
Shaheda Akthar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1107-1110

SOFTWARE ARCHITECTURE
RECOVERY WITH ERROR

TOLERANCE AND PENALTY COST IN
GRAPH MINING

Shaheda Akthar1 , Sk.Md.Rafi 2

1.Department of Computer science and Engineering,, Sri Mittapalli college of Engineering,A.P. INDIA.
2.Department of Computer science and Engineering,, Sri Mittapalli Institute of Technology for Women,A.P.
INDIA

Abstract In the vast literature Software
architecture has been recovered through graphs.
During Software Architecture recovery generally
matching will takes place between Source graph
and Query graph. Graph matching is one of the
phase in which we will find the same sub graph
which is present in source graph and query graph.
In most of the papers, it was stated that graph
matching is complete. But in reality matching
between the graphs is not appropriately complete.
We call this an error in matching. In this paper we
investigate the applicability of error correcting
graph matching algorithm, Graph Isomorphism by
Decision Tree to compensate the Software
Architecture Recovery.

1. Introduction

Software Architecture Recovery is one of the finest
scope to understand the internal logic and
components of given software. Several recovery
techniques are applied in this context. Among these
graph based software architecture recovery [4, 5, 6,
7] is most efficient one. Generally in the recovery
process the source graph is divided into sub-graphs
of maximum association. To find the association
between the graphs, graph mining techniques are
used. Once the source graph is decomposed a query
graph is generated from the architecture query
language. Then an appropriate matching process is
used to recover the matched nodes and edges of the
graph. Most of the previous papers have stated that
graph matching is complete, but in reality matching
between the graphs is not appropriately complete.
We call this as error in the matching [1,2]. This
leads to the error in the recovered software
architecture. So in order to compensate the graph
error matching, we need to calculate the cost of the
matching error. Due to the error in the matching,
we need an appropriate error-tolerant, graph

matching methods. One way to compensate the
error is calculate the graph edit distance [8,9,10].
The edit operations are defined by adding a node,
removing the node, adding the edge and removing
the edge. In the past, several algorithms are
proposed like exact [1, 2, 8, 9] and error tolerant

graphs, graph isomorphism, heuristic search and
error correcting graphs. One of the major problems
with above algorithms is time complexity, is
exponential because the problem is NP complete.
Exact matching which requires a strict
correspondence among the two objects being
matched or their subparts, often fails to provide
exploitable results and there is a need to resort to
approximate graph matching. Approximate graph
matching algorithms allow matching two nodes
that violate constraints such as the edge-
preservation constraint- exact correspondence of
edges or any other characteristics such as
node/edge labels, weights etc. Instead a penalty is
assigned to those constraints violations depending
on the specific problem and desired results. [3]

2. Preliminaries and Notations
2.1 Source graph representation

In this, large software is considered to be the
source graph SG such that SG ={VG ,EG, x, y} such
that VG and EG represents the vertices and edges of
the source graph. x and y are the label functions
which assigns labels to the vertices and edges.

Let a source graph is represented as SG

={VG,EG,x,y} with VG={V1,V2,…….VN}. Now the
SG is represented by adjacency matrix A={mi,j} ,i
,j=1,……,n.

ISSN : 0975-3397 1107

Shaheda Akthar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1107-1110

Fig 1 Source Graph with its Sub Graphs
2.2 Permutation Matrix
Now we define the permutation matrix of the given
graph by P={pi,j} such that the values pi,j belong to
the set {0,1} where i,j=1,…..,n.
The total summation of all values over

 for j=1,…..,n and

for i=1,….,n.
For a given graph SG the adjacency matrix

A and permutation matrix P are defined such that
there exist a matrix A2=PAPT where PT is the
transpose the permutation matrix.

Fig 2 Distorted Graphs of Sub graph

belongs to source graph

3. Isomorphic graphs

Two graphs G1 and G2 and their corresponding
adjacency matrix are M1and M2. If G1 is
isomorphic to G2 if the following relation holds for
the graph. M2=PM1P

T.

4. Graph edit operations

For a given graph we have the following edit
operations to be performed on the given graph. θ
represents the edit function.

1) Adding a node to the
corresponding graph

2) Deleting the node
3) Adding the edge
4) Deleting the edge

These four edit operations are most powerful, that
translate a graph into corresponding required graph.

5. Edit cost

For a given graph S and corresponding edit
operations D={θ1,θ2…..θn} where n≥1 the edit
graph D(S). The total cost to transform the graph

from S to D(S) is given by C(D)= .
6. Error correcting graph isomorphism
Let the given graphs G1and G2 such that error
correcting graph isomorphism is given by (D,P)
where D is the set of edit operations and P is the
permutation matrix. The cost of edge correcting
graph isomorphism is C(D). The edge correction
isomorphism is given by G2=PMD(G1)P

1 where
MD(G1) adjacency matrix of the D(G1).

7. Graph isomorphism by decision tree
7.1 Online and offline

Here we will consider the process to be offline and
online. During the offline, source graph adjacency
matrix is generated along with several
permutations. These permutation matrixes are
combined for the decision tree. Now at the time of
graph matching, each source graph adjacency
matrix are compared to the corresponding AQL
query graph. Now in the online phase AQL query
graph is transformed in to several permutated sub
graphs. These permutated adjacency sub graphs are
formed as the decision trees.

