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Abstract—The organization, management and accessing of 
information in better manner in various data warehouse 
applications have been active areas of research for many 
researchers for more than last two decades. The work presented 
in this paper is motivated from their work and inspired to reduce 
complexity involved in data mining from data warehouse.  

A new algorithm named VS_Apriori is introduced as 
the extension of existing Apriori Algorithm that intelligently 
mines the frequent data itemset in large scale database. 
 Experimental results are presented to illustrate the role 
of Apriori Algorithm, to demonstrate efficient way and to 
implement the Algorithm for generating frequent data itemset. 
Experiments are also performed to show high speedups. 
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I.  INTRODUCTION 
 

The world around us is full of information. The latest 
computer systems are allowing us to gather and store that 
information in the large scale Data Warehouse (DW). 
However, the ability to process and retrieve that information 
lags far beyond the abilities as gatherers. Most of the real 
problems of this time are to extract the meaningful patterns 
from datasets and Dataset Item from DW.  

The work presented in this paper is oriented about 
intelligent data mining process for depended and demanded 
Item datasets. These processes contain the extraction of 
meaningful information from massive datasets. The data sets of 
item have the relationship between them. Even quite defining 
what is a meaningful relationship among these item data is non-
trivial; but, that said, determining sets of items that co-occur 
frequently throughout the data is a very good start.  

The work is initiated with classic Apriori algorithm for the 
problem to find the frequent data itemsets. Further, the concept 
of ‘sorting’ the consequence is being introduced with classic 
Apriori to provide more reliable and specific results. 

The real problem of processing and retrieving useful data 
itemset in intelligent manner from the large scale dataset was 
left unattended. The classical Apriori algorithm is a popular 
and foundational member of the correlation based intelligent 
data mining kernels used today for data itemset. However, it is 
a computationally expensive algorithm in terms of multiple 
passes. Therefore, it is required to analyze the classical Apriori 

algorithm for better efficiency in a good space complexity. 
Further, there is a need of a new algorithm to improve the 
efficiency of existing one and able to provide the intelligent 
data mining of itemset. 

Section II reviews the literature on frequent data itemset 
mining techniques. Section III produces a new algorithm 
VS_Apriori as an extension of classic Apriori algorithm with 
details of quite thoroughly how the work modifies the original 
algorithm in order to achieve the better efficiency. Experiments 
done in support of the proposed algorithm for frequent data 
itemset mining on sample test dataset is given in Section IV.  
Finally, in Section V conclusion and future scope of the work is 
given. 

II. BACKGROUND  
 

Before explaining the sorting method, let’s first 
review the problem definition and the previous attempts at 
addressing the problem, especially including the basic flow of 
the Apriori algorithm. 

The task of frequent data itemset mining was first 
introduced by Agrawal & Srikant in [11]. A frequent data is 
the set of one or more items that often occur in a database, and 
often occurs together in the same basket within the database if 
it consists of more than one item. Each set of data has a 
number of items and is called a transaction. The output of 
Apriori is sets of rules that tell us how often items are 
contained in sets of data. Here is an example: 

Each transaction is a set of items 
 

TABLE I.  A Figure Example Of A Dataset In Which {A, 
B} Is Frequent, Designed To Illustrate The Frequent Data 

Itemset Mining Problem 
 
Transaction Data Itemset 

t1 a      b      c 

t2 a      b      d 

t3 a      b      e 

t4 a      b      d 

 
# 100% of sets with a also contain b 
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# 25% of sets with a, b also have c 
# 50% of sets with a, b also have d 
# 25% of sets with a, b also have c 

The associations that Apriori finds are called 
Association rules. An association rule has two parts. The 
Antecedent is a subset of items found in sets of data. The 
Consequent is an item that is found in combination with the 
antecedent. Two terms describe the significance of the 
association rule. The Confidence is a percentage of data sets 
that contain the antecedent. The Support is a percentage of the 
data sets with the antecedent that also contain the consequent. 

