
S. Ramamoorthy et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1280-1285

COMPONENT-BASED HETEROGENEOUS SOFTWARE ARCHITECTURE
RELIABILITY (COHAR) MODELING

S. Ramamoorthy# Dr. S. P. Rajagopalan* S. Sathyalakshmi@

ABSTRACT:

 In this paper, we propose an analytical
model for component-based heterogeneous software
architecture reliability and a method to find the
solution for finding the optimal reliability of the
overall software system according to the reliability of
each component, the operational profile, and the
architecture of software. Our approach is based on
Markov chain properties and architecture
perspectives to state view transformation in order to
compute the reliability on heterogeneous software
architecture consisting of various styles.

Key Words: Heterogeneous architecture, Markov
chain, Transition Matrix, Software reliability

1. INTRODUCTION:

 Software reliability is one of the key metrics
for determining the quality of software. It is often
defined as the probability of a failure-free operation
of a computer program within a specified exposure
time interval. Most of the analytical models,
developed for measuring reliability, focus on
observing the behavior of software, based on an
operational profile and not on software architecture.
Software architecture is defined as the structure of
software at an abstract level, consists of a set of
components, connectors and configurations. Modern
software often embodies complex heterogeneous
architecture to achieve multiple quality requirements,
such as the use of a parallel architecture to increase
performance and/or introduce a back-up component
to provide fault tolerance. Recent research efforts
have been focused on the development of approaches
to predict the reliability of a software application
taking into account its architecture.

Fig 1. Classification of architecture-based software reliability
models

2. COMPONENT-BASED RELIABILITY:
 Goseva-Popstojanova et al. classify the
existing architecture-based models into three broad
categories: state-based, path-based, and additive.
State-based models use the control graph to represent
software architecture, and predict reliability
analytically. Path-based models compute software
reliability considering the possible execution paths of
the program. The execution paths may be determined
using simulation, by executing the application, or
algorithmically. Additive models assume that each
component reliability can be modeled by a non-
homogeneous Poisson Process (NHPP), which leads
the system failure process to be NHPP with
cumulative number of failures & failure intensity
functions that are the sums of the corresponding
functions for each component. Additive models do
not consider the architecture of the application
explicitly. The broad classification of architecture-
based software reliability models is shown in Fig. 1.

 The state based model can be thought of as
follows. The state diagram is usually used to depict
the system behavior. The node Si represents system
state i and the transition from state Si to Sj is
represented by a directed edge (Si, Sj) and an
example of state diagram is given in Fig 2 below:

Fig. 2. The state diagram

The software architecture reliability model usually
utilizes Markov chain to compute system reliability.
Based on Markov chain properties, the transition
between states is assumed as a Markov process. Let
Ri denote the reliability of the component Ci, and Pij
represents the probability of transition from
component Ci to its successor component Cj . Based
on this the transition matrix M (Fig3) is defined as
given below, and the connector reliability is taken

c

c
c4

c c

c

c

ISSN : 0975-3397 1280

S. Ramamoorthy et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1280-1285

into account, so that Pij could be adjusted as the
original transition probability multiplied by the
reliability of the corresponding connector.

 C1 C2 C3 …… Ci …… Cn-1 Cn

 C1 0 R1P12 R1P13 ………… R1P1i ……….. R1P1(n-1) R1P1n

 C2 R2P21 0 R2P23 ………… R 2P2i ……….. R2P2(n-1) R2P2n
 C3 R3P31 R3P32 0 …………. R3P3i ……….. R3P3(n-1) R3P3n

M = ………… . ……….. . .
 …………. . …..…... . .
 Ci RiPi1 RiPi2 RiPi3 ……….…. 0 ……….. RiPii(n-1) RiPin
 …………. . ……..… . .
 …………. . …..…… . .
 Cn-1 Rn-1P(n-1)2 . . …………. Rn-1P(n-1)i …… 0 Rn-1P(n-1)n
 Cn RnPn1 RnPn2 RnPn3 ………..... RnPni ……… RnPn(n-1) 0

