
Rachit Garg et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1052-1063

A Review of Checkpointing Fault Tolerance
Techniques in Distributed Mobile Systems

Rachit Garg1, Praveen Kumar2

1Singhania University, Department of Computer Science & Engineering, Pacheri Bari (Rajasthan), India

2Meerut Institute of Engineering & Technology, Department of Computer Science & Engineering, Meerut (INDIA)-
250005

{rachit.garg, pk223475}@yahoo.com

Abstract
Fault Tolerance Techniques enable systems to perform
tasks in the presence of faults. A checkpoint is a local
state of a process saved on stable storage. In a
distributed system, since the processes in the system do
not share memory, a global state of the system is
defined as a set of local states, one from each process.
In case of a fault in distributed systems, checkpointing
enables the execution of a program to be resumed from
a previous consistent global state rather than resuming
the execution from the beginning. In this way, the
amount of useful processing lost because of the fault is
significantly reduced. Checkpointing is an effective
fault tolerant technique in distributed system as it avoids
the domino effect and require minimum storage
requirement. Most of the earlier coordinated checkpoint
algorithms block their computation during
checkpointing and forces minimum-process or non-
blocking even though many of them may not be
necessary or non-blocking minimum-process but takes
useless checkpoints or reduced useless checkpoint but
has higher synchronization message overhead or has
high checkpoint request propagation time. In this paper,
we discuss various issues related to the checkpointing
for distributed systems and mobile computing
environments. We also present a survey of some
checkpointing algorithms for distributed systems.

KEYWORDS

Fault tolerance, coordinated checkpointing, consistent
global state, and mobile distributed system.

1. Introduction

Parallel computing with clusters of workstations (cluster
computing) is being used extensively as they are cost-
effective and scalable, and are able to meet the demands
of high performance computing. Increase in the number
of components in such systems increases the failure
probability. To provide fault tolerance it is essential to
understand the nature of the faults that occur in these
systems. There are mainly two kinds of faults:

permanent and transient. Permanent faults are caused by
permanent damage to one or more components and
transient faults are caused by changes in environmental
conditions. Permanent faults can be rectified by repair
or replacement of components. Transient faults remain
for a short duration of time and are difficult to detect
and deal with. Hence it is necessary to provide fault
tolerance particularly for transient failures in parallel
computers. Fault-tolerant techniques enable a system to
perform tasks in the presence of faults. Fault tolerance
involves fault detection, fault location, fault
containment and fault recovery. Fault tolerance can be
provided in a parallel computer at three different levels:
hardware level, architecture level and
application/system software level. In the hardware and
architecture levels, importance is given to fault
detection and replication of tasks. In the
application/system software level, checkpointing
techniques are used to provide fault tolerance. It is
easier and more cost effective to provide software fault
tolerance solutions than hardware solutions to cope with
transient failures. Thus, checkpointing is an important
technique to ensure software fault tolerance.

Fault Tolerance Techniques enable systems to perform
tasks in the presence of faults. The likelihood of faults
grows as systems are becoming more complex and
applications are requiring more resources, including
execution speed, storage capacity and communication
bandwidth. Reliability and resilience are critical issues
in parallel and distributed systems. These systems
comprise of various computing devices and
communication and storage resources. There are a
number of fault sources in a system, including physical
failure of components, environmental interference,
software errors, security violations, and operator errors.
Faults can be classified into two types: permanent and
transient faults. Permanent faults are faults that cause a
permanent damage to some part of the system.
Recovery from permanent faults must include
replacement of the damaged part and reconfiguration of
the system. Transient faults are short-lived and do not
lead to permanent damage. Recovery from transient

ISSN : 0975-3397 1052

Rachit Garg et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1052-1063

faults is comparatively simple as compared to the
permanent faults, because reconfiguration of the system
is not needed. Generally, the detection of the transient
faults is more difficult, because they may disappear
without a detectable effect of the system.
In scientific and commercial applications, in case of a
detection of a transient fault, the execution of the
program needs to be interrupted and resumed from
beginning. As a result, the big applications are
completed only if a sufficiently long fault-free interval
of time exists in the system. In the presence of faults,
the average execution of the program may grow
exponentially with the length of the program.
Checkpointing is primarily used to avoid losing all the
useful processing done before a fault has occurred.
Checkpointing consists of intermittently saving the state
of a program in a reliable storage medium. Upon
detection of a fault, previous consistent state is restored.
In case of a fault, checkpointing enables the execution
of a program to be resumed from a previous consistent
state rather than resuming the execution from the
beginning. In this way, the amount of useful processing
lost because of the fault is significantly reduced. With
checkpointing, the average execution of a program
grows only linearly with the length of the program [8].

2. System Model

A distributed system consists of number of processes P1

, P2 , P3 , …. Pn , which communicate only through
messages. Processes cooperate to execute a distributed
application and interact with the outside world by
receiving and sending input and output messages,
respectively. Figure 1 below shows a system consisting
of three processes and interactions with the outside
world.

Rollback recovery protocols generally make
assumptions about the reliability of the inter-process
communication. Some protocols assume that the
communication subsystem delivers messages reliably, in
first-in-first-out (FIFO) order, while other protocols
assume that the communication subsystem can lose,
duplicate or reorder messages. The choice between
these two assumptions usually affects the complexity of
checkpointing and failure recovery. A generic
correctness condition for rollback recovery can be
defined as follows: “a system recovers correctly if its
internal state is consistent with the observable behavior
of the system before the failure”. Rollback recovery
protocols therefore must maintain information about the
internal interactions among processes and also the

external interactions with the outside world.

Figure 1 Distributed System with three processes

In distributed systems all processes save their local
states at certain instants of time. This saved state is
known as a local checkpoint. A checkpoint is defined as
a designated place in a program at which normal
processing is interrupted specifically to preserve the
status information necessary to allow resumption of
processing at a later time. Check-pointing is the process
of saving the status information. By periodically
invoking the check-pointing process, one can save the
status of a program at regular intervals. If there is a
failure one may restart computation from the last check
point thereby avoiding repeating computations from the
beginning. The process of resuming computation by
rolling back to a saved state is called rollback recovery.
Events in uni-processor are governed by a single clock,
providing total ordering of events. When an error is
detected all the events after the last check point are
repeated. Check-pointing becomes a real concern in
case of Distributed Systems (or Parallel Systems or
Multiprocessor Systems) because there are multiple
streams of execution and there is no global clock. The
absence of global clock makes it difficult to initiate
check points in all the streams of execution at the same
time instance. We have to pick one checkpoint from
each stream in such a way that the set of these check
points are concurrent.
 Local checkpoint is the saved state of a process at a
processor at a given instance. Global checkpoint is a
collection of local checkpoints, one from each process.
A global state is said to be ‘consistent’ if it contains no
orphan message (A Message whose receive event is
recorded, but its send event is lost).

