumed by I/O costs.

2) FPGrowth:
Han et al. in [9] introduce a quite novel algorithm to solve

the frequent data itemset mining problem. FPGrowth is a
highly compact representation of all relevant frequency
information in the data set. Every path of FPGrowth represents
a frequent itemset and the nodes in the path are stored in
decreasing order of the frequency of the corresponding items.

An FPGrowth has a header table. The nodes in the header
table link to the same nodes in its FPGrowth. Single items and
their counts are stored in the header table by decreasing order
of their counts.

ISSN : 0975-3397 1112

N. Badal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1111-1118

Next, the trie is mined recursively to extract the frequent
data itemsets. By following the linked-list of nodes labelled by
the least-frequent item, one retrieves all paths involving that
item. Then a new conditional prefix tree can be built by
copying and then modifying the original tree. All paths whose
leaves are not labelled with the least-frequent item are
removed, this least-frequent item is itself removed, duplicate
paths are merged, and the trie is resorted based on the new
conditional frequencies. This creates a trie with the same
structure as the original tree, but conditioned on the presence
of the least frequent item. So, the procedure can be repeatedly
recursively from here until the trie consists of nothing but a
root node denoting the empty set. This yields all frequent data
itemsets involving the least-frequent item.

The procedure is then repeated for the second-least-
frequent item, third-least frequent item, and so on to extract
from the trie all frequent data itemsets.
Limitations of Existing Work:
 he primary bottleneck of the classical Apriori
algorithm is in incrementing counters for those candidates that
are active in a particular transaction. The trie structure helps
immensely in this regard because the process of matching a
candidate to a transaction simultaneously accomplishes that of
loading the appropriate counter because it is stored in the leaf
of the trie.

But even this approach is not fast enough. When
comparing nearly 1.7 million transactions to 30 million
candidates as is done on the Webdocs dataset presented by
Lucchese [6], the cost of everything is significantly magnified.
However, the story changes when the dataset is quite large
because it suffers the same consequences as did the trie of
candidates. Even building the trie becomes extremely costly.
Buehrer [5] remarked that the dominant percentage of
execution time is that of constructing the trie. Consequently,
on truly large datasets, the FPGrowth algorithm fails even to
initialise.

The disadvantage of FP-Growth is that it needs to work out
conditional pattern bases and build conditional FP-tree
recursively. It performs badly in data sets of long patterns.

Another general problem with the FPGrowth algorithm is
that it lacks the incremental behaviour of Apriori, something
that builds fault tolerance into the algorithm.

III. VS_APRIORI ALGORITHM

The base of this method is the classical Apriori algorithm.

This method provides novel scalable approaches for each
building block.

To start with counting the support of every item in the
dataset and sort them in decreasing order of their frequencies.
Next, sort each transaction with respect to the frequency order
of their items is horizontal sort. This method generates the
candidate data itemsets such that they are also horizontally
sorted. Furthermore, care to generate the candidate data
itemsets in sorted order with respect to each other. This is
vertical sort. When data itemsets are both horizontally and

vertically sorted, they are fully sorted. Generating sorted
candidate data itemsets (for any size k), both horizontally and
vertically, is computationally free and maintaining that sort
order for all subsequent candidate and frequent data itemsets
requires careful implementation, but no cost in execution time.
This conceptually simple sorting idea has implications for
every subsequent part of the algorithm.

In particular, having transactions, candidates, and frequent
data itemsets all adhering to the same sort order has the
following advantages:

 Generating candidates can be done very efficiently
 Indices on lists of candidates can be efficiently

generated at the same time as are the candidates
 Groups of similar candidates can be compressed

together and counted simultaneously
 Candidates can be compared to transactions in linear

time
 Better locality of data and cache-consciousness is

achieved
Each of these advantages is detailed more thoroughly in the

next sections.
A. Efficiently Generating Candidates

Let’s consider generating candidates of an arbitrarily
chosen size, k + 1. It will assume that the frequent k-data
itemsets are sorted both horizontally and vertically. A small
example if k were four is given in Table II.

