
Shaheda Akthar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1103-1106

INCREASING THE EFFICIENCY OF
THE SOFTWARE ARCHITECTURE
RECOVERY THROUGH SPANNING

TREE BASED MAXIMAL GRAPH
MINING TECHNIQUE

Shaheda Akthar1 , Sk.Md.Rafi 2

1.Department of Computer science and Engineering,, Sri Mittapalli college of Engineering,A.P. INDIA.
2.Department of Computer science and Engineering,, Sri Mittapalli Institute of Technology for Women,A.P.
INDIA.

Abstract This paper represents a technique for
recovering the Software Architecture based on
Graph Pattern Matching by the help of mining
techniques. Generally Software Architecture is
represented in terms of graphs with set of vertices
and edges. Finding the frequent data sets is the
major step in the software architecture recovery.
Many algorithms are proposed in this context, for
example Apriori based. In this paper to find the
frequent data sets and a maximum association
between the graphs we used an efficient algorithm
called SPIN (Spanning tree based Maximal Graph
Mining Technique). The results have shown that
our proposed Graph mining technique is more
efficient in recovering the Software Architecture.

1. Introduction

In the present Chapter, to increase the efficiency of
the Software Architecture a sophisticated graph
mining technique called spanning tree based
maximal graph
is used. Query graph is first produced by making
use of Architectural Query language [2, 8, 9, 10,
11]. A pattern graph is produced based on that
query graph by using its Syntaxes and Semantics.
 As the software grows the complexity also
grows. Complexity of the big software system
regarded as a major issue for the maintenance.
Continuous usage of the software can make
changes in its architecture. Reverse engineering
process helps the project managers and code
generators in understanding the software and
components. Architecture recovery is one of the
finest area of Software Engineering, generally it
adopts the reverse engineering process. Software
recovery starts with the legacy software and is
interpreted through the graphs. Bulk of papers are
presented in this context Many of them have used

graph as the main source of interpretation and some
of them used the cluster based technique. Finding
the frequent sub-graphs in the given main graph[1]
is one important point in the graph based
architecture recovery. In this approach each
component is represented as the vertex and the
relation between them as the edge. Vast literature
has shown that to find the frequent data sets from
the main graph has used the Apriori based
algorithm [1]. But there is a significant
disadvantage with Apriori algorithm, first it needs
the candidate generation step and secondly it
creates the considerable overhead while joining
two size-k and size-k+1 sub-graphs. In order to
over come from the above two overheads, we used
an algorithm SPIN (Spanning tree based maximal
graph mining technique) based on the pattern
growth approach to find maximum graphs with
maximum association [3]. Maximal sub graph
mining significantly reduces the total number of
mined sub graphs and several pruning techniques
can be efficiently integrated into the mining
process and dramatically improve the performance
of the mining algorithm. [12]

2. Pattern Growth Approach and Over view of
Spanning tree based maximal graph mining

In this Section, once the graph is identified g1, the
recursion is continued until all the frequent graphs
are identified. When there are no more graphs
generated, the recursion stops.

2.1 Labeled Graph

A labeled graph G1 is a graph where each node and
edge has an associated label. We use V1 and E1 to
denote the set of node labels and edge labels
respectively. Without loss of generality, we assume

ISSN : 0975-3397 1103

Shaheda Akthar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1103-1106

a total order ≥ on V1 and E1. The labeling function
θ defines the mappings V → V1 and E → E1
1. When we study recurring sub-graphs in graph
databases, it is critical to know whether a graph
occurs in another graph, as defined below

Definition: A labeled graph G1 is sub-graph
isomorphic to another graph G11, if there exists an
injection f : V [G1] → V [G11] such that
• u V [G1], (θ(u) = θ1(f(u))),
• u, v V, ((u, v) E[G1] (f(u), f(v))
E[G11]), and
 • (u, v) E[G1], (θ(u, v) = θ1(f(u), f(v))).
Where V [G1] and E[G1] denote the node set and
edge set of a graph G1. The injection s is a sub-
graph isomorphism from G1 to G11. By a slightly
abused notation, we refer G1 as a “sub-graph” of
G11, denoted by G1 G11 by omitting the word

“isomorphic”; similarly G11 is referred to as a
super-graph of G1. A labeled graph G1 is defined to
be isomorphic to another graph G11 if G1 and G11
are mutually sub-graphs. Non- isomorphic sub-
graph is referred to as a proper sub-graph, denoted
by G1 G11 and similarly G11 is referred to as a

proper super-graph of G1 .Given a set G1 of labeled
graphs, the support of a graph G1 is the fraction of
graphs in G1 in which G1 occurs.