ISSN : 0975-3397 1053

Rachit Garg et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1052-1063

Figure 2 Depending of Processes

In Figure 2, P3 receives message m2 sent by process P2.
We say that P3 is directly dependent upon P2. Similarly
P2 is directly dependent on P1 due to m1. We can also
say that P3 is transitively dependent upon P1. In this
case, if P3 takes its checkpoint after processing m2, then
P2 should take its checkpoint after sending m2,
otherwise m2 will become orphan. Similarly P1 should
take its checkpoint after sending m1 otherwise m1 will
become orphan.

An example of failure recovery
In a failure recovery, we must not only restore the
system to a consistent state, but also appropriately
handle messages that are left in an abnormal state due to
the failure recovery.

Figure 3 Failure Recovery

 We now describe the issues involved in a failure
recovery with the help of a distributed computation
shown in figure 3. The computation comprises of three
processes Pi, Pj and Pk connected through a
communication network. The processes communicate
solely by exchanging messages over fault-free, FIFO
communication channels. Processes Pi, Pj and Pk have
taken checkpoints { Ci,0 , Ci,1 }, { C j,0 , Cj,1 , Cj,2 } and

{ Ck,0 , Ck,1 } respectively and these processes have
exchanged messages m1 to m10 as shown in figure 1.4.
Suppose process Pi fails at the instance indicated in the
figure. All the contents of the volatile memory of Pi are
lost and after Pi has recovered from the failure, the
system needs to be restored to a consistent global state
from where the processes can resume their execution.
Process Pi‘s state is restored to a valid state by rolling it
back to its most recent checkpoint Ci,1 . To restore the
system to a consistent state, the process Pj rolls back to
checkpoint Cj,1 because the rollback process Pi to
checkpoint Ci,1 , created an orphan message m8 (the
receive event of m8 is recorded at process Pj while the
send event of m8 has been undone at process Pi). Note
that process Pj does not roll back to checkpoint Cj,2 but
to checkpoint Cj,1 , because rolling back to checkpoint
Cj,2 does not eliminate the orphan message m8 . Even
this resulting state is not a consistent global state as an
orphan message m9 is created due to the roll back of
process Pj to checkpoint Cj,1. To eliminate this orphan
message, process Pk rolls back to checkpoint Ck,1 . The
restored global state {C i,1 , Cj,1 , Ck,1 } is a consistent
state as it is free from orphan messages. Although the
system has been restored to a consistent state, several
messages are left in an erroneous state which must be
handled correctly.
 Messages m1 , m2 , m4 , m7 , m8 , m9 , m10 had been
received at the points indicated in the figure and
messages m3 , m5 and m6 were in transit when the
failure occurred. Restoration of system state to
checkpoints {C i,1 , Cj,1 , Ck,1 } automatically handles
messages m1 , m2 , m10 because the send and receive
events of messages m1 , m2 , m10 have been recorded
and both the events m7 , m8 , m9 have been completely
undone. These messages cause no problem and we call
messages m1 , m2 , m10 normal messages and messages
m7 , m8 , m9 vanished messages. Messages m3 , m4 , m5 ,
m6 are potentially problematic. Message m3 is in transit
during the failure and it is a delayed message m3 has
several possibilities: m3 might arrive at process Pi
before it recovers, it might arrive while Pi is recovering
or it might arrive after Pi has completed recovery. Each
of these cases must be dealt with correctly. Message m4
is a lost message since the send for m4 is recorded in the
restored state for process Pj , but the receive event has
been undone at process Pi . Process Pj will not resend
m4 without an additional mechanism, since the send m4
at Pj occurred before the checkpoint and the
communication system successfully delivered m4 .
Messages m5 and m6 are delayed orphan messages and
pose perhaps the most serious problem of all the
messages. When messages m5 and m6 arrive at their
respective destinations, they must be discarded since
their send events have been undone. Processes after
resuming execution from their checkpoints, will

ISSN : 0975-3397 1054

Rachit Garg et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1052-1063

generate both of the messages, and recovery techniques
must be able to distinguish between messages like m3
and those like m5 and m6 .
 Lost messages like m4 can be handled by having
processes keep a message log of all the sent messages.
So when a process restores to a checkpoint, it replays
the messages from its log to handle the lost message
problem. However, message logging and message
replaying during recovery can result in duplicate
messages. In the example shown in figure 3 when
process Pj replays messages from its log, it will
regenerate message m10 . Process Pk which has already
received message m10 , will receive it again, thereby
causing inconsistency in the system state. Therefore,
these duplicate messages must be handled properly.
 Overlapping failures further complicate the recovery
process. A process Pj that begins rollback/recovery in
response to the failure of a process Pi can itself fail and
develop amnesia with respect process Pi ‘s failure; that
is process Pj can act in a fashion that exhibits ignorance
of process Pi ‘s failure. If overlapping failures are to be
tolerated, a mechanism must be introduced to deal with
amnesia and the resulting inconsistencies.

3. Checkpointing-based Rollback Recovery

A checkpoint is a local state of a process saved on
stable storage. In a distributed system, since the
processes in the system do not share memory, a global
state of the system is defined as a set of local states, one
from each process. The state of channels corresponding
to a global state is the set of messages sent but not yet
received. A lost or in-transit message is one, the sending
of which has been recorded by the sender but whose
receiving could not be recorded by the receiving
process. An orphan message is a message whose receive
event is recorded, but its send event is lost. A global
state is
said to be “consistent” if it contains no orphan message
and all the in-transit messages are logged.
 After a failure, a system must be restored to a
consistent system state. Essentially, a system state is
consistent if it could have occurred during the preceding
execution of the system from its initial state, regardless
of the relative speeds of individual processes. This
assumes that the total execution of the system is
equivalent to some fault free execution [8]. It has been
shown that two local checkpoints being causally
unrelated is a necessary but not sufficient condition for
them to belong to the same consistent global
checkpoint. This problem was first addressed by Netzer
and Xu who introduced the notion of a Z-path between
local checkpoints to capture both their causal and
hidden dependencies [37]. Considering a checkpoint

and communication pattern, the rollback dependency
track ability property stipulates that there is no hidden
dependency between local checkpoints [11]. To be able
to recover a system state, all of its individual process
states must be able to be restored. A consistent system
state in which each process state can be restored is thus
called a recoverable system state.
 Processes in a distributed system communicate by
sending and receiving messages. A process can record
its own state and messages it sends and receives; it can
record nothing else. To determine a global system state,
a process Pi must enlist the cooperation of other
processes that must record their own local states and
send the recorded local states to Pi. All processes cannot
record their local states at precisely the same instant
unless they have access to a common clock. We assume
that processes do not share clocks or memory. The
problem is to devise algorithms by which processes
record their own states and the states of communication
channels so that the set of process and channel states
recorded form a global system state. The global state
detection algorithm is to be superimposed on the
underlying computation; it must run concurrently with,
but not alter, this underlying computation [19].
 The state detection algorithm plays the role of a
group of photographers observing a panoramic,
dynamic scene, such as a sky filled with migrating
birds- a scene so vast that it cannot be captured by a
single photograph. The photographers must take several
snapshots and piece the snapshots together to form a
picture of the overall scene. All snapshots cannot be
taken at precisely the same instant because of
synchronization problems. Furthermore, the
photographers should not disturb the process that is
being photographed. Yet, the composite picture should
be meaningful. The problem before us is to define
meaningful and then to determine how the photographs
should be taken [19].
 The problem of taking a checkpoint in a message
passing distributed system is quite complex because any
arbitrary set of checkpoints cannot be used for
recovery [19], [50], [51]. This is due to the fact that the
set of checkpoints used for recovery must form a
consistent global state.
In backward error recovery, depending on the
programmer’s intervention in process of checkpointing,
the classification can be:

User triggered checkpointing schemes require user
interaction and are useful in reducing the stable storage
requirement [22]. These are generally employed where
the user has the knowledge of the computation being
performed and can decide the location of the
checkpoints. The main problem is the identification of
the checkpoint location by a user. The transparent

ISSN : 0975-3397 1055

Rachit Garg et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1052-1063

checkpointing techniques do not require user interaction
and can be classified into following categories:

In uncoordinated or independent checkpointing,
processes do not coordinate their checkpointing activity
and each process records its local checkpoint
independently [14], [56], [64]. It allows each process
the maximum autonomy in deciding when to take
checkpoint, i.e., each process may take a checkpoint
when it is most convenient. It eliminates coordination
overhead all together and forms a consistent global state
on recovery after a fault [14]. After a failure, a
consistent global checkpoint is established by tracking
the dependencies. It may require cascaded rollbacks that
may lead to the initial state due to domino-effect [31],
[50], [51]. It requires multiple checkpoints to be saved
for each process and periodically invokes garbage
collection algorithm to reclaim the checkpoints that are
no longer needed. In this scheme, a process may take a
useless checkpoint that will never be a part of global
consistent state. Useless checkpoints incur overhead
without advancing the recovery line [22]. The main
disadvantage of this approach is the domino-effect. For
example, in figure 4, the latest set of checkpoints {C12 ,
C22, C32 } is not consistent.

Figure 4 Uncoordinated Checkpointing

Because, the constituted global state contains orphan
messages m4 and m6. However, the global state {C11,
C21, C31} is consistent. It allows each process to have
maximum autonomy in deciding when to take
checkpoint. Each process may take a checkpoint when
it is most convenient. A process may reduce the
overhead by taking checkpoints when the amount of
state information to be saved is small. After a failure, a
consistent global checkpoint is established by tracking
the dependencies. It may require cascaded rollbacks
that may lead to the initial state due to domino effect. A
checkpoint that cannot belong to any consistent global
check point is called useless checkpoint. One way to
avoid domino effect is to clean the system from these

useless checkpoints. It requires multiple checkpoints to
be saved for each process and periodically invokes
garbage collection algorithm to reclaim the checkpoints
that are no longer needed. In this scheme, a process
may take a useless check point that will never be a part
of global consistent state. Also useless checkpoints
incur overhead without advancing the recovery line.

In coordinated or synchronous checkpointing,
processes take checkpoints in such a manner that the
resulting global state is consistent. Mostly it follows
two-phase commit structure [19], [23], [31]. In the first
phase, processes take tentative checkpoints and in the
second phase, these are made permanent. The main
advantage is that only one permanent checkpoint and at
most one tentative checkpoint is required to be stored.
In case of a fault, processes rollback to last
checkpointed state. A permanent checkpoint can not be
undone. It guarantees that the computation needed to
reach the checkpointed state will not be repeated. A
tentative checkpoint, however, can be undone or
changed to be a permanent checkpoint.
 A straightforward approach to coordinated
checkpointing is to block communications while the
checkpointing protocol executes [58]. A coordinator
takes a checkpoint and broadcasts a request message to
all processes, asking them to take a checkpoint. When a
process receives the message, it stops its executions,
flushes all the communication channels, takes a
tentative checkpoint, and sends an acknowledgement
message back to the coordinator. After the coordinator
receives acknowledgements from all processes, it
broadcasts a commit message that completes the two-
phase checkpoint protocol. On receiving commit, a
process converts its tentative checkpoint into permanent
one and discards its old permanent checkpoint, if any.
The process is then free to resume execution and
exchange messages with other processes.
 The coordinated checkpointing protocols can be
classified into two types: blocking and non-blocking. In
blocking algorithms, as mentioned above, some
blocking of processes takes place during checkpointing
[31], [58]. In non-blocking algorithms, no blocking of
processes is required for checkpointing [19], [23]. The
coordinated checkpointing algorithms can also be
classified into following two categories: minimum-
process and all process algorithms. In all-process
coordinated checkpointing algorithms, every process is
required to take its checkpoint in an initiation [19], [23].
In minimum-process algorithms, minimum interacting
processes are required to take their checkpoints in an
initiation [31].

Communication-induced checkpointing avoids the
domino-effect without requiring all checkpoints to be

ISSN : 0975-3397 1056

Rachit Garg et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1052-1063

coordinated [12], [26], [35]. In these protocols,
processes take two kinds of checkpoints, local and
forced. Local checkpoints can be taken independently,
while forced checkpoints are taken to guarantee the
eventual progress of the recovery line and to minimize
useless checkpoints. As opposed to coordinated
checkpointing, these protocols do no exchange any
special coordination messages to determine when forced
checkpoints should be taken. But, they piggyback
protocol specific information [generally checkpoint
sequence numbers] on each application message; the
receiver then uses this information to decide if it should
take a forced checkpoint. This decision is based on the
receiver determining if past communication and
checkpoint patterns can lead to the creation of useless
checkpoints; a forced checkpoint is taken to break these
patterns [22], [35].

4. Log-Based Rollback Recovery

Message-logging protocols (for example [3], [4], [5],
[6], [9], [24], [25], [27], [47], [57], [59], [60], [61],
[62], are popular for building systems that can tolerate
process crash failures. Message logging and
checkpointing can be used to provide fault tolerance in
distributed systems in which all inter-process
communication is through messages. Each message
received by a process is saved in message log on stable
storage. No coordination is required between the
checkpointing of different processes or between
message logging and checkpointing. The execution of
each process is assumed to be deterministic between
received messages, and all processes are assumed to
execute on fail stop processes.
 When a process crashes, a new process is created in
its place. The new process is given the appropriate
recorded local state, and then the logged messages are
replayed in the order the process originally received
them. All message-logging protocols require that once a
crashed process recovers, its state needs to be consistent
with the states of the other processes [22], [65]. This
consistency requirement is usually expressed in terms of
orphan processes, which are surviving processes whose
states are inconsistent with the recovered states of
crashed processes. Thus, message- logging protocols
guarantee that upon recovery, no process is an orphan.
This requirement can be enforced either by avoiding the
creation of orphans during an execution, as pessimistic
protocols do, or by taking appropriate actions during
recovery to eliminate all orphans as optimistic protocols
do. Bin Yao et al. [65] describes a receiver based
message logging protocol for mobile hosts, mobile
support stations and home agents in a Mobile IP
environment, which guarantees independent recovery.