TABLE II. Example Set of Frequent 4-Data itemsets

f1 6 5 3 2
f2 6 5 3 1
f3 6 5 3 0
f4 6 5 2 0
f5 6 5 1 0
f6 5 4 3 2
f7 5 4 3 0

As described in Section II.A.1, the (k − 1) × (k − 1)

technique generates candidate (k+1)-data itemsets by taking the
union of frequent k-data itemsets. If the first k−1 elements are
identical for two distinct frequent k-data itemsets, fi and fj, call
them near-equal and denote their near-equality by fi=fj. Then,
classically, every frequent data itemset fi is compared to every
fj and the candidate fi ∪ fj is generated whenever fi=fj.
However, even in the small example it must verify this
relationship for

282/8*7
2

7










 (3)
pairs of frequent k-data itemsets. This step is too slow

because the number of frequent k-data itemsets is so large.
A crucial observation is that near-equality is transitive

because the equality of individual items is transitive. So, if
fi=fi+1, . . . , fi+m−2= fi+m−1 then it know that (∀j, k) < m, fi+j =
fi+k.

ISSN : 0975-3397 1113

N. Badal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1111-1118

Recall also that the frequent k-data itemsets are fully sorted
(that is, both horizontally and vertically), so all those that are
near-equal appear contiguously. This sorting taken together
with the transitivity of near-equality is what this method
exploits. Consider the given example.

To begin, set a pointer to the first frequent data itemset, f1 =
{6, 5, 3, 2}. Then check if f1= f2, f2= f3, f3= f4 and so on until
the near-equality is no longer satisfied. This occurs between f2
and f3 because they differ on their 3rd items. Let m denote the
number of data itemsets determined to be near-equal, 3 in this
case. Then, because near-equality is transitive, it can take the
union of every possible pair of the m = 3 data itemsets to
produce the candidates. In this case, the three candidates {{6, 5,

3, 2, 1}, {6, 5, 3, 2, 0}, {6, 5, 3, 1, 0}} and in general








2

m

candidates will be produced.

Then, to continue, set the pointer to f4 and proceed as
before. See that f4 is not near-equal to f5, so have no pairs to
merge. The pointer is next set to f5 for which the same can be
said. Then set the pointer to f6 and verify that f6=f7. Since
there are no more frequent data itemsets, pair f6 and f7 and the
candidate generation is complete. The full set of candidates that
will generate is {{6, 5, 3, 2, 1}, {6, 5, 3, 1, 0}, {6, 5, 3, 2, 0},
{5, 4, 3, 2, 0}}.

This successfully generates all the candidates with a single
pass over the list of frequent k-data itemsets as opposed to the
classical nested-loop approach. Strictly speaking, it might seem

that the processing of








2

m

 candidates effectively causes extra
passes, but it can be shown using the Apriori Principle that m is
typically much less than the number of frequent data itemsets.
At any rate, circumvent this as described in the next section.

1) Candidate compression

Let us return to the concern of generating








2

m

candidates
from each group of m near-equal frequent k-data itemsets.

Since each group of








2

m

 candidates share in common their
first k−1 items, it need not repeat the information. As such, this
can compress the candidates into a super-candidate.

To illustrate this by reusing the example of Table II. Of
those frequent 4-data itemsets, it is discovered that f0, f1, and f2
are near-equal. From them, 0 = {6, 5, 3, 2, 1}, c1 = {6, 5, 3, 2,
0}, c2 = {6, 5, 3, 1, 0} would be generated as candidates. But
instead consider c = f0 ∪ f1 ∪ f2.

Then, the 2-tuple (k +m−1, c) = (6, {6, 5, 3, 2, 1, 0})
encodes all the information need to know about all the
candidates generated from f0, f1, and f2. The first k − 1 items

in the set c are common to all








2

m

 candidates; call this 2-
tuple a super-candidate.

