
Manuj Darbari et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1034-1040

FRIX-Traffic Analyzer
 And Transportation Assistant

Manuj Darbari, Prateek Kumar Singh,Rakesh
Kumar,Sameer Eshan

Department of Information Technology,
Babu Banarasi Das National Institute of Technology,

Lucknow, India
manujuma@rediffmail.com

Savitur Prakash
Lucknow Doordarshan Kendra,

Lucknow, India

saviturprakash@rediffmail.com

Abstract— This website specializes in giving traffic reports for a
specific area. Much of our collected data comes from automatic
sensors placed at various points around the motorway to monitor
vehicle speeds. We have provided an accurate, up-to-date report
which is normally faster than other mediums, such as radio.
Typically our speed readings are updated every 3 minutes.
Using this website a user can give the starting place and
destination to the system. Depending on the prevalent traffic
conditions, the website will suggest the best route to be taken by
the user. Other than this, the user can also generate several other
useful information from the data collected, like finding the
nearest hospital to the user’s location or finding the nearest
restaurant. There is also a scope to add lot more to this
application for user’s convenience.

Keywords-component; formatting; style; styling; insert (key
words)

I. INTRODUCTION

The purpose of this project is to provide the user intelligent
transportation system (ITS)[1,2,4] which refers to the efforts
to add information and communications technology to
transport infrastructure and vehicles in an effort to manage
factors that typically are at odds with each other, such as
vehicles, loads, and routes to improve safety and reduce
vehicle wear, transportation times, and fuel consumption.

II. FEATURES OF THE SYSTEM

 Generates the traffic report of certain areas.
 Provides the user with the best path from one location

to another after analysing distance and traffic
condition between two places.

 Provides the use with the distance, time required to
travel, and direction from one place to another
entered by the user.

 Gives user the ability to plan his travel and to choose
his route according to his convenience.

 Gives the user information regarding the road
blockage, traffic jams and the areas of slow traffic
using markers on the maps.

 Search function is provided to the user to find the
location of any place or landmark on the map using a
marker.

 Gives the user an option to search the road and check
the traffic conditions on the same.

A. Performing Charecterstics

The following performance characteristics were taken care of
in developing the systems:

 User Friendliness: The system is easy to learn and
understand. A naive user can also use the system
effectively, without any difficulty.

 User Satisfaction: The system is such that it stands up
to the user’s expectations and requirements.

 Response Time: The response time of all the
operations is very high. This has been made possible
by careful programming.

 Error handling: Response to user errors and undesired
situations have been taken care of to ensure that the
system operates without halting in case of such
situation and proper error messages are given to user.

 Safety: The system is able to avoid catastrophic
behavior.

III. USER CHARACTARISTICS

 All users must have a little experience on working on
computer and have basic idea of net browsing.

 All users should know basic English.

ISSN : 0975-3397 1034

Manuj Darbari et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1034-1040

WORKING OF THE TRAFFIC ANALYSER

Google created the Google Maps API to allow developers to
integrate Google Maps into their websites with their own data
points. It is a free service, and currently does not contain ads,
but Google states in their terms of use that they reserve the
right to display ads in the future.

By using the Google Maps API, it is possible to embed the full
Google Maps site into an external website. Developers are
required to request an API key, which is bound to the website
and directory entered when creating the key. The Google
Maps API key is no longer required for API version 3.
Creating a customized map interface requires adding the
Google JavaScript code to a page, and then using Javascript
functions to add points to the map.
When the API first launched, it lacked the ability to geocode
addresses, requiring users to manually add points in (latitude,
longitude) format. This feature has since been added for
premier.
At the same time as the release of the Google Maps API,
Yahoo! released its own Maps API. Yahoo! Maps, which
lacks international support, included a geocoder in the first
release.
As of October 2006, the implementation of Google Gadgets'
Google Maps is simpler, requiring only one line of script, but
it is not as customizable as the full API
The fundamental element in any Google Maps API application
is the "map" itself. This document discusses usage of the
fundamental GMap2 object and the basics of map operations.
Loading the Google Maps API.