Checkpointing is utilized to limit log size and recovery
latency.

Pessimistic logging protocols are designed under the
assumption that a failure can occur after any
nondeterministic event in the computation. This
assumption is “pessimistic” since in reality failures are
rare. In their most straightforward form, pessimistic
protocols log to stable storage the determinant of each
nondeterministic event before the event is allowed to
affect the computation. These pessimistic protocols
implement the following property, often referred to as
synchronous logging, which is a strengthening of the
always-no-orphans condition: This property stipulates
that if an event has not been logged on stable storage,
then no process can depend on it. In addition to logging
determinants, processes also take periodic checkpoints
to limit the amount of work that has to be repeated in
execution replay during recovery. Should a failure
occur when the application program is restarted from
the most recent checkpoint and the logged determinants
are used during recovery to recreate the pre-failure
execution. This property has four advantages: i)
Processes can commit output to the outside world
without running a special protocol. ii) Processes restart
from their most recent checkpoint upon a failure,
therefore limiting the extent of execution that has to be
replayed. Thus, the frequency of checkpoints can be
determined by trading off the desired runtime
performance with the desired protection of the on-going
execution. iii) Recovery is simplified because the
effects of a failure are confined only to the processes
that fail. Functioning processes continue to operate and
never become orphans because a process always
recovers to the state that included its most recent
interaction with any other process or with the outside
world. This is highly desirable in practical systems. iv)
Recovery information can be garbage-collected easily.
Older checkpoints and determinants of nondeterministic
events that occurred before the most recent checkpoint
can be reclaimed because they will never be needed for
recovery [22].

Optimistic logging protocols processes log
determinants asynchronously to stable storage. These
protocols make the optimistic assumption that logging
will complete before a failure occurs. Determinants are
kept in a volatile log, which is periodically flushed to
stable storage. Thus, optimistic logging does not require
the application to block waiting for the determinants to
be actually written to stable storage, and therefore
incurs little overhead during failure-free execution.
However, this advantage comes at the expense of more
complicated recovery, garbage collection, and slower

ISSN : 0975-3397 1057

Rachit Garg et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1052-1063

output commit than in pessimistic logging. If a process
fails, the determinants in its volatile log will be lost, and
the state intervals that were started by the
nondeterministic events corresponding to these
determinants cannot be recovered. Furthermore, if the
failed process sent a message during any of the state
intervals that cannot be recovered, the receiver of the
message becomes an orphan process and must roll back
to undo the effects of receiving the message. Optimistic
protocols [22] do not implement the always-no-orphans
condition, and therefore permit the temporary creation
of orphan processes. To perform these rollbacks
correctly, optimistic logging protocols track causal
dependencies during failure-free execution. Upon a
failure, the dependency information is used to calculate
and recover the latest global state of the pre-failure
execution in which no process is in an orphan.

Causal logging [22] has the failure-free performance
advantages of optimistic logging while retaining most
of the advantages of pessimistic logging. Like
optimistic logging, it avoids synchronous access to
stable storage except during output commit. Like
pessimistic logging, it allows each process to commit
output independently and never creates orphans, thereby
isolating processes from the effects of failures that
occur in other processes. Furthermore, causal logging
limits the rollback of any failed process to the most
recent checkpoint on stable storage. This reduces the
storage overhead and the amount of work at risk.

5. Earlier Work

Gupta, B., and Rahimi, S.[68], have addressed the
complex problem of recovery for concurrent failures in
distributed computing environment. They have
proposed a new approach in which they have effectively
dealt with both orphan and lost messages. The proposed
checkpointing and recovery approaches enable each
process to restart from its recent checkpoint and hence
guarantee the least amount of recomputation after
recovery. It also means that a process needs to save only
its recent local checkpoint. In this regard, they have
introduced two new ideas. First, the proposed value of
the common checkpointing interval was such that it
enables an initiator process to log the minimum number
of messages sent by each application process. Second,
the determination of the lost messages was always done
a priori by an initiator process; besides this was done
while the normal distributed application was running.
This was quite meaningful because it does not delay the
recovery approach in any way.

They have proposed a checkpointing approach that
was a single phase one and non-blocking in nature;
besides it does not have any synchronization delay. It

makes sure that at the time of recovery they do not have
to deal with orphan messages unlike many of the
existing works and also processes can restart from their
respective recent checkpoints. The choice of the value
of the common checkpointing interval enables to use as
little information related to the lost and delayed
messages as possible for consistent operation after the
system restarts. The determination of the lost messages
was always done a priori by an initiator process; besides
it was done while the normal distributed application was
running. It was meaningful because it does not delay the
recovery approach in any way. Besides, the recovery
approach was independent of the number of processes
that may fail concurrently. Finally note that their
checkpointing and recovery schemes are independent of
the effect of any clock drift on the respective sequence
numbers of the recent checkpoints of the processes,
because they consider only processes’ recent
checkpoints irrespective of their sequence numbers.
Biswas, S., and Neogy, S.[69], proposed a new
checkpointing and failure recovery algorithm for mobile
computing system. Mobile hosts save checkpoints based
on mobility and movement patterns. Movement patterns
considered here are of three types – i) Intercell
movement pattern ii) combination movement pattern ii)
Intracell movement pattern. Mobile hosts save
checkpoints when number of hand-off exceeds a
predefined hand-off threshold value. Disconnection was
a frequent phenomenon and was of two types: i)
planned disconnection ii) unplanned disconnection.
Hence mobile hosts save two types of checkpoints - i)
permanent checkpoint based on hand-off threshold
value covering unplanned disconnection ii) migration
checkpoint covering planned disconnection. Hand-off
threshold was a function mobility rate, movement
pattern, message passing frequency and failure rate.

They proposed checkpointing algorithm which was in
comparison with other relevant works because it was
designed based not only on mobility and hand-off of
MHs but movement patterns were also considered.
Unike others, MHs moving within a cell was
checkpointed exclusively. Hence, their checkpointing
scheme was stronger from the point of view of failure
recovery. Disconnection of MHs was a frequent
phenomenon which may delay checkpointing. Hence
the concept of migration checkpoint was introduced
before planned disconnection so that checkpointing can
be completed without any dealy resulting enhanced
fault tolerance in the proposed scheme.