Fig. 3. The Transition Matrix

3. RELATED WORK:

 In his work, Roshanak Roshandel [17]
discussed the uncertainty of the execution profile is
modeled using stochastic processes with unknown
parameters, the compositional approach to calculate
overall reliability of the system as a function of the
reliability of its constituent components and their
(complex) interactions and sensitivity analysis to
identify critical components and interactions will be
provided. Lance Fiondella and Swapna S.
Gokhale[18] considered the estimation of software
reliability in the presence of architectural
uncertainties and presented a methodology to
estimate the confidence levels in the architectural
parameters using limited testing or simulation data
based on the theory of confidence intervals of the
multinomial distribution. The sensitivity of the
system reliability to uncertain architectural
parameters was then quantified by varying the
parameters within their confidence intervals. C.
Smidts[19] presented an architecturally based
software reliability model and underlines its benefits.
The models based on an architecture derived from the
requirements which captures both functional and
non-functional requirements and on a generic
classification of functions, attributes and failure
modes. The model focuses on evaluation of failure
mode probabilities and uses a Bayesian quantification
frame work. Leslie Cheung and Leana Golubchik
[22] discussed representative uncertainties which
have identified at the level of a system’s components,
and illustrates how to represent them in the
reliability modeling framework.

4. HETEROGENEOUS ARCHITECTURE
RELIABILITY:
 The main objective of this study is to
compute the reliability of components-based
heterogeneous software systems which may be
comprised of various architectural styles. The
architectural styles include sequential, parallel, fault
tolerance and call-and-return styles. Most of the
architectural styles can be viewed as the extension of
these four basic styles and hence our study. In order
to utilize the Markov model, a transformation for
each architectural style from an architecture view to a
state view is introduced. Based on the transformed
view, the transition matrix M can be refined to
obtain the style-based software reliability. The
transition matrix M for various styles can be defined
as follows:

1. Sequential Style: There are k components
executed in a sequential order and there will be k
states.
 M(i, j) = Rj Pij when Si can reach Sj directly
 = 0 otherwise
 Where M(i, j) is the probability of
 successful transition of reaching state Sj
 from Si.

2. Parallel Style: Components are commonly
running simultaneously and for k components, the
transition matrix can be obtained as:
 M(i, j) = Ri Pij, where Si not in Sp
 = ∏ Rn Pnj , where Cn � Si, Si in
 Sp and for 1 ≤ i, j ≤ |S| & 1 ≤ n ≤ k
 = 0, Si can not reach Sj
 In this case, the executions of the
components C2 to Ck-1 are congregated into the state
Spl which is an element of the parallel state set Sp.
There are k components in which l = k-2 components
are running concurrently into the same state;
therefore, the total number of states is k-l+1.
Because of the characteristics of parallel style, the
transition probabilities from component C1 to
components C2, C3, … and Ck-1 are all equal to P12,
which is now the transition probability from state S1
to Spl. For convenience, we introduce {Si}, which
returns the row number or column number of state
variable Si in a matrix. Entry M({Spl}, {Sk})
requires that all the components from C2 to Ck-1 in
state Spl perform successfully and finally reach Sk.
Because the component reliabilities and transition
probabilities are all independent of each other, the
value of M({Spl}, {Sk}) is equal to ∏ Rn Pnj (where
n varies from 2 to k-1) which is the product of all the
component reliabilities in this state and the transition
probabilities from components C2, C3, …., and Ck-1
to component Ck, respectively.

ISSN : 0975-3397 1281

S. Ramamoorthy et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1280-1285

3. Fault Tolerance Style: This style consists of
a primary component and a set of backup
components, which may be used when one of the
primary component fails. We assume that all backup
components have the same probabilities as the
primary components. Assuming K components in
which l = k-4 components running as fault tolerance
in the same state, the total number of states is k-l+1.
The transition matrix can be constructed as follows:
M(i, j) =Ri Pij, where Si not in Sb
 =Ra1+ Σ { [Π(1-Rm) , m=a1 to q-1] Rn, for q
= a2 to ar} where Si in Sb and Si includes Ca1 to Car
 = 0, where Si can not reach Sj; for 1 ≤ i, j ≤
|S| & 1 ≤ ar ≤ k
The transition probabilities from component C1 to
components C2, C3,.. and Ck-3 are all equal to P12,
which is now the transition probability from state
S1to Sb1 (because concurrent characteristics of fault
tolerance style is similar to parallel style). However,
state S3 improves the reliability only when state S2
fails. Similarly, state S4 enhances reliability when
both states S2 and S3 fail. Thus the reliability of
reaching states Sk-1 and Sk-2 from S1, we have to
consider when state S2 is always active, when state
S2 fails but S3 is active, and so on. By induction,
entry M(1, {Sbl}) is equal to R2 + Σ { [Π(1-Rm) ,
m=2 to n-1] Rn, for n = 3 to k-3}
4. Call-and-return Style: In this models, the
execution of one component may request services
from other components before transferring its
complete control authority to others and like client-
server style. Therefore, the called components may
execute multiple times with only one time execution
of the calling component. Assuming there are k
components, the total number of states is therefore K.
The transition matrix M can be constructed as
follows:
M(i, j) = Ri Pij, where Si can reach Sj
 = Pij, where Si can reach Sj for 1 ≤ I, j ≤ k
and Sj is a called component
 = 0, where Si can not reach Sj