The
http://maps.google.com/maps?file=api&v=2&key=abcdefg
URL points to the location of the JavaScript file that includes
all of the symbols and definitions you need for using the
Google Maps API. Your page must contain a script tag
pointing to this URL, using the key you received when you
signed up for the API. In this example the key is shown as
"abcdefg."
Note that we also pass a sensor parameter to indicate whether
this application uses a sensor to determine the user's location.
We've left this example as a variable true_or_false to
emphasize that you must set this value to either true or false
explicitly.

Map DOM Elements

For the map to display on a web page, we must reserve a spot
for it. Commonly, we do this by creating a named div element
and obtaining a reference to this element in the browser's
document object model (DOM).
In the example above, we define a div named "map_canvas"
and set its size using style attributes. Unless you specify a size
explicitly for the map using GMapOptions in the constructor,
the map implicitly uses the size of the container to size itself.

GMap2 - the Elementary Object

The JavaScript class that represents a map is the GMap2 class.

Objects of this class define a single map on a page. (You may
create more than one instance of this class - each object will
define a separate map on the page.) We create a new instance
of this class using the JavaScript new operator.
When you create a new map instance, you specify a DOM
node in the page (usually a div element) as a container for the
map. HTML nodes are children of the JavaScript document
object, and we obtain a reference to this element via the
document.getElementById() method.
This code defines a variable (named map) and assigns that
variable to a new GMap2 object. The function GMap2() is
known as a constructor and its definition is shown below:

Constructor Description

GMap2(container,
opts?)

Creates a new map inside the given
HTML container, which is typically
a DIV element. You may also pass
optional parameters of type
GMap2Options in the opts
parameter.

Table.1 Constructor definition of Gmap2

Note that because JavaScript is a loosely typed language, we
do not need to pass any optional parameters in the constructor,
and we don't do so here.
Initializing the Map

<script
src="http://maps.google.com/maps?file=
api&v=2&key=abcdefg&sensor=true_or_fal
se"
 type="text/javascript">
</script>

<div id="map_canvas" style="width:
500px; height: 300px"></div>

var map = new
GMap2(document.getElementById("map_canv
as"));

 map.setCenter(new GLatLng(37.4419, -
122.1419), 13);
 map.setUIToDefault();

ISSN : 0975-3397 1035

Manuj Darbari et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1034-1040

Once we've created a map via the GMap2 constructor, we
need to initialize it. This initialization is accomplished with
use of the map's setCenter() method. The setCenter() method
requires a GLatLng coordinate and a zoom level and this
method must be sent before any other operations are
performed on the map, including setting any other attributes of
the map itself.

B. Loading the Map

Additionally, we also call setUIToDefault() on the map.
This method sets up the map's user interface (input handling
and set of controls) to a default configuration, including pan
and zoom controls, selection of map types, etc.

While an HTML page renders, the document object model
(DOM) is built out, and any external images and scripts are
received and incorporated into the document object. To ensure
that our map is only placed on the page after the page has fully
loaded, we only execute the function which constructs the
GMap2 object once the <body> element of the HTML page
receives an onload event. Doing so avoids unpredictable
behavior and gives us more control on how and when the map
draws.

The onload attribute is an example of an event handler. The
Google Maps API also provides a number of events that you
can "listen" for to determine state changes. The GUnload()
function is a utility function designed to prevent memory leaks

B. Latitudes and Longitudes

Now that we have a map, we need a way to refer to locations
on the map. The GLatLng object provides such a mechanism
within the Google Maps API. You construct a GLatLng
object, passing its parameters in the order { latitude, longitude
} as is customary in cartography:

Just as it is useful to easily refer to a geographic point, it is
also useful to define the geographic bounds of an object. For
example, a map displays a current "window" of the entire
world within what is known as a viewport. This viewport can
be defined by the rectangular points at its corners. The
GLatLngBounds object provides this functionality, defining a
rectangular region using two GLatLng objects representing the

southwest and northeast corners of the bounding box,
respectively.
GLatLng objects have many uses within the Google Maps
API. The GMarker object takes a GLatLng in its constructor,
for example, and places a marker overlay on the map at the
given geographic location.
Map Attributes
Each map contains a number of attributes that may be
inspected or set. For example, to find the dimensions of the
current viewport, use the GMap2 object's getBounds() method
to return a GLatLngBounds value.
Each map also contains a zoom level, which defines the
resolution of the current view. Zoom levels between 0 (the
lowest zoom level, in which the entire world can be seen on
one map) to 19 (the highest zoom level, down to individual
buildings) are possible within the normal maps view. Zoom
levels vary depending on where in the world you're looking, as
data in some parts of the globe is more defined than in others.
Zoom levels up to 20 are possible within satellite view.

You can retrieve the current zoom level in use by the map by
using the GMap2 object's getZoom() method.

C. Map Interactions

Now that you have a GMap2 object, you can interact with it.
The basic map object looks and behaves a lot like the map you
interact with on the Google Maps website and comes with a
lot of built-in behavior. The GMap2 object also provides a
number of configuration methods to alter the behavior of the
map object itself.

By default, map objects tend to react to user activity as they do
on http://maps.google.com. You can alter this
behavior with a number of utility methods, however. For
example, the GMap2.disableDragging() method
disables the ability to click and drag the map to a new
location.

You can also interact with the map programmatically. The
GMap2 object supports a number of methods that alter the
map state directly. For example, the setCenter(), panTo,
and zoomIn() methods operate on the map programatically,
rather than through user interaction.

The following example displays a map and provides a button
to initiate a panTo method, which centers the map at a given
point. If the specified point is in the visible part of the map,
then the map pans smoothly to the point; if not, the map jumps
to the point.

<body onload="initialize()"
onunload="GUnload()">

 var myGeographicCoordinates = new
GLatLng(myLatitude, myLongitude)

ISSN : 0975-3397 1036

Manuj Darbari et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1034-1040

 D. JAVA SCRIT GENERATION

Java script is an object-oriented language that allows creation
of interactive web page. Java script allows user entries, which
are loaded into an HTML form to be processed as required.
This empowers a web to return site information according to
user’s requests.
Java script offers several advantages to a web developer, a
short development cycle, Easy to learn, Small size scripts. The
strength of java script can be easily and quickly used to extend
the functionally of HTML pages, already on a web site.

THE ADVANTAGES OF JAVA SCRIPT
An interpreted language
Java script is an interpreted language, which requires no
compilation steps. This provides an easy development process.
The syntax is completely interpreted by the browser just as it
interpreted HTML tags.
Embedded within HTML
Java script does require any special or separate editor for
programs to be written, edited or compiled. It can be written in
any text editor like notepad, along with appropriate HTML
tags, and saved as filename.html. HTML files with embedded
JavaScript commands can be read and interpreted by any
browser that is JavaScript enabled.
Minimal syntax-easy to learn
By learning just a few commands and simple rules of syntax.
Complete application can be built using JavaScript.
Performance
Java script can be written such that the HTML files are fairly
compact and quite small. This minimizes storage requirement
on the web server and download time for the client.

Procedural Capability
Very programming language needs to support facilities such as
conditions checking, looping and branching. Java script
provides syntax, which can be used to add such procedural
capabilities to web page coding.

Designed For Programming User Events
Java scripts support object/events based programming.
Easy Developing and Testing

Being an interpreted language, JavaScript scripts are tested
line by line, and errors are also listed as they are encountered,
i.e. an appropriate error message along with line number is
listed for every error that is encountered. It is thus easy to
locate errors, make changes, and text it again without the
overhead and delay of compiling.
Platform Independence/Architecture Neutral
JavaScript is a programming language that is completely
independent of the hardware on which it works. It is a
language that is understood by any JavaScript enabled
browser. Thus, JavaScript applications work on any machine
that has a JavaScript enabled browser installed. This machine
can be any where on the network.

