
Rakesh Kumar Yadav et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1064-1066

“An Improved Round Robin Scheduling
Algorithm for CPU scheduling”

Rakesh Kumar Yadav1, Abhishek K Mishra 2, Navin Prakash3 and Himanshu Sharma4

rakeshoso@yahoo.co.in
abhimishra2@gmail.com
naveenshran@gmail.com

cs_himanshu@rediffmail.com

College of Engineering and Technology, IFTM Campus,
Lodhipur Rajput, Moradabad, UP, INDIA

Abstract
There are many functions which are provided by
operating system like process management, memory
management, file management, input/output
management, networking, protection system and
command interpreter system. In these functions, the
process management is most important function
because operating system is a system program that
means at the runtime process interact with hardware.
Therefore, we can say that for improving the efficiency
of a CPU we need to manage all process. For managing
the process we use various types scheduling algorithm.
There are many algorithm are available for CPU
scheduling. But all algorithms have its own deficiency
and limitations. In this paper, I proposed a new
approach for round robin scheduling algorithm which
helps to improve the efficiency of CPU.

Keywords: CPU scheduling, RR scheduling algorithm,
Turnaround time, Waiting Time, Gantt chart

1. Introduction: CPU is a primary computer resource.
So, its scheduling is central to operating system design.
To improve both utilization and speed of CPU we need
to keep several processes in memory at a time that
means we use the sharing and multiprogramming
concepts.

According to Seltzer, M P. Chen and J Outerhout 1990
[3], the last thirty years have seen an enormous amount
of research in the area of disk scheduling algorithm.
The core objective has been developed scheduling
algorithms suited for certain goals sometimes with
provable properties.

 According to Silberchatz, Galvin and Gagne [2], in
case of multi-programmed operation system CPU
scheduling plays a fundamental role by switching the
CPU among various processes. the intention of an

Operating system should allow process many as
possible running at all times in order to maximize the
CPU utilization. In a multi-programmed operating.
System a process is executed until it must wait for the
completion of some I/O request. In this case the time
has been used proficiently. A number of processes are
kept in memory simultaneously and while one process
occupy the CPU selected by the Operating.

According to Sabrina, F.C.D, Nguyen, S.Jha, D. Platt
and F. Safaei [1] Scheduling is a fundamental operating
system function. Almost all computer resources are
sheduleed before use. The CPU is of course one of the
primary resources. Thus its scheduling is central to
Operating system design. CPU scheduling determines
which process run when there are multiple runable
processes CPU scheduling is important because it can
have a big effect on resources utilization and overall
performance of the system.

 2. Contemporary RR scheduling Algorithm:
We can understand contemporary RR scheduling
algorithm [5] by given below steps:

1. The scheduler maintains a queue of ready
processes and a list of blocked and swapped
out processes.

2. The PCB of newly created process is added to
the end of the ready queue. The PCB of
terminating process is removed from the
scheduling data structures.

3. The scheduler always selects the PCB at the
head of the ready queue.

4. When a running process finishes its slice, it is
moved to the end of ready queue.

5. the event handler perform the following action
a) When a process makes an I/O request or

swapped out, its PCB is removed from the
ready queue to blocked/swapped out list.

ISSN : 0975-3397 1064

Rakesh Kumar Yadav et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1064-1066

b) When I/O operation awaited by a process
finishes or process is swapped in its PCB
is removed from blocked/swapped list to
the end of the ready queue.

Silberchatz, Galvin and Gagne [2] and DM Dhamdhere
[5], Operating Systems Sibsankar Haldar 2009 [6]
says that same things about RR algorithm. So we can
conclude easily RR algorithm is extension of FCFS
algorithm. Only difference is we added the preemptive
and time slice concepts.

3. Scheduling Criteria.

Different CPU scheduling algorithms have different
properties, and the choice of a particular algorithm may
favor one class of processes over another. In choosing
which algorithm to use in a particular situation, we
must consider the properties of the various algorithms.
Many criteria have been suggested for comparing CPU
scheduling algorithms. Which characteristics are used
for comparison can make a substantial difference in
which algorithm is judged to be best. The criteria
include the following:

 CPU Utilization. We want to keep the CPU as
busy as possible.

 Throughput. If the CPU is busy executing
processes, then work is being done. One
measure of work is the number of processes
that are completed per time unit, called
throughput. For long processes, this rate may
be one process per hour; for short transactions,
it may be 10 processes per second.

 Turnaround time. From the point of view of a
particular process, the important criterion is
how long it takes to execute that process. The
interval from the time of submission of a
process to the time of completion is the
turnaround time. Turnaround time is the sum
of the periods spent waiting to get into
memory, waiting in the ready queue, executing
on the CPU, and doing I/O.