Prakash-Singhal [45] have stated that a checkpointing
algorithm for mobile distributed systems should have
following characteristics: (i) It should be minimum

ISSN : 0975-3397 1058

Rachit Garg et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1052-1063

process (ii) it should be non-intrusive (iii) it should not
awake the MHs in “doze mode operations”. They
proposed a synchronous snapshot collection algorithm
for mobile systems that neither forces every node to
take a local snapshot, nor blocks the underlying
computation during snapshot collection. If a node
initiates snapshot collection, local snapshots of only
those nodes that have directly or transitively affected
the initiator since their last snapshots need to be taken.
The global snapshot collection terminates within a finite
time of its invocation. They also proposed a minimal
rollback recovery algorithm in which the computation at
a node is rolled back only if it depends on operations
that have been undone due to the failure of node(s).
Both the algorithms have low communication and
storage overheads and meet the low energy
consumption and low bandwidth constraints of mobile
computing systems. An interesting aspect of their
algorithm is that it has a lazy phase that enables nodes
to take local snapshots in a quasi-asynchronous fashion,
after the coordinate snapshot collection phase the
aggressive phaser is over. This further reduces the
amount of computation that is rolled back during
recovery from node failures. Moreover the lazy phase
advances the checkpoint slowly rather than in a burst.
This avoids contention for the low bandwidth channels.
Basically they have proposed a minimum process non-
blocking checkpointing algorithm. Cao-Singhal [16]
has shown that the algorithm [45] may lead to
inconsistencies.

Cao and Singhal [16] presented a minimum process
checkpointing algorithm in which the dependency
information is recorded by a Boolean vector. This
algorithm is a two phase protocol and saves two kinds
of checkpoints on the stable storage. In the first phase
the initiator sends a request to all processes to send their
dependency vectors. On receiving the request each
process sends its dependency vector. Having received
all the dependency vectors, the initiator constructs an N
x N dependency matrix with one row per process,
represented by the dependency vector of the process.
Based on the dependency matrix, the initiator can
locally calculate all the processes on which the initiator
transitively depends. After the initiator finds all the
process that need to take checkpoints and adds them to
the set S forced and ask them to take checkpoints. Any
process receiving a checkpoint request takes the
checkpoint and sends a reply. The process has to be
blocked after receiving the dependency vectors request
and resumes its computation after receiving a
checkpoint request.

Cao-Singhal [17] proposed a minimum process

coordinated checkpointing algorithm for mobile
distributed systems. They introduced the concept of
“mutable checkpoint”, which is neither a tentative
checkpoint nor a permanent checkpoint. It is saved on
MH. The basic idea of the algorithm is as follows. In
the first phase the initiator process says P sends the
checkpoint request to P1 to P10 is directly dependent
upon P. On getting the checkpointing request, P1 takes
the following actions: (i) P1 takes its tentative
checkpoint (ii) it finds the processes which are in its
dependency vector but not in the minimum set received
from the P10 – P1 sends the checkpointing request to
such processes. Suppose P1 sends m to P1 after taking
its tentative checkpoint. When P1 receives m and finds
that it has not taken its tentative checkpoint for the
current initiation, it cannot conclude whether it will be
included in the minimum set in the current initiation. In
this case, if P1 takes its tentative checkpoint after
receiving m, m will become orphan. Therefore P1 takes
its mutable checkpoint before processing m, if P1 gets
the checkpointing request, it converts its mutable
checkpoint into tentative checkpoint; otherwise, at the
time of commit. P1 discards its mutable checkpoint.

Weigang et al [64] presented a coordinated non-
blocking algorithm for distributed mobile systems.
They proposed to reduce the MHs coordination message
overhead by introducing an idea called proxy
coordinator. The proxy coordinator is a process which
is running on the MSS. When a process initiate the
checkpointing operation, it takes its tentative checkpoint
and sends the checkpointing request to all the dependent
processes through its MSS. On receiving the
checkpointing request by the initiator MSS a process
called proxy coordinator is started on this MSS. This
proxy coordinator further coordinates the checkpointing
process on behalf of the initiator process. They
assumed that a process will not receive a checkpoint
request associated with another initiator before the
current executing one is completed. They shown that
Cao-Singhal algorithm [16] may lead to inconsistencies
during concurrent initiations.

Kumar-et al [32] proposed a non-blocking
checkpointing algorithm based on keeping track of
direct dependencies of processes. Each process
maintains a direct dependency vector. In their scheme,
initiator process collects the direct dependency vectors
of all processes, computes minimum set, and sends the
checkpoint request along with the minimum set to
relevant processes. This reduces the time to take the
checkpoints. If new dependencies are created during
checkpointing process, those are updated and updated
minimum set is formed.

ISSN : 0975-3397 1059

Rachit Garg et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1052-1063

Wang and Fuchs [65] proposed a coordinated
checkpointing scheme in which they incorporated the
technique of lazy checkpoint coordination into an
uncoordinated checkpointing protocol for bounding
rollback propagation Recovery line progression is made
by performing communication induced checkpoint
coordination only when predetermined consistency
criterion is violated. The notation of laziness provides a
trade off between extra checkponts during normal
execution and average rollback distance for recovery.

L K Awasthi-Kumar [33] proposed a minimum
process coordinated checkpointing protocol for mobile
distributed systems. Where the number of useless
checkpoint and the blocking of processes are reduced
using the probabilistic approach and by computing the
tentative minimum set in the beginning. This algorithm
is the first one to combine and non-blocking scheme in
one algorithm.

Gupta et al. [54] proposed a single phase non-
blocking coordinated checkpointing approach for
mobile computing environment. In their algorithm, the
processes are allowed to take the permanent
checkpoints directly without taking tentative
checkpoints and whenever a process is busy, the process
takes a checkpoint after the completion of current
procedure. However, this scheme has the disadvantage
that it does consider the case of failure during the
checkpointing operation which may result in the
inconsistent states of the processes.

Mannivannan and Singhal proposed a quasi
synchronous checkpointing algorithm [35]. This
algorithm is simple and has a merit of asynchronous
checkpoint low overhead, and a merit of synchronous
checkpointing low recovery time. In this algorithm,
each process takes checkpoint independently called
basic checkpoints. Checkpoints triggered by message
reception are called forced checkpoints. The checkpoint
index is increased by one after taking a basic or forced
checkpoint. When process P1 receives a message m,
with piggybacked information index, from process P1
and P1s index, is small than Index, a forced checkpoint
is taken to advance the recovery line. Although the
algorithm has a low checkpoint overhead, it has to
maintain multiple checkpoints.