This new super-candidate still represents all








2

m

candidates, but takes up much less space in memory and on
disk.

The candidates in a super-candidate c = (cw, cs) all share the
same prefix: the first k − 1 items of cs. They all have a suffix of
size

(k + 1) − (k − 1) = 2 (4)

By iterating in a nested loop over the last cw − k + 1 items

of cs, produce all possible suffices in sorted order. These, each

appended to the prefix, form the







 
2

1k-cw

 candidates in
c.

2) Indexing
There is another nice consequence of generating sorted

candidates in a single pass: it can efficiently build an index for
retrieving them. In this implementation and in the following
example, It build this index on the least frequent item of each
candidate (k + 1)-data itemset.

The structure is a simple two-dimensional array. Candidates
of a particular size k+1 are stored in a sequential file, and this
array provides information about offsetting that file. Because of
the sort on the candidates, all those that begin with each item i
appear contiguously. The exact location in the file of the first
such candidate is given by the ith element in the first row of the
array. The ith element in the second row of the array indicates
how many bytes are consumed by all (k + 1)-candidates that
begin with item i.

Consider again the example of Table II. The candidates
generated, when stored sequentially as super candidates, appear
as below:

 6653210565310554320

TABLE III. Sample Index for Candidate 5-Data itemsets
Item Offset NumBytes
6 0 52
5 52 24
4 -1 -1
3 -1 -1
2 -1 -1
1 -1 -1
0 -1 -1

The first two super candidates have 6 as their first item and

the third, 5. This creates a boundary between the second 0 and

ISSN : 0975-3397 1114

N. Badal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1111-1118

the 5 that succeeds it. The purpose of the indexing structure is
to keep track of where in the file that boundary is and offer
information that is useful for block-reading along this
boundary. Table III indicates how the structure would look if
each of these numbers consumed four bytes. Use −1 in an ith
position as a sentinel to indicate that no candidates begin with
item i.

Note that one could certainly index using the j least
frequent items of each candidate, for any fixed j < k+1. As j is
chosen larger, the index structure is more precise (returns fewer
candidates that could not match the transaction) but consumes
more memory.

This indicates that the idea of building an index on the
candidates is not novel. In fact, this is quite apparent in [3, 11,
12]. However, nature of the indexing structure is very different.
In [3, 11, 12], the candidates are compressed into a prefix tree
in exactly the same way as transactions are compressed into an
FPGrowth in FPGrowth. Consequently, this indexing structure
can suffer the same fate as does an FPGrowth when the number
of candidates causes the index to grow beyond the limits of
memory.

This structure does not suffer from the troubles of [3, 11,
12], as is evident in three immediate ways. First, it is more
likely to fit into memory, because it only requires storing three
numbers for each item, not the entire set of candidates. Second,
it partitions nicely along the same boundaries as the candidates
are sorted; so, if the structure is too large to fit in memory, it
can be easily divided into components that do. Third, it is
incredibly quick to build.
B. Candidate Pruning

When Apriori was first proposed in [10], its performance
was explained by its effective candidate generation. What
makes the candidate generation so effective is its aggressive
candidate pruning. This can be omitted entirely while still
producing nearly the same set of candidates. Stated
alternatively, after this particular method of candidate
generation, there is little value in running a candidate pruning
step.

Agrawal & Srikant [10] stated that the probability that a
candidate is generated is shown to be largely dependent on its
best testset — that is, the least frequent of its subsets. Classical
Apriori has a very effective candidate generation technique
because if any data itemset c \ {ci} for 0 ≤ i ≤ k is infrequent
the candidate c = {c0, . . . , ck} is pruned from the search space.
By the Apriori Principle, the best testset is guaranteed to be
included among these. However, if one routinely picks the best
testset when first generating the candidate, then the pruning
phase is redundant.

In this method, on the other hand, a candidate generated
from two particular subsets, fk = c \ {ck} and fk−1 = c \ {ck−1}.