 Waiting time. The CPU scheduling algorithm
does not affect the amount of the time during
which a process executes or does I/O; it affects
only the amount of time that a process spends
waiting in the ready queue. Waiting time is the
sum of periods spend waiting in the ready
queue.

 Response time. In an interactive system,
turnaround time may not be the best criterion.
Often, a process can produce some output
fairly early and can continue computing new
results while previous results are being output

to the user. Thus, another measure is the time
from the submission of a request until the first
response is produced. This measure, called
response time, is the time it takes to start
responding, not the time it takes to output the
response. The turnaround time is generally
limited by the speed of the output device.

It is desirable to maximize CPU utilization and
throughput and to minimize turnaround time, waiting
time, and response time. In most cases, we optimize the
average measure. However, under some circumstances,
it is desirable to optimize the minimum or maximum
values rather than the average. For example, to
guarantee that all users get good service, we may want
to minimize the maximum response time. Investigators
have suggested that, for interactive systems, it is more
important to minimize the variance in the response time
than to minimize the average response time. A system
with reasonable and predictable response time may be
considered more desirable than a system that is faster
on the average but is highly variable. However, little
work has been done on CPU-scheduling algorithms that
minimize variance [7].

So we can conclude a good scheduling algorithm is
open that is able to optimize the above performance
measures. The optimization performance measures are:

 Maximize CPU utilization
 Maximize throughput
 Minimize turnaround time
 Minimize waiting time
 Minimize response time
 Maximize scheduler efficiency

4. Proposed algorithm

1. Allocate all processes to the CPU only one
time as like present Round Robin scheduling
algorithm.

2. After first time we select shortest job from the
waiting queue and it shortest job assign to the
CPU.

3. After that we select next shortest job and do
step 2

4. Till the complete execution of all processes we
repeat steps 2 and 3 that means while all the
processes has not been finished(executed).

5. EXPERIMENT DISCUSSION
In our Proposed RR scheduling algorithm we have
combined the working of SJF (shortest job first)
scheduling algorithm along with contemporary RR
scheduling algorithm

ISSN : 0975-3397 1065

Rakesh Kumar Yadav et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1064-1066

For doing this we have done many experiments but here
I will discuss only two experiment because we assured
results analysis is remain unchanged. Here I have two
types of problems one is with arrival time another is
without arrival time.

(I)
Suppose sate of processes is according to given below
table and also let round robin quantum=2
Process Arrival time Burst time in

ms
A 0.000 3
B 1.001 6
C 4.001 4
D 6.001 2

 Then according to contemporary algorithm

Gantt chart =
A B A B C D B C

Average turn around time is =8.25 ms
Total Waiting Time=18 ms

According to suggested algorithm:

Gantt chart

A B A B B D C C

Total waiting Time =14 ms
Average turn around time=7.5 ms

(II)
Suppose problem is give below
Process Burst Time in ms
A 24
B 20
C 8
D 10
E 3

Suppose RR quantum =5
According to contemporary algorithm:
Gantt chart
A B C D E A B C D

A B A

Waiting Time =146 ms
Average turnaround=42.2 ms

According to suggested algorithm.
Gantt chart
A B C D E C D B B B A A A A

Total Waiting time=131 ms
Average turnaround time= 39.2 ms

We can see from the above experiment total waiting
time and average turn around time both are reduced by
using our proposed algorithm.
The reduction of total waiting time and turn around
time shows maximum CPU utilization that and
minimum response time. We can say that proposed
algorithm much more efficient compare than
contemporary algorithm.

6. Conclusion and future work

It we can see that our proposed algorithm is superior
compare than present RR algorithm. Since we know
that RR scheduling algorithm is designed especially for
time sharing system. So in near future we can improve
time sharing system by using this algorithm.

6. References:

1. Sabrina, F.C.D, Nguyen, S.Jha, D. Platt and F. Safaei,
2005. Processing resources scheduling in programmable
networks. Computer commun, 28:676-687.

2. Silberchatz, Galvin and Gagne ,2003 .operating systems
concepts,(6th edn, John Wiley and Sons)

3. Seltzer, M P. Chen and J outerhout, 1990.Disk scheduling
revisited in USENIX. Winter technical conference.

4. Shamim H M 1998. Operating system, DCSA-2302.
School of sciences and Technology. Bangladesh open
university Gazipur-1705

5. D. M. Dhamdhere Operating Systems A Concept Based
Approach, Second edition, Tata McGraw-Hill, 2006

6. Operating Systems Sibsankar Haldar 2009 , Pearson
Education, India

7. http://en.wikipedia.org/wiki/Scheduling_(computing)

ISSN : 0975-3397 1066