In minimum-process coordinated checkpointing,
some processes may not checkpoint for several
checkpoint initiations. In the case of a recovery after a
fault, such processes may rollback to far earlier
checkpointed state and thus may cause greater loss of
computation. In all-process coordinated checkpointing,
the recovery line is advanced for all processes but the
checkpointing overhead may be exceedingly high. To
optimize both matrices, the checkpointing overhead and

the loss of computation on recovery, P.Kumar [66]
proposed a hybrid checkpointing algorithm, wherein an
all-process coordinated checkpoint is taken after the
execution of minimum-process coordinated
checkpointing algorithm for a fixed number of times.
Thus, the Mobile nodes with low activity or in doze
mode operation may not be disturbed in the case of
minimum-process checkpointing and the recovery line
is advanced for each process after an all-process
checkpoint. Additionally, he tried to minimize the
information piggybacked onto each computation
message. For minimum-process checkpointing, he
designed a blocking algorithm, where no useless
checkpoints are taken and an effort has been made to
optimize the blocking of processes. He proposed to
delay selective messages at the receiver end. By doing
so, processes are allowed to perform their normal
computation, send messages and partially receive them
during their blocking period. The proposed minimum-
process blocking algorithm forces zero useless
checkpoints at the cost of very small blocking.

Kumar and Kumar [67] proposed an algorithm
which is based on keeping track of direct dependencies
of processes. Initiator MSS collects the direct
dependency vectors of all processes, computes the
tentative minimum set (minimum set or its subset), and
sends the checkpoint request along with the tentative
minimum set to all MSSs. This step is taken to reduce
the time to collect the coordinated checkpoint. It will
also reduce the number of useless checkpoints and the
blocking of the processes. Suppose, during the
execution of the checkpointing algorithm, Pi takes its
checkpoint and sends m to Pj. Pj receives m such that it
has not taken its checkpoint for the current initiation
and it does not know whether it will get the checkpoint
request. If Pj takes its checkpoint after processing m, m
will become orphan. In order to avoid such orphan
messages, they propose the following technique. If Pj
has sent at least one message to a process, say Pk and
Pk is in the tentative minimum set, there is a good
probability that Pj will get the checkpoint request.
Therefore, Pj takes its induced checkpoint before
processing m. An induced checkpoint is similar to the
mutable checkpoint [15]. In this case, most probably, Pj
will get the checkpoint request and its induced
checkpoint will be converted into permanent one. There
is a less probability that Pj will not get the checkpoint
request and its induced checkpoint will be discarded.
Alternatively, if there is not a good probability that Pj
will get the checkpoint request, Pj buffers m till it takes
its checkpoint or receives the commit message. They
have tried to minimise the number of useless
checkpoints and blocking of the process by using the
probabilistic approach and buffering selective messages
at the receiver end. Exact dependencies among

ISSN : 0975-3397 1060

Rachit Garg et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1052-1063

processes are maintained. It abolishes the useless
checkpoint requests and reduces the number of
duplicate checkpoint requests.

Neogy, S.[70], presented a proposal for achieving
fault tolerance in wireless and mobile computing
systems and proposed that it saves the nodes possible
retransmission thereby lowering network traffic. This
approach particularly tackles the situation of
intermittent failures due to disconnection, wireless
channel saturation with traffic, low power of devices in
wireless/mobile computing environment, though
coordinated checkpointing was employed here but it
does not force all local computation units to take
checkpoints at every initiation thereby saving power
and communication overhead in wireless network. She
found that it was possible to have such an architecture
even in a wireless system without any extra overhead
added.

Pourmahmoud, S., Asbaghi, S., and Haghighat.,
A.T.[71], discussed on the size of rollback it has in the
presence of failures. In order to determining the
recovery line in checkpoint-based recovery, they first
studied common approaches: dependency graph and
checkpoint graph and provide some algorithms for these
approaches. Then they introduced a new approach for
calculating the recovery line and making a graph
(independent graph). Finally they presented a solution
for reducing the cost of graph when calculating the
recovery line, particularly when the domino effect is
occurred. They reviewed some approaches for
calculating the recovery line in uncoordinated
checkpointing. They introduced a new approach for
reducing this cost of graph when calculating the
recovery line (independent graph). Also another method
was also presented and this was more useful when there
was the domino effect. First, it recognized the useless
checkpoints and dose not take them in graph building so
the resulting graph will be smaller. They introduced this
method and tried to reduce the overhead of distributed
systems in recovery line detection when a failure
occurs.

6. CONCLUSION

Various Fault tolerance solutions can be implemented in
a variety of forms. They include software libraries,
special programming languages, compiler or
preprocessor modifications, operating system
extensions, and system middleware. Each method has
its own tradeoffs in terms of power, portability, and
ease of use. A survey literature on checkpointing
algorithm shows that a large number of papers have
been published. A majority of these algorithms are

based on the article by Chandy & Lamport (1985) and
have Checkpointing algorithms for parallel and
distributed computing been obtained by relaxing many
of the assumptions made by them. The main aim of
improving the earlier extensions of the Chandy &
Lamport (1985) algorithms was to minimize the
overhead of coordination between processes in a
multiprocessor system. More recent published work
attempts to minimise the context-saving overhead.

References

[1] Acharya A. and Badrinath B. R., “Checkpointing Distributed
Applications on Mobile Computers,” Proceedings of the 3rd
International Conference on Parallel and Distributed Information
Systems, pp. 73-80, September 1994.
[2] Acharya A., “Structuring Distributed Algorithms and Services for
networks with Mobile Hosts”, Ph.D. Thesis, Rutgers University, 1995.
[3] Alvisi, Lorenzo and Marzullo, Keith,“ Message Logging:
Pessimistic, Optimistic, Causal, and Optimal”, IEEE Transactions on
Software Engineering, Vol. 24, No. 2, February 1998, pp. 149-159.
[4] L. Alvisi, Hoppe, B., Marzullo, K., “Nonblocking and Orphan-Free
message Logging Protocol,” Proc. of 23rd Fault Tolerant Computing
Symp., pp. 145-154, June 1993.
[5] L. Alvisi,“ Understanding the Message Logging Paradigm for
Masking Process Crashes,“ Ph.D. Thesis, Cornell Univ., Dept. of
Computer Science, Jan. 1996. Available as Technical Report TR-96-
1577.
[6] L. Alvisi and K. Marzullo,“ Tradeoffs in implementing Optimal
Message Logging Protocol”, Proc. 15th Symp. Principles of
Distributed Computing, pp. 58-67, ACM, June, 1996.
[7] Adnan Agbaria, Wiilliam H Sanders,“ Distributed Snapshots for
Mobile Computing Systems”, IEEE Intl. Conf. PERCOM’04, pp. 1-
10, 2004.
[8] Avi Ziv and Jehoshua Bruck, “ Checkpointing in Parallel and
Distributed Systems”, Book Chapter from Parallel and Distributed
Computing Handbook edited by Albert Z. H. Zomaya, pp. 274-302,
Mc Graw Hill, 1996.
[9] A. Borg, J. Baumbach, and S. Glazer,“ A Message System
Supporting Fault Tolerance”, Proc. Symp. Operating System
Principles, pp. 90-99, ACM SIG OPS, Oct. 1983.
[10] Adnan Agbaria, William H. Sanders, “ Distributed Snapshots
for Mobile Computing Systems”, Proceedings of the Second IEEE
Annual Conference on Pervasive Computing and Communications
(Percom’04), pp. 1-10, 2004.
[11] Baldoni R., Hélary J-M., Mostefaoui A. and Raynal M., “
Rollback Dependency Trackability: A Minimial Characterization and
its Protocol”, Information and Computation, 165, pp. 144-173, 2003.
[12] Baldoni R., Hélary J-M., Mostefaoui A. and Raynal M., “A
Communication- Induced Checkpointing Protocol that Ensures
Rollback-Dependency Trackability,” Proceedings of the International
Symposium on Fault-Tolerant-Computing Systems, pp. 68-77, June
1997.
[13] Bhagwat P., and Perkins, C.E., “A mobile Networking System
based on Internet Protocol (IP)”,USENIX Symposium on Mobile and
Location-Independent Computing, August 1993.
[14] Bhargava B. and Lian S. R., “Independent Checkpointing and
Concurrent Rollback for Recovery in Distributed Systems-An
Optimistic Approach,” Proceedings of 17th IEEE Symposium on
Reliable Distributed Systems, pp. 3-12, 1988.
[15] Cao G. and Singhal M., “On coordinated checkpointing in
Distributed Systems”, IEEE Transactions on Parallel and Distributed
Systems, vol. 9, no.12, pp. 1213-1225, Dec 1998.