 2. Parallel Style:
 (a) Architecture View:
 R2

 P12 P2k
 R1 Rk

 (b) State View:
 Sbl

 P12 ΠPnk

 3. Fault Tolerance:
 (a) Architecture View:

 P2(k-2)
 P12

 R1 Rk
 Rk-1

 (b) State View:

 Sbl

 4. Call-and-Return Style:

5. ARCHITECTURE AND STATE VIEW OF
VARIOUS ARCHITECTURAL STYLES:
1. Sequential Style:

(a) Architecture View:

 P12

 (a)Architectural View:
 R1 P12 R2

 P22
 P13
 R3
 (b)State View:

(b) State View:

 R1 R2 Rk

Fig 4: Various Architectural & the corresponding State views

C

1

C2

 C

c

c

c

c

c

S

S

S

S

S

S1
S2

Sk

C

C

C

C

C

C

C

S

S

S

S

S

S

S

C C

C

S

ISSN : 0975-3397 1282

S. Ramamoorthy et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1280-1285

6. THE RELIABILITY MODEL:

 We have seen how to compute the
transition matrix of a system based on a single
architectural style in the previous section. For the
heterogeneous styles, the transition matrix can be
computed as shown in the following algorithm:

Input:
 n –the number of components in the
software
 Pij - the probability of direct state
transition from state Si to state Sj
 Ri - the reliability of the component Ci
 Case - Different architectural styles, say,
1for linear, 2 for parallel, 3 for fault tolerance and
4 for call-and-return styles

Output:
 R –the overall reliability of the entire
heterogeneous software system

Algorithm:
 for i = 1 to n
 for j =1to n
 case = 1
 if state Si can reach
state Sj directly then
 M(i, j) = Rj * Pij
 Else
 M(i, j) = 0
 end case 1
 case = 2
 if state Si is not in the group Sp
then
 M(i, j) = Ri * Pij
 else if Ck is in Si, Si in
Sp for I, j ≤ │S│ & 1 ≤ k ≤ n then
 M(i, j) = ∏ Rk Pkj
 else
 M(i, j) = 0
 end case 2
 case = 3
 if state Si is not in Sb then
 M(i, j) = Ri * Pij

 else if where Si in Sb and Si
includes Ca1 to Car then

 M(i, j) = Ra1+ Σ { [Π(1-Rm) , m=a1 to q-1] Rn,
 for q = a2 to ar}

 else if Si can not reach Sj for
 1 ≤ i, j ≤ |S| & 1 ≤ ar ≤ k then

 M(i, j) = 0
 end case 3
 case = 4
 if state Si can reach state Sj then
 M(i, j) = Ri * Pij
 else if Si can reach Sj and Sj is a called

 component then
 M(i, j) = Pij
 else if Si can not reach Sj then
 M(i, j) = 0
 end case 4
 next j
 next i
compute (the reliability of the overall system using)
 R = (-1)m+1 |E| / |I - M|
{where m is the number of columns / rows of the
computed transitional matrix M in which all the fault
tolerance components will be treated as a single
component, |E| is the determinant value of the
transition matrix M after deleting the first column
and last row and |I - M| is the determinant value of
the matrix (I – M).}

7. AN EXPERIMENT:

 An example of on line examination is used
to validate the correctness of the above reliability
model. The fig.5 shows the architecture view and the
corresponding state view of this system. The Start
component is the initial component and the End
component is the final component. Basically this
system is working in sequential manner in addition
to the following. Components DBMS1 and DBMS2
are categorized into fault tolerance style where
DBMS2 is a backup for DBMS1. Components Result
and help form a call-and-return style. Based on the
architecture view and the information of style the
matrix M is given below:

Architecture view:
 C1 C3

 C2
 C8 C4

 C5

 C6

 C7

State View:

Fig 5: The architecture and state views of an online examination
system

 The reliability of each individual
component, the transition probabilities between

START

GUI

DBMS1

DBMS2

VERIFY

END

RESUL

HELP

S8

S1

S2

S3

S4

S6 S5

S7

ISSN : 0975-3397 1283

S. Ramamoorthy et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1280-1285

components, and the overall system reliability
through experiment are given below:

The Reliability of components:
R1 = 1.0, R2 = 0.982, R3 = 0.97, R4 = 0.96,
R5 = 1.0, R6 = 0.996, R7 = 1.0, R8 = 0.99

The Transition Probabilities:
P1,2 = 1.0 P2,3 = P2,4 = 0.99 P2,8 = 0.001
P3.5 = 0.227 P4,5 = 0.227 P4,7 = 0.669
P5,2 = 0.048 P5,6 = 0.951 P5,7 = 0.104
P5,8 = 0.001 P6,5 = 1.0 P7,8 = 1.0
 S1 S2 Sb1 S5 S6 S7 S8
 S1 0 1.0 0 0 0 0 0
 S2 0 0 0.981 0 0 0 0.001
 Sb1 0 0 0 0.2267 0 0.662 0
 M = S5 0 0.048 0 0 0.951 0.104 0.001
 S6 0 0 0 1.0 0 0 0
 S7 0 0 0 0 0 0 1.0
 S8 0 0 0 0 0 0 0

Fig 6: The transition matrix

Here n = 7
Based on the concept of reliability and matrix
theory, it was found that the Reliability of the
overall system is given by :

 T(1,n) = (-1)n+1 |E| / (|I - M|)

where |I - M| is the determinant of the matrix (I – M)
and |E| is the determinant of the matrix excluding the
first column and the last row of the matrix (I – M).
Thus the overall system reliability is

 R = T(1, S8) = 0.559

8. CONCLUSION AND FUTURE WORK:

 In this work, we demonstrated
the working of COmponent-based Heterogeneous
Architectural Reliability (COHAR) Model and found
that it works well within its scope. The future work
shall be focused on:

(i) The sensitivity analysis on the reliability of
the software architectural changes and

(ii) Finding the causes for improving the
architectural reliability.

REFERENCES:

[1] Noel De Palma, Konstantin Popov, Nikos Parlavantzas,
Per Brand, and Vladimir Vlassov - TOOLS FOR
ARCHITECTURE BASED AUTONOMOUS
SYSTEMS - Fifth International Conference on
Autonomic and Autonomous Systems 2009

[2] Hamid Bagheri, Vajih Montaghami, Gholameraza SaFI,
Seyed-Hassan Mirian-Hosseinbadi - AN
EVALUATION METHOD FOR ASPECTUAL
MODELING OF DISTRIBUTED SOFTWARE
ARCHITECTURES - IEEE 2008

[3] Hans Van Vliet - SOFTWARE ARCHITECTURE
KNOWLEDGE MANAGEMENT - 19th Australian
Conference on Software Engineering 2008

[4] Odd Petter N. Slyngstad, Reidar Conradi, M.Ali Babar,
Viktor Clerc, and Hans van Vliet - RISKS AND
RISK MANAGEMENT IN SOFTWARE
ARCHITECTURE EVOLUTION: AS INDUSTRIAL
SURVEY - 15th Asia-Pasific Software Engineering
Conference 2008

[5] Richard C. Holt - GROOKING SOFTWARE
ARCHITECTURE - 15th Working Conference on
Reverse Engineering 2008

[6] Xiao Xiao and Tadashi Dohi - ON EQUILIBRIUM
DISTRIBUTION PROPERTIES IN SOFTWARE
RELIABILITY MODELING - IEEE International
Conference on Availability, Reliability and Security
2009

[7] Tirthankar Gayen - ANALYSIS AND PROPOSITION
OF ERRRO-BASED MODEL TO PREDICT THE
MINIMUM RELIABILTIY OF SOFTWARE -
International Conference on Education Technology and
Computer IEEE Computer Society 2009

[8] Tomotaka Ishii and Tadashi Dohi - A NEW
PARADIGM FOR SOFTWARE RELIABILITY
MODELING - FORM NHPP to NHGP - 14th IEEE
Pacific Rim International Symposium on Dependable
Computing 2008

[9] Bo Yang, Xiang Li - A STUDY ON SOFTWARE
RELIBILITY PREDICTION BASED ON SUPPORT
VECTOR MACHINES - IEEE Transactions on
Reliability, Vol 57, No 1, 2008

[10] Hingguo Li, Xiaofeng Li and Yanhua Shu - AN
EARLY PREDICTION METHOD OF SOFTWARE
RELIABILITY BASED ON SUPPORT VECTOR
MACHINE - IEEE 2007