ISSN : 0975-3397 1108

Shaheda Akthar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1107-1110

Fig 3 Adjacency Matrix of Sub Graph belongs

to Source Graph

7.2 Procedure for mapping process
Let the source graph Gs is divided into a set of sub
graphs Gs1, Gs2……Gsn and the graph which is
generated from AQL is GQ. We need to identify the
optimal error correcting graph isomorphism (Di,Pi)
between the Gsi of source graph and GQ of graph
generated from the AQL such that cost C(Di) is
minimal over the sub graphs of source graph GS. In
most of the literatures this problem is solved
through A* algorithm (Kamran Sartipi)[4,5,6,7], it
was observed that, A* suffers from the exponential
complexity. So we used the decision tree approach
in which, it separates the graph isomorphism from
the error correcting process. First take sub graph of
source graph which was identified through the
domain knowledge separately from the set of
distorted graphs. The distance between these
distorted graphs are not larger than the threshold
value λ. Each of this distorted sub graphs of source
graph are separately matched with the graph
generated from the AQL query. If the graph
distance between Gsi and GQ is not larger than λ
such that there exist the distorted copy of source
sub graph Gsi , that is isomorphic to the AQL graph
GQ.

Fig 4 Decision Tree

D1(Gsi,λ)={D(Gsi)|D is sequence of edit operations
with C(D) ≤ λ }

For each edit operation which are defined
from the above sections, are defined a cost of 1.
Once the D(Gsi,λ) is computed the optimal error
correcting isomorphism is determined by testing
each query graph GQ and sub graph of source graph
GSi. Algorithm runs in quadratic time complexity,
which is a very much improved version than A*,
which runs in exponential time. Performance of the
matching process has been improved by a factor of
O(Ln2). Same process can be repeated for the query
graph GQ , in which different distortions are
generated and compared with the source sub graph
GS such that cost of the edit operations could be
less than threshold value λ.

Fig 5 Query Graph Algorithms

1) Let Gs1,Gs2,…………,Gsn are all

distorted graphs of sub graph GS, in
turn sub graph of source graph G.

2) Obtain the query graph GQ from the
AQL.

3) Calculate the adjacency and
permutation matrix for each
distorted graphs, and make the
decision tree based on that.

4) Now compute the adjacency matrix
and permutation matrix of the query
graph.

5) Compare each adjacency and
permutation matrix of each graph
by the relation MQ =MP=PMPT
such that MQ is the adjacency

ISSN : 0975-3397 1109

Shaheda Akthar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1107-1110

matrix of query Graph GQ and MP
is adjacency matrix of distorted
matrix and M is the adjacency
matrix of the source graph.

8. Experimental Results

Implementation is done in C++ where a simulation
code is developed. Simulation studies shows that
our proposed model of graph mining is efficient in
time complexity. By due to the decision tree, it
suffers from space complexity.

Conclusion In this paper we used an appropriate
matching algorithm to compensate the error incurs
in matching by Graph Isomorphism and Decision
Tree. Experimental results are shown that, our
proposed model of matching is more efficient than
other matching models.

References
[1] B.T. Messmer, H. Bunke, A new algorithm for error-

tolerant sub graph isomorphism detection, IEEE Pattern
Anal. Mach. Intel. 20 (1998) 493–504.(6)

[2] B.T.Messmer and H.Bunke. Fast Error- Correcting Graph
Isomorphism Based on Model Precompilation IAM- 96-
012-Sept 1196 [7]

[3] Error Correcting Graph Matching Application to Software
Evolution by Segla Kpodjedo, Filippo Ricca, Philippe
Galinier and Giuliano Antoniol

[4] Kamran Sartipi and Kostas Kontogiannis. A user-assisted
approach to component clustering. Accepted for the
Journal of Software Maintenance: Research and Practice
(JSM), 2002. [[36]]

[5] Kamran Sartipi and Kostas Kontogiannis. Interactive
software architecture recovery: An incremental supervised
clustering approach. Technical Report UWE&CE#2002-
06, Dept. E&CE, University of Waterloo, Waterloo,
Canada, April 2002. [37]

[6] Kamran Sartipi, Kostas Kontogiannis, and Farhad
Mavaddat. A pattern matching framework for software
architecture recovery and restructuring. In Proceedings of

the IEEE IWPC, pages 37–47, Limerick, Ireland, June
2000. [38]

[7] Kostas Kontogiannis, R. DeMori, M. Bernstein, M. Galler,
and E. Merlo. Pattern matching for design concept
localization. In Proceedings of the Working Conference on
Reverse Engineering (WCRE’95), pages 96–103, 1995.
[39]

[8] Sanfeliu, A and Fu, K.S(1983). “a Distance measure
between attributed relational graphs for pattern
recognition”, IEEE Trans. SMC. Vol.13,pp 353-363 [63]

[9] Segla kpodjedo,Filippo Ricca, Philippe Galinicr and Error
Correcting Graph Matching Applications to Software
Evolution 2008 15th working conference on Reverse
Engineering[65]

[10] Tsai, W.H. and Fu, K.S(1979)”Error-correcting
isomorphism of attributed relation graph for pattern
recognition”, IEEE Trans. SMC 9 pp, 757-768[78]

Shaheda Akthar received Bachelor of computer
science & Master of Computer Science from
Acharya Nagarjuna University, M.S (Software
Systems) from BITS, Pilani, Pursuing PhD from
Acharya Nagarjuna University. Presently working
as Asscociate .Professor in Sri Mittapalli College
of engineering, affiliated to J.N.T.U, Kakinada. My
area of interest is Software Reliability, Software
Architecture Recovery, Network Security, and
Software Engineering

Sk.MD.Rafi received B.Tech (comp) from
Jawaharlal Nehru Technological University,
M.Tech (comp) from Acharya Nagarjuna
University. Pursuing PhD from Jawaharlal Nehru
Technological University. Presently working as
Associate. Professor in Sri Mittapalli Institute of
Technology for women, affiliated to J.N.T.U,
Kakinada. My area of interest is Software
Reliability, Software Architecture Recovery,
Network Security, and Software Engineering.

ISSN : 0975-3397 1110