ISSN : 0975-3397 1061

Rachit Garg et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1052-1063

[16] Cao G. and Singhal M., “On the Impossibility of Min-process
Non-blocking Checkpointing and an Efficient Checkpointing
Algorithm for Mobile Computing Systems,” Proceedings of
International Conference on Parallel Processing, pp. 37-44, August
1998.
[17] Cao G. and Singhal M., “Mutable Checkpoints: A New
Checkpointing Approach for Mobile Computing systems,” IEEE
Transaction On Parallel and Distributed Systems, vol. 12, no. 2, pp.
157-172, February 2001.
[18] Cao G. and Singhal M., “Checkpointing with Mutable
Checkpoints”, Theoretical Computer Science, 290(2003), pp. 1127-
1148.
[19] Chandy K. M. and Lamport L., “Distributed Snapshots:
Determining Global State of Distributed Systems,” ACM Transaction
on Computing Systems, vol. 3, No. 1, pp. 63-75, February 1985.
[20] F. Cristian and F. Jahanian, “ A timestamp-based Checkpointing
Protocol for Long Lived Distributed Computations”, Proc IEEE Symp.
Reliable Distributed Systems, pp. 12-20, 1991.
[21] Dieter Kranzlmuller, Nam Thoai, Jens Volkert,“ Error Detection
in Large Scale Parallel Programs with Long runtimes, Future
Generation Computer Systems 19, pp. 689-700, 2003.
[22] Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B., “A
Survey of Rollback-Recovery Protocols in Message-Passing
Systems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375-408, 2002.
[23] Elnozahy E.N., Johnson D.B. and Zwaenepoel W., “The
Performance of Consistent Checkpointing,” Proceedings of the 11th
Symposium on Reliable Distributed Systems, pp. 39-47, October
1992.
[24] Elnozahy and Zwaenepoel W, “ Manetho: Transparent Roll-
back Recovery with Low-overhead, Limited Rollback and Fast Output
Commit,” IEEE Trans. Computers, vol. 41, no. 5, pp. 526-531, May
1992.
[25] Elnozahy and Zwaenepoel W, “ On the Use and
Implementation of Message Logging,” 24th int’l Symp. Fault Tolerant
Computing, pp. 298-307, IEEE Computer Society, June 1994.
[26] Hélary J. M., Mostefaoui A. and Raynal M., “Communication-
Induced Determination of Consistent Snapshots,” Proceedings of the
28th International Symposium on Fault-Tolerant Computing, pp. 208-
217, June 1998.
[27] D. Johnson, “Distributed System Fault Tolerance Using
Message Logging and Checkpointing,” Ph.D. Thesis, Rice Univ., Dec.
1989.
[28] JinHo Ahn, Sung-Gi Min, Chong-Sun Hwang, “A Causal
Message Logging Protocol for Mobile Nodes in Mobile Computing
Environments”, Future Generation Computer Systems 20, pp 663-686,
2004.
[29] Kalaiselvi, S., Rajaraman, V., “A Survey of Checkpointing
Algorithms for Parallel and Distributed Systems”, Sadhna, Vol. 25,
Part 5, October 2000, pp. 489-510.
[30] Kistler, J., and Satyanaranyan, M., “ Disconnected Operation in
the Coda file system”, ACM Trans. on Computer Systems 10, 1 (Feb.
1992).
[31] Koo R. and Toueg S., “Checkpointing and Roll-Back Recovery
for Distributed Systems,” IEEE Trans. on Software Engineering, vol.
13, no. 1, pp. 23-31, January 1987.
[32] L. Kumar, M. Misra, R.C. Joshi, “Low overhead optimal
checkpointing for mobile distributed systems” Proceedings. 19th
IEEE International Conference on Data Engineering, pp 686 – 88,
2003.
[33] Lalit Kumar, Parveen Kumar, R K Chauhan, “Pitfalls in
Minimum-process Coordinated Checkpointing protocols for Mobile
Distributed”, ACCST Journal of Research, Volume III, No. 1, 2005
pp. 51-56.
[34] Lalit Kumar, Parveen Kumar, R K Chauhan, “Message Logging
and Checkpointing in Mobile Computing”, Journal of Multi-