3. Maximal Sub-graph Mining

In the following discussion, we present a novel
framework for mining maximal frequent sub-
graphs. We show that we can unify tree mining and
sub-graph mining into one process where we first
find all frequent trees from a graph database and
then construct frequent cyclic graphs from the
mined trees. We developed two procedures to
support the new framework. The first one is a
graph partitioning method where we group all
frequent sub-graphs into equivalence classes based
on the spanning trees they contain. Primarily, tree
related operations, such as isomorphism,
normalization, and testing whether a tree is a sub-
tree of another tree, or asymptotically simpler than
the related operations for graphs, which are NP
complete. Second, in certain applications such as
chemical structure mining, most of the frequent
sub-graphs are really trees. Last but not least, this
framework adapts well to maximal frequent sub
graph mining, which is the focus of this paper.
Using a chemical structure benchmark, we show
99% of cyclic graph patterns and 60% of tree
patterns can be eliminated by our optimization
technique in searching for maximal sub-graphs
[35].

Fig:1 Source Graph and related Sub Graphs

4. Canonical Spanning Tree of a Graph
We define a sub-tree of an undirected graph G1 as
an acyclic connected sub-graph of G1. A sub-tree
T1 is a spanning tree of G1 if T1 contains all nodes
in G1. There are many spanning trees for a given
graph G1. We define the maximal one according to
a total order defined on trees as the canonical
spanning tree of G1, denoted by T1 (G1).First
picking up maximal labeled nodes in G1 as a group
of single node trees. It iteratively grows those trees
by attaching an additional node to each of them in
all possible ways. The outcomes of these sub-trees
are properly checked and sub-tree with maximum
peer value taken for next iteration. This procedure
is guaranteed to converge to the canonical spanning
tree of a graph. Since every tree is a graph, the
procedure can be applied to obtain canonical
representations of trees.

Fig:2 All Spanning tree of graph G with

Canonical tree

5. Tree-based Equivalence Class

In this section based on the canonical spanning tree
we introduced a graph partitioning, and outline a
new frequent sub-graph search algorithm based on
the graph partitioning method discussed herein
before with two steps: (1) mine all the frequent

ISSN : 0975-3397 1104

Shaheda Akthar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1103-1106

trees from a graph database and (2) for each such
frequent tree T, find all frequent sub-graphs whose
canonical spanning trees are isomorphic to T.
Maximal frequent sub-graphs can be found
subsequently among frequent ones.

Fig 3 Divide the above trees into equivalent

Classes

Fig 4 Convert all trees of Class 1 into Graphs

6. Source Graph Decomposition

6.1 Decomposed Source Graph
From the above procedure we decompose a source
graph into sub graphs of most associate
relationship, generally called offline phase. For
example be the source graph
which has been divided into the number of frequent
graphs with maximum association. Let the sub-

graphs be ∑ denotes the graphs of most
frequent datasets. Based on the above graph
mining, find the sub-graphs with same canonical
form can be under one class. Let ∑ Ci be the set of
classes of graphs which are obtained from the
domain knowledge, system documents and other
analysis tools, and is done under the online phase.
Here we call be the sub-graph belong to the
class.

7. Architecture Query Language (AQL)

A query containing a number of abstract
components and connectors where each component
imports a place holder and exports a matched place
holder if any is known as an AQL [4, 5, 6, 7].

Abstract Component: A collection of place
holder. Here a place holder is one which retrieves
the searching mechanism is called Abstract
component.
Abstract Connector: A connection among the
abstract components is called an Abstract
connector.

Fig 5. The notations of abstract component and
abstract connector in AQL,
7.1. Query Generation

By applying any one of the following methods, we
can generate an initial Pattern.

(i) Comparing the source code of the
system with its architecture.

(ii) Applying a clustering technique
 iii) Using the available system architecture
document

The objective of these methods is to
extract small groups of system entities that
represent the core functionality of the system
modules. These groups are used to generate an
initial Query graph of an AQL query [4, 5, 6, 7]
Now, we got an idea of the AQL specification.
 Now, the textual specification of an AQL
query should be transformed into a graph
representation. The groups of graphs that are
generated from the query-graph during the iterative
matching process are defined. The generated
graphs are related by recursive graph algebraic
equations.

