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Abstract This paper represents a technique for 
recovering the Software Architecture based on 
Graph Pattern Matching by the help of mining 
techniques. Generally Software Architecture is 
represented in terms of graphs with set of vertices 
and edges. Finding the frequent data sets is the 
major step in the software architecture recovery. 
Many algorithms are proposed in this context, for 
example Apriori based. In this paper to find the 
frequent data sets and a maximum association 
between the graphs we used an efficient algorithm 
called SPIN (Spanning tree based Maximal Graph 
Mining Technique). The results have shown that 
our proposed Graph mining technique is more 
efficient in recovering the Software Architecture. 
 
1. Introduction  
 
In the present Chapter, to increase the efficiency of 
the Software Architecture a sophisticated graph 
mining technique called spanning tree based 
maximal graph  
is used. Query graph is first produced by making 
use of Architectural Query language [2, 8, 9, 10, 
11]. A pattern graph is produced based on that 
query graph by using its Syntaxes and Semantics. 
 As the software grows the complexity also 
grows. Complexity of the big software system 
regarded as a major issue for the maintenance. 
Continuous usage of the software can make 
changes in its architecture. Reverse engineering 
process helps the project managers and code 
generators in understanding the software and 
components. Architecture recovery is one of the 
finest area of Software Engineering, generally it 
adopts the reverse engineering process. Software 
recovery starts with the legacy software and is 
interpreted through the graphs. Bulk of papers are 
presented in this context Many of them have used 

graph as the main source of interpretation and some 
of them used the cluster based technique. Finding 
the frequent sub-graphs in the given main graph[1] 
is one important point in the graph based 
architecture recovery. In this approach each 
component is represented as the vertex and the 
relation between them as the edge. Vast literature 
has shown that to find the frequent data sets from 
the main graph has used the Apriori based 
algorithm [1]. But there is a significant 
disadvantage with Apriori algorithm, first it needs 
the candidate generation step and secondly it 
creates the considerable overhead while joining 
two size-k and size-k+1 sub-graphs. In order to 
over come from the above two overheads, we used 
an algorithm SPIN (Spanning tree based maximal 
graph mining technique) based on the pattern 
growth approach to find maximum graphs with 
maximum association [3]. Maximal sub graph 
mining significantly reduces the total number of 
mined sub graphs and several pruning techniques 
can be efficiently integrated into the mining 
process and dramatically improve the performance 
of the mining algorithm. [12]  
 
2. Pattern Growth Approach and Over view of 
Spanning tree based maximal graph mining 
 
In this Section, once the graph is identified g1, the 
recursion is continued until all the frequent graphs 
are identified. When there are no more graphs 
generated, the recursion stops. 
 
2.1 Labeled Graph 
 
A labeled graph G1 is a graph where each node and 
edge has an associated label. We use V1 and E1 to 
denote the set of node labels and edge labels 
respectively. Without loss of generality, we assume 
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a total order ≥ on V1 and E1. The labeling function 
θ defines the mappings V → V1 and E → E1  
1. When we study recurring sub-graphs in graph 
databases, it is critical to know whether a graph 
occurs in another graph, as defined below 
 
Definition: A labeled graph G1  is sub-graph 
isomorphic to another graph G11, if there exists an 
injection f : V [G1] → V [G11] such that 
• u  V [G1], (θ(u) = θ1(f(u))), 
•  u, v  V, ((u, v)  E[G1]  (f(u), f(v))  
E[G11]), and 
 • (u, v)  E[G1], (θ(u, v) = θ1(f(u), f(v))). 
Where V [G1] and E[G1] denote the node set and 
edge set of a graph G1. The injection s is a sub-
graph isomorphism from G1 to G11. By a slightly 
abused notation, we refer G1 as a “sub-graph” of 
G11, denoted by G1  G11 by omitting the word 

“isomorphic”; similarly G11 is referred to as a 
super-graph of G1. A labeled graph G1 is defined to 
be isomorphic to another graph G11 if G1 and G11 
are mutually sub-graphs. Non- isomorphic sub-
graph is referred to as a proper sub-graph, denoted 
by G1  G11 and similarly G11 is referred to as a 

proper super-graph of G1 .Given a set G1 of labeled 
graphs, the support of a graph G1 is the fraction of 
graphs in G1 in which G1 occurs. 
 
3. Maximal Sub-graph Mining 
 
In the following discussion, we present a novel 
framework for mining maximal frequent sub-
graphs. We show that we can unify tree mining and 
sub-graph mining into one process where we first 
find all frequent trees from a graph database and 
then construct frequent cyclic graphs from the 
mined trees. We developed two procedures to 
support the new framework. The first one is a 
graph partitioning method where we group all 
frequent sub-graphs into equivalence classes based 
on the spanning trees they contain. Primarily, tree 
related operations, such as isomorphism, 
normalization, and testing whether a tree is a sub-
tree of another tree, or asymptotically simpler than 
the related operations for graphs, which are NP 
complete. Second, in certain applications such as 
chemical structure mining, most of the frequent 
sub-graphs are really trees. Last but not least, this 
framework adapts well to maximal frequent sub 
graph mining, which is the focus of this paper. 
Using a chemical structure benchmark, we show 
99% of cyclic graph patterns and 60% of tree 
patterns can be eliminated by our optimization 
technique in searching for maximal sub-graphs 
[35]. 