disciplinary Engineering Technologies, Vol.1, No.1, 2005, pp. 61-66.
[35] Manivannan D. and Singhal M., “Quasi-Synchronous
Checkpointing: Models, Characterization, and Classification,” IEEE
Trans. Parallel and Distributed Systems, vol. 10, no. 7, pp. 703-713,
July 1999.
[36] Manivannan D., Netzer R. H. and Singhal M., “Finding
Consistent Global Checkpoints in a Distributed Computation,” IEEE
Transactions on Parallel & Distributed Systems, vol. 8, no. 6, pp. 623-
627, June 1997.
[37] Netzer, R.H. and Xu,J ,“Necessary and Sufficient Conditions
for Consistent Global Snapshots”, IEEE Trans. Parallel and
Distributed Systems 6,2, pp 165-169, 1995.
[38] Parveen Kumar, Lalit Kumar, R K Chauhan, V K Gupta “A
Non-Intrusive Minimum Process Synchronous Checkpointing
Protocol for Mobile Distributed Systems” Proceedings of IEEE
ICPWC-2005, January 2005.
[39] Parveen Kumar, Lalit Kumar, R K Chauhan, “A low overhead
Non-intrusive Hybrid Synchronous checkpointing protocol for mobile
systems”, Journal of Multidisciplinary Engineering Technologies,
Vol.1, No. 1, pp 40-50, 2005.
[40] Parveen Kumar, Lalit Kumar, R K Chauhan, “Synchronous
Checkpointing Protocols for Mobile Distributed Systems: A
Comparative Study”, International Journal of information and
computing science, Volume 8, No.2, 2005, pp 14-21.
[41] Parveen Kumar, Lalit Kumar, R K Chauhan, “A Hybrid
Coordinated Checkpointing Protocol for Mobile Computing Systems”,
IETE journal of research, Vol 52, No. 2&3, pp 247-254, 2006.
[42] Parveen Kumar, Lalit Kumar, R K Chauhan, “A Synchronous
Checkpointing Protocol for Mobile Distributed Systems: A
Probabilistic Approach, Accepted for Publication in International
Journal of Information and Computer Security.
[43] Pradhan D.K. and Vaidya N., “Roll-forward Checkpointing
Scheme: Concurrent Retry with Non-dedicated Spares,” Proceedings
of the IEEE Workshop on Fault-Tolerant Parallel and Distributed
Systems, pp. 166-174, July 1992.
[44] Pushpendra Singh, Gilbert Cabillic, “A Checkpointing
Algorithm for Mobile Computing Environment”, LNCS, No. 2775, pp
65-74, 2003.
[45] Prakash R. and Singhal M., “Low-Cost Checkpointing and
Failure Recovery in Mobile Computing Systems,” IEEE Transaction
On Parallel and Distributed Systems, vol. 7, no. 10, pp. 1035-1048,
October1996.
[46] Prakash R. and Singhal M., “Maximum Global Snapshot with
Concurrent Initiations”, Proc. Sixth IEEE Symp. Parallel and
Distributed Processing, pp. 344-51, Oct. 1994.
[47] M.L. Powell and D.L. Presotto, “Publishing: A Reliable
Broadcase Communication Mechanism”, Proc. ninth Symp. Operating
System Principles, pp. 100-109, ACM SIGOPS, Oct. 1983.
[48] Purnendu Sinha, Da Qi Ren, “Formal Verification of
Dependable Distributed Protocols”, Information and Software
Technology, 45, pp. 873-888, 2003.
[49] Quagila, F., Ciciani, R., Baldoni, R., “ Checkpointing Protocols
in Distributed Systems with Mobile Hosts: A Performance Analysis”,
IPPS/SPDP Workshop, pp. 742-755, 1998.
[50] Randall, B, “ System Structure for Software Fault Tolerance”,
IEEE Trans. on Software Engineering, 1,2, 220-232, 1975.
[51] Russell, D.L., “State Restoration in Systems of Communicating
Processes”, IEEE Trans. Software Engineering, 6,2. 183-194, 1980.
[52] R K Chauhan, Parveen Kumar, Lalit Kumar, “A coordinated
checkpointing protocol for mobile computing systems”, International
Journal of information and computing science, Accepted for
Publication, Vol 9, No. 1, 2006.
[53] R K Chauhan, Parveen Kumar, Lalit Kumar, “Hybrid and
intrusive synchronous checkpointing protocols for mobile distributed
systems”, Accepted for publication in ACCST Journal of Research,

ISSN : 0975-3397 1062

Rachit Garg et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1052-1063

Volume IV, No. 4, 2006
[54] R K Chauhan, Parveen Kumar, Lalit Kumar, “Non-intrusive
Coordinated Checkpointing Protocols for Mobile Computing Systems
: A Critical Survey, ACCST Journal of Research, to be published in
Volume IV, No. 3, 2006.
[55] R K Chauhan, Parveen Kumar, Lalit Kumar, “Checkpointing
Distributed Applications on Mobile Computers”, Journal of
Multidisciplinary Engineering and Technologies, Vol. 2 No.1, Jan.
2006.
[56] Storm R., and Temini, S., “Optimistic Recovery in Distributed
Systems”, ACM Trans. Computer Systems, Aug, 1985, pp. 204-226.
[57] A.P. Sistla and J.L. Welch,“ Efficient Distributed Recovery
Using Message Logging”, Proc. 18th Symp. Principles of Distributed
Computing”, pp 223-238, Aug. 1989.
[58] Tamir, Y., Sequin, C.H., “Error Recovery in multi-computers
using global checkpoints”, In Proceedings of the International
Conference on Parallel Processing, pp. 32-41, 1984.
[59] S. Venketasan and T.Y. Juang, “Efficient Algorithms for
Optimistic Crash recovery”, Distributed Computing, vol. 8, no. 2, pp.
105-114, June 1994.
[60] S. Venketasan, “Message-Optimal Incremental Snapshots”,
Computer and Software Engineering, vol.1, no.3, pp. 211-231, 1993.
[61] S. Venketasan, “ Optimistic Crash recovery Without Rolling
back Non-Faulty Processors”, Information Sciences, 1993.
[62] S. Venketasan and T.T.Y. Juang, “Low Overhead optimistic
crash Recovery”, Proc. 11th Int. Conf. Distributed Computing
systems, pp. 454-461, 1991.
[63] Wang Y. M., Huang Y., Vo K.P., Chung P.Y. and Kintala C.,
“Checkpointing and its Applications,” Proceedings of the 25th
International Symposium on Fault-Tolerant Computing (FTCS-25),pp.
22-31, June 1995.
[64] Weigang Ni, Susan V. Vrbsky and Sibabrata Ray, Low-cost
Coordinated Checkpointing in Mobile Computing
Systems”,Proceeding of the Eighth IEEE International Symposium on
Computers and Communications, 2003.
[65] Wang Y. and Fuchs, W.K., “Lazy Checkpoint Coordination for
Bounding Rollback Propagation,” Proc. 12th Symp. Reliable
Distributed Systems, pp. 78-85, Oct. 1993.
[66] Parveen Kumar, “A Low-Cost Hybrid Coordinated
Checkpointing Protocol for Mobile Distributed Systems”, Mobile
Information Systems [An International Journal from IOS Press,
Netherlands] pp 13-32, Vol. 4, No. 1, 2007.
[67] Lalit Kumar, Parveen Kumar “A Synchronous Checkpointing
Protocol for Mobile Distributed Systems: A Probabilistic Approach”,
International Journal of Information and Computer Security pp 298-
314, Vol. 3 No. 1, 2007.
[68] B. Gupta and S. Rahimi “A Novel Low-Overhead Recovery
Approach for Distributed Systems”, Journal of Computer Systems,
Networks and Communications pp 1-8, volume 2009.
[69] S. Biswas and S Neogy “A Mobility Based Checkpointing
protocol for Mobile Computing System”, International Journal of
Computer science and Information Technology, Vol 2 No. 1,
Februrary, 2010.
[70] S Neogy “ WTMR – A New Fault Tolerance technique for
Wireless and Mobile Computing Systems”, Proceedings of the 11th
IEEE International Workshop on Future Trends of Distributed
Computing Systems, IEEE, 2007.
[71] Pourmahmoud, S. Asbaghi, S. Haghighat, A.T. “23rd
International Symposium on Computer and Information Sciences”,
2008.

ISSN : 0975-3397 1063