[11] Zuzana KRAJCUSKOVA - SOFTWARE
RELIABILITY MODELS - IEEE 2007

[12] Shiyi Xu - AN ACCURATE MODEL OF
SOFTWARE RELIABILITY - 13th IEEE
International Symposium on Pacific Rim Dependable
Computing 2007

[13] Shiyi Xu - RECONSIDERATION OF SOFTWARE
RELIABILITY MEASUREMENTS - 16th IEEE
Asian Test Symposium 2007

[14] Shinji Inoue, and Shigeru yamada - GENERALIZED
DISCERETE SOFTWARE RELIABILITY
MODELING WITH EFFECT OF PROGRAM SIZE -
IEEE Trasnactions on Systems, Man, and Cybernetics –
Part A : Systems and Humans, Vol 37, No:2, 2007

[15] Alaa Sheta - PARAMETER ESTIMATION OF
SOFTWARE RELIABILITY GROWTH MDOELS BY
PARTICLE SWARM OPTIMIZATION - AIML
Journal, Volume (7), Issue (1), 2007

[16] S. Chatterjee, S. S. Alam and R. B. Misra -
SEQUENTIAL BAYESIAN TECHNIQUES : AN
ALTERNATIVE APPROACH FOR SOFTWARE
RELIABILITY ESTIMATION - Sadhana Vol 34, Part
2, 2009

[17] Roshanak Roshandel Computer Science Department
University of Southern California Los Angeles, CA 90089-
0781 U.S.A. roshande@usc.edu - CALCULATING
ARCHITECTURAL RELIABILITY VIA MODELING
AND ANALYSIS

[18] Lance Fiondella and Swapna S. Gokhale Dept. of
Computer Science and Engineering Univ. of Connecticut,
Storrs, CT 06269 {lfiondella,ssg}@engr.uconn.edu -
SOFTWARE RELIABILITY WITH ARCHITECTURAL
UNCERTAINTIES

[19] C. Smidts, University of Maryland, College Park, MD,
20704-753 1 ; csmidts@eng.umd.edu; D. Sova,

ISSN : 0975-3397 1284

S. Ramamoorthy et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1280-1285

Intermetrics, Inc., 6301 Ivy Lane, Suite 200, Greenbelt,
MD, 20770; dws@gblt.inmet.com; G. K. Mandela,
University of Maryland, College Park, MD, 20704-753 1
; gopi@eng.umd.edu AN ARCHITECTURAL MODEL
FOR SOFTWARE RELIABILITY QUANTIFICATION

[20] Leslie Cheung, Roshanak Roshandel, Nenad Medvidovic,
Leana Golubchik - EARLY PREDICTION OF
SOFTWARE COMPONENT RELIABILITY

[21] Fan Zhang, Xingshe Zhou, Junwen Chen, Yunwei Dong
School of Computer Science and Engineering,
Northwestern Polytechinical University, Xi’an,
China{zhangfan, zhouxs, yunweidong,
junwenchen}@nwpu.edu.cn - A NOVEL MODEL FOR
COMPONENT-BASED SOFTWARE RELIABILITY
ANALYSIS

[22] Leslie Cheung, Leana Golubchik, Nenad Medvidovic,
Gaurav Sukhatme {lccheung,leana,neno,gaurav}@usc.edu
- IDENTIFYING AND ADDRESSING UNCERTAINTY
IN ARCHITECTURE-LEVEL SOFTWARE
RELIABILITY MODELING

Authors profile:

Author, S. Ramamoorthy, is a Professor in
Computer Science and Engineering, Dr. MGR
University, Chennai, Tamil Nadu, India. Has
published 7 papers in National Conference and 1
paper in International Conference. This author can be
contacted through srm24071959@yahoo.com

* Author, Dr. S. P. Rajagopalan, is a Professor
Emeritus, Dr. MGR University, Chennai, Tamil
Nadu, India. He has published more than 150 papers
in reputed National & International Journals.
Authored 6 books in computer science. Under his
supervision 15 scholars obtained Ph.D degree in
Computer Science from various Universities and can
be contacted through sasirekaraj@yahoo.co.in

@ Author, S. Sathyalakshmi, is a Professor in
Computer Science and Engineering, Hindustan
University, Chennai, Tamil Nadu, India. She has
published more than 10 papers in National
Conference and 1 paper in International Conference.
The author can be contacted through
swamega@yahoo.com

ISSN : 0975-3397 1285