From the example of table I, we could find the 
following association rules 

# consequence <- antecedent (confidence, support) 
a <- b (100%, 100%) # b <- a is the same 

c <- a b (100%, 25%) 
d <- a b (100%, 50%) 
c <- a b (100%, 25%) 

 
A. Apriori Algorithm 

Agrawal et al. proposed the classical Apriori 
algorithm [10] to more efficiently solve it. Classical Apriori 
algorithm can be divided into three sections. Initial frequent 
item sets are fed into the system, and candidate generation, 
candidate pruning, and candidate support is executed in turn. 

If some set t contains some subset s, then it also 
contains all subsets of s. Considering this on a grander scale, if 
s is known to occur in, say, p transactions, then all subsets of s 
occur in at least p transactions, since they must occur in those 
transactions in which s occurs, even if no others. Stating this 
alternatively gives the Apriori Principle: 
Supp(si) ≥ supp(si ∪ sj), for all sets si, sj            (1) 

It is common place to refer to these three happenings 
as Candidate Generation, Candidate Pruning, and Support 
Counting, respectively. For detail refer [10]. The Apriori 
algorithm works in following steps – 

1) Candidate Generation Method:  
How does one construct candidates of a particular 

size from a set of frequent data itemsets? Just taking the union 
of arbitrary sets is not going to produce new sets with exactly 
k +1 elements. Although there are a number of ways to choose 
sets to join, only one is used prominently and with much 
success: the (k − 1) × (k − 1) method. Consider two data 
itemsets of size k. Their union will contain precisely k+1 item 
exactly when they share 

 
 k + k − (k + 1) = k – 1 items.            (2)  
 

So, all candidates that are generated are done so from 
frequent data itemsets of size k that share in common k − 1 
items. But consider the data itemsets of Table I 

In so doing, one guarantees that a candidate will be 
generated only once.  

2) Pruning the Search Space:  
 By only generating candidates from frequent (k − 1)-
data itemsets as above, one makes use of the Apriori Principle. 

Candidates can only be generated if two particular subsets are 
frequent. If either happens to be infrequent, then the support of 
their union is necessarily infrequent, too—and as such the 
candidate is not generated. 

3) Support Counting: 
Finally, one must count the support of those candidate 

(k+1)-data itemsets that survived the pruning phase in order to 
determine whether they truly are frequent. Agrawal et al. 
accomplished this with a hashing scheme. They construct an 
array in which to store the counts for each candidate and a 
hash function that maps the candidates onto the array. They 
then scan the entire dataset and, for each transaction t in it, 
extract every size k + 1 subset of t and apply the hash function 
to the subsets. If a subset of t hashes to a candidate, they 
increment that candidate’s support count. After proceeding 
through the entire dataset, they make one pass through the 
array and collect those candidates with support counts above 
the threshold. These are the frequent (k + 1)-data itemsets. It is 
important to note that the purpose of the hashing i for 
indexing, not for compression. Each candidate still retains its 
own support count. 
B. Recent advances 

A concise literature review of related work with mining of 
frequent data itemset is being presented in this section. The 
literature review is being partitioned in two sections. The first 
section is concern with the work related to the progress on 
frequent data itemset mining. The limitation of existing work 
is being given in the subsequent section. 

Some ideas that are designed to address the issue of 
scalability are as follows. 

1)  Tries:  
The first of these advances is, as introduced by Brin [14], 

of storing candidates in a trie. A trie (alternatively known as a 
prefix tree) is a data structure developed by Fredkin [7] which 
takes advantage of redundancies in the keys that are placed in 
the tree. 

This approach has the potential to break down on large 
datasets if the data structure no longer fits in main memory. 
The depth of the trie is equal to the length of those candidates. 
To fit all nodes into main memory requires those candidates to 
overlap quite substantially. When they do not, the effect of the 
trie’s heavily pointer-based makeup is very poor localisation 
and cache utilisation. Consequently, traversing it causes one to 
thrash on disk and the efficiency of the structure is quickly 
consumed by I/O costs. 

2)  FPGrowth:  
Han et al. in [9] introduce a quite novel algorithm to solve 

the frequent data itemset mining problem. FPGrowth is a 
highly compact representation of all relevant frequency 
information in the data set. Every path of FPGrowth represents 
a frequent itemset and the nodes in the path are stored in 
decreasing order of the frequency of the corresponding items.  