If either of these happens to be the best testset, then there is
little added value in a candidate pruning phase that checks the
other k−2 size k subsets of c. Because of the least-frequent-first
sort order, f0 and f1 correspond exactly to the subsets missing
the most frequent items of all those in c. It observed that
usually either f0 or f1 is the best testset.

C. Index-Based Support Counting
Returning to the example of Table II, it had concluded that

three super-candidates would be generated: {c0 = (6, {6, 5, 3, 2,
1, 0}), c1 = (5, {6, 5, 3, 1, 0}), c2 = (5, {5, 4, 3, 2, 0})}. To
compare to a transaction, say t = {t0 = 6, t1 = 4, t2 = 3, t3 = 2, t4
= 1, t5 = 0} it first look up t0 in the index and retrieve the first
two super-candidates, c0 and c1. Then compare them each to t
and update the support counts if they are contained in t. (In this
case, they are not.)

Next, proceed to t1, looking it up in the index. It discovers
that there are no candidates that begin with 4, so move along to
t2. However, since

kiw  426 (5)
There cannot possibly be any more candidates contained in

t, so the method is done.
1) Counting with compressed candidates

 Candidates can be compressed. This affords appreciable
performance gains. All the candidates compressed into a super-
candidate c = (cw, cs) share their first k−1 elements. So, for a
transaction t, if the first k−1 items of cs are not strictly a subset

of t, then it can immediately jump over







 
2

1k-cw

candidates. None could possibly be contained in t.

Suppose instead that the first k−1 items of cs are strictly a
subset of a transaction t. How does it increment the support
counts of exactly those candidates in c which are contained in t
(no more, no fewer)? Illustrate this by example. Let t = {6, 5, 4,
3, 2, 0} be the transaction and, as before,

    0,1,2,3,5,6,6,  sw ccc
 be the super-candidate and k

+ 1 = 5 be the size of the candidates. Lay out a linear array, A,
of

2
2

3

2

1k-cw 















 

 (6)
integers in which it keeps track of each candidate’s support

count.

Some items of sc
 are also in t. Each has an index in sc

 and

keeps all such indices above 1k . This gives us  5,3'c
(corresponding to the items 3 and 0). Then subtract these

indices from
6wc

, producing  1,3"c
Finally, increment the support counts for each of the









2

|"| c

candidates contained in t.

To do so for elements i and j in c′′ (with ji  , it
increment

ISSN : 0975-3397 1115

N. Badal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1111-1118

















 
x

kc
A w 1

2

1

 (7)

where

ij
i

x 









2

In this example, the only choices for i and j are i = 3 and j =
1, so

131
2

3









x

 (8)

and only increment

   11131
2

3
AAxA 


















 (9)
Reflecting on the super-candidate, it represented the

candidates      0,1,3,5,6,0,2,3,5,6,1,2,3,5,6 210  ccc . Of

these three, only 1c is contained in t. The only integer

incremented was  1A . The mapping would increment  0A

for 0c
 and  2A for 2c .

This is how it consistently index the arrays, but certainly
any mapping from

  10:,  kcijji w (10)

on to the interval















 
2

1k-c
,0 w

if applied consistently
will work. In fact, one need not even map to such a tight
interval if space is not a concern. It chose the mapping


























 
ij

i

2
1

2

1k-cw

 (11)

because it has the nice property that order is maintained.