Now the query is generated. Generate a
pattern graph based on that Query. Therefore the
textual specification of an AQL query should be
transformed into a graph representation. To
generate a graph pattern we have to get a basic idea
of source graph and a source region. Let the graph

obtained from the AQL be . Here the query
graph is iteratively processed to get more and more
graph generations.

ISSN : 0975-3397 1105

Shaheda Akthar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1103-1106

Fig 6. Transforming textual specification of

AQL to a query graph

8. Graphing matching process

In this section we compare the sub-graph obtained
from the section 3(source graph) with graph
obtained from the AQL from the section 4. Here
we used our previously proposed algorithm
bipartite graph pattern matching. The experiments
done on the C source code is observed that graph
mining with pattern growth approach is more
efficient than other.

Fig7. Comparison Graph

Conclusion In this paper we used an graph mining
technique to recover the Software Architecture. It is
more efficient than Apriori algorithm. To avoid the
overheads incurred in Apriori algorithm, we used a
non Apriori based algorithm, SPIN to recover the
Software Architecture and experimental results
have shown that the recovered architecture from
SPIN is more efficient than Apriori based.

References

[1] A.Inokuchi,T.Washio and H.Motoda. an Apori based
algorithm for mining frequent substructurs from graph
data, In PKDD’ 00,2000

[2] D.R. Harris, H. B. Reubenstein, and A. S. Yeh. Reverse
engineering to the architectural level. In Proceedings of
the 17th ICSE, pages 186–195, 1995.

[3] Jun Haun, Weiwang,Jan Prins,Jiong Yang. SPIN: Mining
Maximal frequent Subgraphs from Graph Databases[35]

[4] Kamran Sartipi and Kostas Kontogiannis. A user-assisted
approach to component clustering. Accepted for the
Journal of Software Maintenance: Research and Practice
(JSM), 2002.

[5] Kamran Sartipi and Kostas Kontogiannis. Interactive
software architecture recovery: An incremental supervised
clustering approach. Technical Report UWE&CE#2002-
06, Dept. E&CE, University of Waterloo, Waterloo,
Canada, April 2002.

[6] Kamran Sartipi, Kostas Kontogiannis, and Farhad
Mavaddat. A pattern matching framework for software
architecture recovery and restructuring. In Proceedings of
the IEEE IWPC, pages 37–47, Limerick, Ireland, June
2000.

[7] Kostas Kontogiannis, R. DeMori, M. Bernstein, M. Galler,
and E. Merlo. Pattern matching for design concept
localization. In Proceedings of the Working Conference on
Reverse Engineering (WCRE’95), pages 96–103, 1995.

[8] Mary Shaw and David Garlan. Software Architecture.
Prentice-Hall, 1995.

[9] R. Fiutem, E. Merlo, G. Antoniol, and P. Tonella.
Understanding the architecture of software systems. In
Proceedings of the 4th Workshop on Program
Comprehension, pages 187–196, 1996.

[10] Rick Kazman and Marcus Burth. Assessing architectural
complexity. In Proceedings of the CSMR, pages 104–112,
1998.

[11] Rick Kazman and S. Jeromy Carriere. Playing detective:
Reconstruction software architecture from available
evidence. Technical Report CMU/SEI-97-TR-010,
Carnegie Mellon University, 1997.

[12] SPIN: Mining Maximal Frequent Subgraphs from Graph
Datanases by Jun Haun, Wei Wang, Jan Prins, Joing Yang

Shaheda Akthar received Bachelor of computer
science & Master of Computer Science from
Acharya Nagarjuna University, M.S (Software
Systems) from BITS, Pilani, Pursuing PhD from
Acharya Nagarjuna University. Presently working
as Asscociate .Professor in Sri Mittapalli College
of engineering, affiliated to J.N.T.U, Kakinada. My
area of interest is Software Reliability, Software
Architecture Recovery, Network Security, and
Software Engineering

Sk.MD.Rafi received B.Tech (comp) from
Jawaharlal Nehru Technological University,
M.Tech (comp) from Acharya Nagarjuna
University. Pursuing PhD from Jawaharlal Nehru
Technological University. Presently working as
Associate. Professor in Sri Mittapalli Institute of
Technology for women, affiliated to J.N.T.U,
Kakinada. My area of interest is Software
Reliability, Software Architecture Recovery,
Network Security, and Software Engineering.

ISSN : 0975-3397 1106