An FPGrowth has a header table. The nodes in the header 
table link to the same nodes in its FPGrowth. Single items and 
their counts are stored in the header table by decreasing order 
of their counts.  
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Next, the trie is mined recursively to extract the frequent 
data itemsets. By following the linked-list of nodes labelled by 
the least-frequent item, one retrieves all paths involving that 
item. Then a new conditional prefix tree can be built by 
copying and then modifying the original tree. All paths whose 
leaves are not labelled with the least-frequent item are 
removed, this least-frequent item is itself removed, duplicate 
paths are merged, and the trie is resorted based on the new 
conditional frequencies. This creates a trie with the same 
structure as the original tree, but conditioned on the presence 
of the least frequent item. So, the procedure can be repeatedly 
recursively from here until the trie consists of nothing but a 
root node denoting the empty set. This yields all frequent data 
itemsets involving the least-frequent item. 

The procedure is then repeated for the second-least-
frequent item, third-least frequent item, and so on to extract 
from the trie all frequent data itemsets.         
Limitations of Existing Work: 
 he primary bottleneck of the classical Apriori 
algorithm is in incrementing counters for those candidates that 
are active in a particular transaction. The trie structure helps 
immensely in this regard because the process of matching a 
candidate to a transaction simultaneously accomplishes that of 
loading the appropriate counter because it is stored in the leaf 
of the trie.  

But even this approach is not fast enough. When 
comparing nearly 1.7 million transactions to 30 million 
candidates as is done on the Webdocs dataset presented by 
Lucchese [6], the cost of everything is significantly magnified. 
However, the story changes when the dataset is quite large 
because it suffers the same consequences as did the trie of 
candidates. Even building the trie becomes extremely costly. 
Buehrer [5] remarked that the dominant percentage of 
execution time is that of constructing the trie. Consequently, 
on truly large datasets, the FPGrowth algorithm fails even to 
initialise. 

The disadvantage of FP-Growth is that it needs to work out 
conditional pattern bases and build conditional FP-tree 
recursively. It performs badly in data sets of long patterns.  

Another general problem with the FPGrowth algorithm is 
that it lacks the incremental behaviour of Apriori, something 
that builds fault tolerance into the algorithm.  

 
III. VS_APRIORI ALGORITHM 

 
The base of this method is the classical Apriori algorithm. 

This method provides novel scalable approaches for each 
building block.  

To start with counting the support of every item in the 
dataset and sort them in decreasing order of their frequencies. 
Next, sort each transaction with respect to the frequency order 
of their items is horizontal sort. This method generates the 
candidate data itemsets such that they are also horizontally 
sorted. Furthermore, care to generate the candidate data 
itemsets in sorted order with respect to each other. This is 
vertical sort. When data itemsets are both horizontally and 

vertically sorted, they are fully sorted. Generating sorted 
candidate data itemsets (for any size k), both horizontally and 
vertically, is computationally free and maintaining that sort 
order for all subsequent candidate and frequent data itemsets 
requires careful implementation, but no cost in execution time. 
This conceptually simple sorting idea has implications for 
every subsequent part of the algorithm. 

In particular, having transactions, candidates, and frequent 
data itemsets all adhering to the same sort order has the 
following advantages: 

 Generating candidates can be done very efficiently 
 Indices on lists of candidates can be efficiently 

generated at the same time as are the candidates 
 Groups of similar candidates can be compressed 

together and counted simultaneously 
 Candidates can be compared to transactions in linear 

time 
 Better locality of data and cache-consciousness is 

achieved 
Each of these advantages is detailed more thoroughly in the 

next sections. 
A. Efficiently Generating Candidates 

Let’s consider generating candidates of an arbitrarily 
chosen size, k + 1. It will assume that the frequent k-data 
itemsets are sorted both horizontally and vertically. A small 
example if k were four is given in Table II. 