The VS_Apriori algorithm

Step 1- INPUT: A dataset D and a support threshold s
Step 2- F is set of frequent data itemsets

 C is set of candidates
 C ← U

Step 3- Scan database to count support of each item in C
Step 4- Add frequent items to F
Step 5- Sort F least-frequent-first (LFF) by support (using
quicksort)
Step 6- Output F
Step 7- for all f ∈ F, sorted LFF do

 for all g ∈ F, supp(g) ≥ supp(f), sorted LFF do
 Add {f, g} to C
 end for
 Update index for item f
 end for

Step 8- while |C| > 0 do
Step 9- {Count support}

 for all t ∈ D do
 for all i ∈ t do
 RelevantCans ← using index, compressed cans

from file that start with i
 for all CompressedCans ∈ RelevantCans do
 if First k − 2 elements of CompressedCans are

in t then
 Use compressed candidate support counting

technique to update appropriate support counts
 end if
 end for
 end for
 end for
 Add frequent candidates to F
 Output F
 Clear C

Step 10- {Generate candidates}
 Start ← 0
 for 1 ≤ i ≤ |F| do
 if i == |F| OR fi is not near-equal to fi−1 then
 Create super candidate from fstart to fi−1 and

update index as necessary
 Start ← i
 end if
 end for

Step 11- {Candidate pruning—not needed!}
 //Clear F
 //Reset hash
 end while

Step 12- OUTPUT: All sets that appear in at least s
transactions of D

Figure 1. VS_Apriori Algorithm

IV. EXPERIMENTAL RESULTS

The new VS_Apriori algorithm is being implemented in

this section. It details the results of the experiments on a well-
known benchmark test dataset. It is compared against two state-
of-the-art implementations that were all designed with the same
dataset in mind. Then the new VS_Apriori is being compared
to the classic Apriori algorithm with the help of test dataset.

The proposed algorithm may be test to demonstrate and
comparing the work on Dual-core Intel Xeon Processor,
2.33GHz/1333MHz, 4Mb L2 machine.

The 1.5 GB of Webdocs data by Lucchese et. al [6] used for
study, being the largest dataset commonly used throughout
publications on this problem. The data in the Webdocs set
comes from a real domain and so is meaningful. Constructing a

ISSN : 0975-3397 1116

N. Badal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1111-1118

random dataset will not necessarily portray the true
performance characteristics of the algorithms.

The correctness of methods implementation’s output is
compared to the output of other algorithms. Since they were all
developed for the FIMI workshop and all agree on their output,
nonetheless, boundary condition checking was a prominent
component during development.

In order to verify the performance of the Classical
algorithm and VS_Apriori algorithm Figure 2 and Figure 3
shows the comparison between classical Apriori algorithm and
the VS_Apriori algorithm. In Figure 2 comparison is between
Run time vs. Support threshold with transaction considered
25000.

Figure 2. Comparision between Apriori & VS_Apriori

(Run Time vs. Support Threshold)

In figure 3 comparisons is between Execution time vs.
Number of Transaction with considering threshold 2%.

Figure 3. Comparision between Apriori & VS_Apriori

(Execution Time vs. Number of Transaction)

This comparison study concludes that VS_Apriori
algorithm works much faster then classical Apriori algorithm
and also that VS_Apriori algorithm scale well when the support
threshold decreases.

V. CONCLUSION

The new VS_Apriori algorithm discussed in this paper
improves the efficiency of existing Apriori algorithm for
intelligent mining of data itemset. This algorithm offers a

reliable technique for accessing frequent data itemset. It helps
in managing transaction in controlled manner. It also helps to
manage various services, like monitoring, planning and
execution of transaction for frequent data itemset mining in
intelligent manner.

So with VS_Apriori algorithm, the frequent data itemset
mining can be done with lower support threshold then Classical
Apriori algorithm without compromising the scalability. In
VS_Apriori frequent data itemset mining takes less memory
space and thus works much faster. In this way A new
algorithmic approach, named, VS_Apriori algorithm provides
intelligence in mining of frequent data itemset from Large
Scale Data Warehouse

The VS_Apriori algorithm has the potential for use in
numerous applications involving Intelligent Data Mining. In
future, VS_Apriori algorithm may be incorporated in WAP
based applications of transactions for frequent Data Itemset
Mining. A Real Time Apriori using mobile communication
may be implemented for On Line Real Time Transaction.