 
Fig:1    Source Graph and related Sub Graphs 

 
 

4. Canonical Spanning Tree of a Graph 
We define a sub-tree of an undirected graph G1 as 
an acyclic connected sub-graph of G1. A sub-tree 
T1 is a spanning tree of G1 if T1 contains all nodes 
in G1. There are many spanning trees for a given 
graph G1. We define the maximal one according to 
a total order defined on trees as the canonical 
spanning tree of G1, denoted by T1 (G1).First 
picking up maximal labeled nodes in G1 as a group 
of single node trees. It iteratively grows those trees 
by attaching an additional node to each of them in 
all possible ways. The outcomes of these sub-trees 
are properly checked and sub-tree with maximum 
peer value taken for next iteration. This procedure 
is guaranteed to converge to the canonical spanning 
tree of a graph. Since every tree is a graph, the 
procedure can be applied to obtain canonical 
representations of trees. 

 
Fig:2 All Spanning tree of graph G with 

Canonical tree 
 
5. Tree-based Equivalence Class 
 
In this section based on the canonical spanning tree 
we introduced a graph partitioning, and outline a 
new frequent sub-graph search algorithm based on 
the graph partitioning method discussed herein 
before with two steps: (1) mine all the frequent 
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trees from a graph database and (2) for each such 
frequent tree T, find all frequent sub-graphs whose 
canonical spanning trees are isomorphic to T. 
Maximal frequent sub-graphs can be found 
subsequently among frequent ones.  

 
Fig 3   Divide the above trees into equivalent 

Classes 

 
Fig 4   Convert all trees of Class 1 into Graphs 

 
6.  Source Graph Decomposition 
 
6.1 Decomposed Source Graph  
From the above procedure we decompose a source 
graph into sub graphs of most associate 
relationship, generally called offline phase. For 
example  be the source graph 
which has been divided into the number of frequent 
graphs with maximum association. Let the sub-

graphs be   ∑  denotes the graphs of most 
frequent datasets. Based on the above graph 
mining, find the sub-graphs with same canonical 
form can be under one class. Let ∑ Ci be the set of 
classes of graphs which are obtained from the 
domain knowledge, system documents and other 
analysis tools, and is done under the online phase. 
Here we call  be the sub-graph belong to the 
class.  
 
7.   Architecture Query Language (AQL) 
 
A query containing a number of abstract 
components and connectors where each component 
imports a place holder and exports a matched place 
holder if any is known as an AQL [4, 5, 6, 7]. 

Abstract Component: A collection of place 
holder. Here a place holder is one which retrieves 
the searching mechanism is called Abstract 
component. 
Abstract Connector: A connection among the 
abstract components is called an Abstract 
connector. 

 
Fig 5. The notations of abstract component and 
abstract connector in AQL,  
7.1. Query Generation 
 
By applying any one of the following methods, we 
can generate an initial Pattern. 

(i) Comparing the source code of the 
system with its architecture. 

(ii) Applying a clustering technique 
             iii)  Using the available system architecture 
document 

The objective of these methods is to 
extract small groups of system entities that 
represent the core functionality of the system 
modules. These groups are used to generate an 
initial Query graph of an AQL query [4, 5, 6, 7] 
Now, we got an idea of the AQL specification. 
 Now, the textual specification of an AQL 
query should be transformed into a graph 
representation. The groups of graphs that are 
generated from the query-graph during the iterative 
matching process are defined. The generated 
graphs are related by recursive graph algebraic 
equations. 

Now the query is generated. Generate a 
pattern graph based on that Query. Therefore the 
textual specification of an AQL query should be 
transformed into a graph representation. To 
generate a graph pattern we have to get a basic idea 
of source graph and a source region. Let the graph 

obtained from the AQL be . Here the query 
graph is iteratively processed to get more and more 
graph generations. 
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Fig 6. Transforming textual specification of 

AQL to a query graph 
 
8. Graphing matching process 
 
In this section we compare the sub-graph obtained 
from the section 3(source graph) with graph 
obtained from the AQL from the section 4. Here 
we used our previously proposed algorithm 
bipartite graph pattern matching. The experiments 
done on the C source code is observed that graph 
mining with pattern growth approach is more 
efficient than other. 

 
Fig7. Comparison Graph 

 
Conclusion In this paper we used an graph mining 
technique to recover the Software Architecture. It is 
more efficient than Apriori algorithm. To avoid the 
overheads incurred in Apriori algorithm, we used a 
non Apriori based algorithm, SPIN to recover the 
Software Architecture and experimental results 
have shown that the recovered architecture from 
SPIN is more efficient than Apriori based. 
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