 
TABLE II.  Example Set of Frequent 4-Data itemsets 

 
f1 6   5   3   2 
f2 6   5   3   1 
f3 6   5   3   0 
f4 6   5   2   0 
f5 6   5   1   0 
f6 5   4   3   2 
f7 5   4   3   0 

 
As described in Section II.A.1, the (k − 1) × (k − 1) 

technique generates candidate (k+1)-data itemsets by taking the 
union of frequent k-data itemsets. If the first k−1 elements are 
identical for two distinct frequent k-data itemsets, fi and fj, call 
them near-equal and denote their near-equality by fi=fj. Then, 
classically, every frequent data itemset fi is compared to every 
fj and the candidate fi ∪  fj is generated whenever fi=fj. 
However, even in the small example it must verify this 
relationship for  

282/8*7
2

7










                                        (3) 
pairs of frequent k-data itemsets. This step is too slow 

because the number of frequent k-data itemsets is so large. 
A crucial observation is that near-equality is transitive 

because the equality of individual items is transitive. So, if 
fi=fi+1, . . . , fi+m−2= fi+m−1 then it know that (∀j, k) < m, fi+j = 
fi+k. 
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Recall also that the frequent k-data itemsets are fully sorted 
(that is, both horizontally and vertically), so all those that are 
near-equal appear contiguously. This sorting taken together 
with the transitivity of near-equality is what this method 
exploits. Consider the given example. 

To begin, set a pointer to the first frequent data itemset, f1 = 
{6, 5, 3, 2}. Then check if f1= f2, f2= f3, f3= f4 and so on until 
the near-equality is no longer satisfied. This occurs between f2 
and f3 because they differ on their 3rd items. Let m denote the 
number of data itemsets determined to be near-equal, 3 in this 
case. Then, because near-equality is transitive, it can take the 
union of every possible pair of the m = 3 data itemsets to 
produce the candidates. In this case, the three candidates {{6, 5, 

3, 2, 1}, {6, 5, 3, 2, 0}, {6, 5, 3, 1, 0}} and in general 








2

m

 
candidates will be produced. 

Then, to continue, set the pointer to f4 and proceed as 
before. See that f4 is not near-equal to f5, so have no pairs to 
merge. The pointer is next set to f5 for which the same can be 
said. Then set the pointer to f6 and verify that f6=f7. Since 
there are no more frequent data itemsets, pair f6 and f7 and the 
candidate generation is complete. The full set of candidates that 
will generate is {{6, 5, 3, 2, 1}, {6, 5, 3, 1, 0}, {6, 5, 3, 2, 0}, 
{5, 4, 3, 2, 0}}. 

This successfully generates all the candidates with a single 
pass over the list of frequent k-data itemsets as opposed to the 
classical nested-loop approach. Strictly speaking, it might seem 

that the processing of 








2

m

 candidates effectively causes extra 
passes, but it can be shown using the Apriori Principle that m is 
typically much less than the number of frequent data itemsets. 
At any rate, circumvent this as described in the next section. 

 
1) Candidate compression 

Let us return to the concern of generating 








2

m

candidates 
from each group of m near-equal frequent k-data itemsets. 

Since each group of 








2

m

 candidates share in common their 
first k−1 items, it need not repeat the information. As such, this 
can compress the candidates into a super-candidate. 

To illustrate this by reusing the example of Table II. Of 
those frequent 4-data itemsets, it is discovered that f0, f1, and f2 
are near-equal. From them, 0 = {6, 5, 3, 2, 1}, c1 = {6, 5, 3, 2, 
0}, c2 = {6, 5, 3, 1, 0} would be generated as candidates. But 
instead consider c = f0 ∪ f1 ∪ f2. 

Then, the 2-tuple (k +m−1, c) = (6, {6, 5, 3, 2, 1, 0}) 
encodes all the information need to know about all the 
candidates generated from f0, f1, and f2. The first k − 1 items 

in the set c are common to all 








2

m

 candidates; call this 2-
tuple a super-candidate. 

This new super-candidate still represents all 








2

m

 
candidates, but takes up much less space in memory and on 
disk.  