Writing JavaScript into HTML

JavaScript syntax is embedded into an HTML file. A browser
reads HTML files and interprets HTML tags. Since all
JavaScript need to be includes as an integral part of an HTML
document when required, the browser need to be informed that
specific sections of HTML code is JavaScript. The browser
will then use it’s built in JavaScript engine to interpret this
code.
 The browser is given this information using the
HTML tags <SCRIPT>...</SCRIPT>. The <SCRIPT> tag
marks the beginning of JavaScript.
A snippet beginning of scripting code. The paired <SCRIPT>
marks the end of the snippet of scripting code.
Like most other HTML tags, the <SCRIPT> tags takes in an
optional attribute, as listed below:
Language: Indicates the scripting language used for writing
the snippet of scripting code.

SYNTAX:
<SCRIPT LANGUAGE=”JavaScript”>
 JavaScript code snippet written here
 </SCRIPT>

E. Logic Used:

In this web application the routes are treated as a directed
graph. Each edge of the graph is assigned a weight depending
upon the distance and traffic conditions of that path so
Dijkstra algorithm is used to find the best path.

Dijkstra Algorithm:
Let's call the node we are starting with an initial node. Let
a distance of a node Y be the distance from the initial node to
it. Dijkstra's algorithm will assign some initial distance values
and will try to improve them step-by-step.

1. Assign to every node a distance value. Set it to zero
for our initial node and to infinity for all other nodes.

 var map;

 function initialize() {
 if (GBrowserIsCompatible()) {
 map = new
GMap2(document.getElementById("map_canv
as"));
 map.setCenter(new
GLatLng(37.4419, -122.1419), 13);
 }
 }

 function animate() {

ISSN : 0975-3397 1037

Manuj Darbari et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1034-1040

2. Mark all nodes as unvisited. Set initial node as
current.

3. For current node, consider all its unvisited neighbors
and calculate their distance (from the initial node).
For example, if current node (A) has distance of 6,
and an edge connecting it with another node (B) is 2,
the distance to B through A will be 6+2=8. If this
distance is less than the previously recorded distance
(infinity in the beginning, zero for the initial node),
overwrite the distance.

4. When we are done considering all neighbors of the
current node, mark it as visited. A visited node will
not be checked ever again; its distance recorded now
is final and minimal.

5. Set the unvisited node with the smallest distance
(from the initial node) as the next "current node" and
continue from step 3.

1 function Dijkstra(Graph, source):
 2 for each vertex v in Graph: // Initializations
3 dist[v] := infinity // Unknown distance function
from source to v
 4 previous[v] := undefined // Previous node in optimal
path from source
 5 dist[source] := 0 // Distance from source to source
 6 Q := the set of all nodes in Graph // All nodes in the
graph are unoptimized - thus are in Q
 7 while Q is not empty: // The main loop
 8 u := vertex in Q with smallest dist[]
 9 if dist[u] = infinity:
10 break // all remaining vertices are inaccessible
11 remove u from Q
12 for each neighbor v of u: // where v has not yet been
removed from Q.
13 alt := dist[u] + dist_between(u, v)
14 if alt < dist[v]: // Relax (u,v,a)
15 dist[v] := alt
16 previous[v] := u
17 return previous[]

An upper bound of the running time of Dijkstra's algorithm on
a graph with edges E and vertices V can be expressed as a
function of |E| and |V| using the Big-O notation.
For any implementation of set Q the running time is
O(|E|*decrease_key_in_Q + |V|*extract_minimum_in_Q),
where decrease_key_in_Q and extract_minimum_in_Q are
times needed to perform that operation in set Q.

The simplest implementation of the Dijkstra's algorithm stores
vertices of set Q in an ordinary linked list or array, and
operation Extract-Min(Q) is simply a linear search through all
vertices in Q. In this case, the running time is
O(|V|2+|E|)=O(|V|2).
For sparse graphs, that is, graphs with fewer than |V|2 edges,
Dijkstra's algorithm can be implemented more efficiently by
storing the graph in the form of adjacency lists and using a
binary heap, pairing heap, or Fibonacci heap as a priority
queue to implement the Extract-Min function efficiently. With
a binary heap, the algorithm requires O((|E|+|V|) log |V|) time
(which is dominated by O(|E| log |V|), assuming the graph is
connected), and the Fibonacci heap improves this to O(| E | + |
V | log | V |).