The work may be extended to investigate the dynamic
strategies for VS_Apriori algorithm. Additional areas of future
works related to balancing of transaction for frequent Data
Itemset. This technology may further be extended for different
purpose in multi-machine environment with features of
parallelization. These exists a scope for distributed transaction
in VS_Apriori algorithm.

REFERENCES

[1] Amol Ghoting, Gregory Buehrer, Srinivasan Parthasarathy, Daehyun
Kim, Anthony Nguyen, Yen-Kuang Chen, and Pradeep Dubey (2005),
“Cache conscious frequent pattern mining on a modern processor”. In
ACM Transaction, VLDB-2005, pp 577–588.

[2] Bodon,(2003). “A fast apriori implementation,” in Proc. of The IEEE
ICDM Workshop on Frequent Data itemset Mining Implementations
(FIMI’03), Melbourne, Florida, Vol. 90, pp 90-118. November.

[3] Borgelt and R. Kruse,(2002) “Induction of association rules: Apriori
implementation,” in Proc. of the 15th conf. on computational statistics,
pp. 395–400.

[4] Borgelt, (2004), “Recursion pruning for the Apriori algorithm,” in Proc.
FIMI, ser. CEUR Workshop., Vol. 126, pp. 120-137.

[5] Buehrer, S. Parthasarathy, and A. Ghoting, (2006) “Out-of-core frequent
pattern mining on a commodity pc,” in KDD ’06: Proc. of the 12th ACM
SIGKDD Int’l. conf. on Knowledge discovery and data mining. New
York, NY, USA, pp. 86–95.

[6] Claudio Lucchese, Salvatore Orlando, Raffaele Perego, and Fabrizio
Silvestri. “Webdocs: a real-life huge transactional dataset”. In Jr. et al.12

[7] Edward Fredkin. (1960),”Trie memory”. Commun. ACM, Vol 3, No. 9,
pp. 490–499, 1960.

[8] Grahne and J. Zhu, (2003), “Efficiently using prefix-trees in mining
frequent data itemsets,” in FIMI, ser. CEUR Workshop Proc., Vol. 126.

[9] J. Han, J. Pei, and Y. Yin,(2000), “Mining frequent patterns without
candidate generation,” in SIGMOD Conference, pp. 1–12.

[10] R. Agrawal and R. Srikant.(1994). “Fast Algorithm for Mining
Association Rules in Large Databases”. In Proc. of the 20th Int’l
Conference on Very Large Databases, Santiago, Chile, pp. 487–499,
August 29-September 1.

[11] R. Agrawal, T. Imielinski, and A. N. Swami, (1993) “Mining association
rules between sets of items in large databases,” in Proc. of ACM
SIGMOD Int’l Conference on Management of Data, Washington, pp.
207–216, May 26-28.

[12] Robert D. Blumofe.(1995),“An Efficient Multithreaded Runtime
System”. In Proc. of the Fifth ACM SIGPLAN Symposium on

0

10

20

30

40

50

60

1% 2% 3% 4% 5%

Support Threshold (%)

Apriori VS_Apriori

s

R
un T

im
e (sec)

0

10

20

30

40

50

5000 10000 15000 20000 25000 30000

Number Of Transaction

Classical Apriori VS_Apriori

s
E

xecution T
im

e (sec)

ISSN : 0975-3397 1117

N. Badal et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1111-1118

Principles and Practice of Parallel Programming, Santa Barbara,
California, pp 207-216, July.

[13] Roberto J. Bayardo Jr., Bart Goethals, and Mohammed Javeed
Zaki,(2004) editors. FIMI ’04, Proc. of the IEEE ICDM Workshop on
Frequent Data itemset Mining Implementations, Brighton, UK, 2004,
Vol. 126, pp. 25-37, November.

[14] S. Brin, R. Motwani, J. D. Ullman, and S. Tsur,(1997), “Dynamic data
itemset counting and implication rules for market basket data,”
SIGMOD Rec., Vol. 26, no. 2, pp. 255–264.

ISSN : 0975-3397 1118