The candidates in a super-candidate c = (cw, cs) all share the 
same prefix: the first k − 1 items of cs. They all have a suffix of 
size  

 
(k + 1) − (k − 1) = 2              (4) 
 
By iterating in a nested loop over the last cw − k + 1 items 

of cs, produce all possible suffices in sorted order. These, each 

appended to the prefix, form the 







 
2

1k-cw

 candidates in 
c. 

2) Indexing 
There is another nice consequence of generating sorted 

candidates in a single pass: it can efficiently build an index for 
retrieving them. In this implementation and in the following 
example, It build this index on the least frequent item of each 
candidate (k + 1)-data itemset. 

The structure is a simple two-dimensional array. Candidates 
of a particular size k+1 are stored in a sequential file, and this 
array provides information about offsetting that file. Because of 
the sort on the candidates, all those that begin with each item i 
appear contiguously. The exact location in the file of the first 
such candidate is given by the ith element in the first row of the 
array. The ith element in the second row of the array indicates 
how many bytes are consumed by all (k + 1)-candidates that 
begin with item i. 

Consider again the example of Table II. The candidates 
generated, when stored sequentially as super candidates, appear 
as below: 

  6653210565310554320 
 

TABLE III.  Sample Index for Candidate 5-Data itemsets 
Item Offset NumBytes 
6 0 52 
5 52 24 
4 -1 -1 
3 -1 -1 
2 -1 -1 
1 -1 -1 
0 -1 -1 

 
 
The first two super candidates have 6 as their first item and 

the third, 5. This creates a boundary between the second 0 and 
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the 5 that succeeds it. The purpose of the indexing structure is 
to keep track of where in the file that boundary is and offer 
information that is useful for block-reading along this 
boundary. Table III indicates how the structure would look if 
each of these numbers consumed four bytes. Use −1 in an ith 
position as a sentinel to indicate that no candidates begin with 
item i. 

Note that one could certainly index using the j least 
frequent items of each candidate, for any fixed j < k+1. As j is 
chosen larger, the index structure is more precise (returns fewer 
candidates that could not match the transaction) but consumes 
more memory. 

This indicates that the idea of building an index on the 
candidates is not novel. In fact, this is quite apparent in [3, 11, 
12]. However, nature of the indexing structure is very different. 
In [3, 11, 12], the candidates are compressed into a prefix tree 
in exactly the same way as transactions are compressed into an 
FPGrowth in FPGrowth. Consequently, this indexing structure 
can suffer the same fate as does an FPGrowth when the number 
of candidates causes the index to grow beyond the limits of 
memory. 

This structure does not suffer from the troubles of [3, 11, 
12], as is evident in three immediate ways. First, it is more 
likely to fit into memory, because it only requires storing three 
numbers for each item, not the entire set of candidates. Second, 
it partitions nicely along the same boundaries as the candidates 
are sorted; so, if the structure is too large to fit in memory, it 
can be easily divided into components that do. Third, it is 
incredibly quick to build. 
B. Candidate Pruning 

When Apriori was first proposed in [10], its performance 
was explained by its effective candidate generation. What 
makes the candidate generation so effective is its aggressive 
candidate pruning. This can be omitted entirely while still 
producing nearly the same set of candidates. Stated 
alternatively, after this particular method of candidate 
generation, there is little value in running a candidate pruning 
step. 

Agrawal & Srikant [10] stated that the probability that a 
candidate is generated is shown to be largely dependent on its 
best testset — that is, the least frequent of its subsets. Classical 
Apriori has a very effective candidate generation technique 
because if any data itemset c \ {ci} for 0 ≤ i ≤ k is infrequent 
the candidate c = {c0, . . . , ck} is pruned from the search space. 
By the Apriori Principle, the best testset is guaranteed to be 
included among these. However, if one routinely picks the best 
testset when first generating the candidate, then the pruning 
phase is redundant. 

In this method, on the other hand, a candidate generated 
from two particular subsets, fk = c \ {ck} and fk−1 = c \ {ck−1}. 

If either of these happens to be the best testset, then there is 
little added value in a candidate pruning phase that checks the 
other k−2 size k subsets of c. Because of the least-frequent-first 
sort order, f0 and f1 correspond exactly to the subsets missing 
the most frequent items of all those in c. It observed that 
usually either f0 or f1 is the best testset. 

C. Index-Based Support Counting 
Returning to the example of Table II, it had concluded that 

three super-candidates would be generated: {c0 = (6, {6, 5, 3, 2, 
1, 0}), c1 = (5, {6, 5, 3, 1, 0}), c2 = (5, {5, 4, 3, 2, 0})}. To 
compare to a transaction, say t = {t0 = 6, t1 = 4, t2 = 3, t3 = 2, t4 
= 1, t5 = 0} it first look up t0 in the index and retrieve the first 
two super-candidates, c0 and c1. Then compare them each to t 
and update the support counts if they are contained in t. (In this 
case, they are not.) 

Next, proceed to t1, looking it up in the index. It discovers 
that there are no candidates that begin with 4, so move along to 
t2. However, since 

kiw  426                           (5) 
There cannot possibly be any more candidates contained in 

t, so the method is done. 
1) Counting with compressed candidates 

  Candidates can be compressed. This affords appreciable 
performance gains. All the candidates compressed into a super-
candidate c = (cw, cs) share their first k−1 elements. So, for a 
transaction t, if the first k−1 items of cs are not strictly a subset 

of t, then it can immediately jump over 







 
2

1k-cw

 
candidates. None could possibly be contained in t. 

Suppose instead that the first k−1 items of cs are strictly a 
subset of a transaction t. How does it increment the support 
counts of exactly those candidates in c which are contained in t 
(no more, no fewer)? Illustrate this by example. Let t = {6, 5, 4, 
3, 2, 0} be the transaction and, as before, 

    0,1,2,3,5,6,6,  sw ccc
 be the super-candidate and k 

+ 1 = 5 be the size of the candidates. Lay out a linear array, A, 
of  

 

2
2

3

2

1k-cw 















 

                         (6) 
integers in which it keeps track of each candidate’s support 

count. 

Some items of sc
 are also in t. Each has an index in sc

 and 

keeps all such indices above 1k . This gives us  5,3'c  
(corresponding to the items 3 and 0). Then subtract these 

indices from
6wc

, producing  1,3"c  
Finally, increment the support counts for each of the 









2

|"| c

candidates contained in t. 

To do so for elements i and j in c′′ (with ji  , it 
increment 
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















 
x

kc
A w 1

2

1

                                        (7)  

where 

ij
i

x 









2
 

In this example, the only choices for i and j are i = 3 and j = 
1, so 

131
2

3









x

                                         (8)  
 
and only increment 

   11131
2

3
AAxA 


















                         (9) 
Reflecting on the super-candidate, it represented the 

candidates      0,1,3,5,6,0,2,3,5,6,1,2,3,5,6 210  ccc . Of 

these three, only 1c  is contained in t. The only integer 

incremented was  1A . The mapping would increment  0A  

for 0c
 and  2A  for 2c . 

This is how it consistently index the arrays, but certainly 
any mapping from 

 

  10:,  kcijji w                        (10) 
 

on to the interval 















 
2

1k-c
,0 w

if applied consistently 
will work. In fact, one need not even map to such a tight 
interval if space is not a concern.  It chose the mapping 

 


























 
ij

i

2
1

2

1k-cw

                              (11) 
 
because it has the nice property that order is maintained. 
 

The VS_Apriori algorithm 
 

Step 1- INPUT: A dataset D and a support threshold s 
Step 2- F is set of frequent data itemsets 

      C is set of candidates 
      C ← U 

Step 3- Scan database to count support of each item in C 
Step 4- Add frequent items to F 
Step 5- Sort F least-frequent-first (LFF) by support (using 
quicksort) 
Step 6- Output F 
Step 7- for all f ∈ F, sorted LFF do 

          for all g ∈ F, supp(g) ≥ supp(f), sorted LFF do 
             Add {f, g} to C 
          end for 
          Update index for item f 
       end for 

Step 8- while |C| > 0 do 
Step 9- {Count support} 

          for all t ∈ D do 
             for all i ∈ t do 
                RelevantCans ← using index, compressed cans 

from file that start with i 
                for all CompressedCans ∈ RelevantCans do 
                   if First k − 2 elements of CompressedCans are 

in t then 
                     Use compressed candidate support counting 

technique to update appropriate support counts 
                 end if 
              end for 
            end for 
        end for 
        Add frequent candidates to F 
        Output F 
        Clear C 

Step 10- {Generate candidates} 
            Start ← 0 
               for 1 ≤ i ≤ |F| do 
                  if i == |F| OR fi is not near-equal to fi−1 then 
                     Create super candidate from fstart to fi−1 and 

update index as necessary 
                       Start ← i 
                  end if 
               end for 

Step 11- {Candidate pruning—not needed!} 
               //Clear F 
               //Reset hash 
         end while 

Step 12- OUTPUT: All sets that appear in at least s 
transactions of D 

Figure 1.  VS_Apriori Algorithm 

 
IV. EXPERIMENTAL RESULTS 

 
The new VS_Apriori algorithm is being implemented in 

this section. It details the results of the experiments on a well-
known benchmark test dataset. It is compared against two state-
of-the-art implementations that were all designed with the same 
dataset in mind. Then the new VS_Apriori is being compared 
to the classic Apriori algorithm with the help of test dataset.  

The proposed algorithm may be test to demonstrate and 
comparing the work on Dual-core Intel Xeon Processor, 
2.33GHz/1333MHz, 4Mb L2 machine. 

The 1.5 GB of Webdocs data by Lucchese et. al [6] used for 
study, being the largest dataset commonly used throughout 
publications on this problem. The data in the Webdocs set 
comes from a real domain and so is meaningful. Constructing a 
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random dataset will not necessarily portray the true 
performance characteristics of the algorithms. 

The correctness of methods implementation’s output is 
compared to the output of other algorithms. Since they were all 
developed for the FIMI workshop and all agree on their output, 
nonetheless, boundary condition checking was a prominent 
component during development. 

In order to verify the performance of the Classical 
algorithm and VS_Apriori algorithm Figure 2 and Figure 3 
shows the comparison between classical Apriori algorithm and 
the VS_Apriori algorithm. In Figure 2 comparison is between 
Run time vs. Support threshold with transaction considered 
25000.  

 

 
Figure 2.  Comparision between Apriori & VS_Apriori 

(Run Time vs. Support Threshold) 
 

In figure 3 comparisons is between Execution time vs. 
Number of Transaction with considering threshold 2%. 

 

 
Figure 3.  Comparision between Apriori & VS_Apriori  

(Execution Time vs. Number of Transaction) 
 

This comparison study concludes that VS_Apriori 
algorithm works much faster then classical Apriori algorithm 
and also that VS_Apriori algorithm scale well when the support 
threshold decreases. 

V. CONCLUSION 
 

The new VS_Apriori algorithm discussed in this paper 
improves the efficiency of existing Apriori algorithm for 
intelligent mining of data itemset. This algorithm offers a 

reliable technique for accessing frequent data itemset. It helps 
in managing transaction in controlled manner. It also helps to 
manage various services, like monitoring, planning and 
execution of transaction for frequent data itemset mining in 
intelligent manner. 

So with VS_Apriori algorithm, the frequent data itemset 
mining can be done with lower support threshold then Classical 
Apriori algorithm without compromising the scalability. In 
VS_Apriori frequent data itemset mining takes less memory 
space and thus works much faster. In this way A new 
algorithmic approach, named, VS_Apriori algorithm provides 
intelligence in mining of frequent data itemset from Large 
Scale Data Warehouse 

The VS_Apriori algorithm has the potential for use in 
numerous applications involving Intelligent Data Mining. In 
future, VS_Apriori algorithm may be incorporated in WAP 
based applications of transactions for frequent Data Itemset 
Mining. A Real Time Apriori using mobile communication 
may be implemented for On Line Real Time Transaction. 

The work may be extended to investigate the dynamic 
strategies for VS_Apriori algorithm. Additional areas of future 
works related to balancing of transaction for frequent Data 
Itemset. This technology may further be extended for different 
purpose in multi-machine environment with features of 
parallelization. These exists a scope for distributed transaction 
in VS_Apriori algorithm. 
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