F. DATABASE STRUCTURE:

The database frix.db have two tables:

1. Places

2. Distance

The Places Table as shown in Table 2 consists of all the

relevant fields like Place Id, Name of the Place, Latitude,

Longitude and a brief description about that place.

S.No. Name of Field Data type

1 Id Int (auto increment)

2 Name Varchar(200)

3 Latitude Double

4 Longtitude double

5 Description Varchar(2000)

Table 2. Places description Table

The Distance Table shown in Table 3 consists of all the fields
related to the Id of two places whose distance have to be
measured and the time it will take to reach the location Id 2

ISSN : 0975-3397 1038

Manuj Darbari et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1034-1040

S.No. Name of
Field

Data type

1 Id1 Int
2 Id2 Int
3 Distance Float
4 Time Float

Table 3. Distance Measurement Table

IV.ANALYSIS OF TRAFFIC ANALYSER

Intelligent RFID traffic control[3,5,6,7] has been developed
for dynamic traffic light sequence. It has circumvented or
avoided the problems that usually arise with systems such as
those, which use image processing and beam interruption
techniques. RFID technology with appropriate algorithm and
data base were applied to a multi vehicle, multi lane and multi
road junction area to provide an efficient time management
scheme. A dynamic time schedule was worked out for the
passage of each column. The simulation has shown that, the
dynamic sequence algorithm has the ability to intelligently
adjust itself even with the presence of some extreme cases.
The real time operation of the system emulates the judgment
of a traffic policeman on duty, by considering the number of
vehicles in each column and the routing proprieties.

The website specializes in giving traffic reports for a specific
area. Much of our collected data comes from automatic
sensors placed at various points around the motorway to
monitor vehicle speeds. This means we can provide an
accurate, up-to-date report which is normally faster than other
mediums with readings being updated every 3 minutes.
Using this website a user can give the starting place and
destination to the system. Depending on the prevalent traffic
conditions, the website will suggest the best route to be taken

by the user.

 Figure 1. Plot showing best path from ID1to ID 4

The website suggests the best possible path between two
destinations ID1 to ID 4 it can also perform the local search on
the map by giving the details about that location a shown in
the figure 2.

Figure 2. Application performing the local search on the map

If a user wants to find out the condition of traffic at a
particular location he is upgraded with the information about a
particular road accident that has happened as result there is a
heavy jam condition at a particular location as shown in figure
3.

Figure 3. Markers in the map showing the roads incidents on map causing the
traffic jam

ISSN : 0975-3397 1039

Manuj Darbari et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1034-1040

V. CONCLUSION

Overall the traffic analyzer provides complete information
about a particular location. By using Dijkstra algorithm the
user is able to find the optimum path and its distance; it also
helps the commuter in finding out the exact condition of the
traffic at a particular location or between two locations.
In future we will be upgrading our system with stochastic
mapping of the FRIX we will emulate close to real time traffic
movement.

REFERENCES

[1]. Di Febbraro, A., & Sacco, N. (2004). On modeling urban transportation
networks via hybrid Petri nets. Control Engineering Practice, 12(10), 1225-
1239.
[2]. Di Febbraro, A., & Sacco, N. (2004). An urban traffic control structure
based on hybrid Petri nets. IEEE Transactionson Intelligent Transportation
Systems, 5(4), 24-237.
[3]. Di Febbraro, A., Giglio, D., & Sacco, N. (2002). On applying Petri nets to
determine optimal offsets for coordinated traffic light timings. Proceedings of
the 5th IEEE International Conference on Intelligent Transportation Systems,
Singapore (pp. 87-706).
[4]. Gallego, J.-L., Farges, J.-L., & Henry, J.-J. (1996). Design by Petri nets of
an intersection signal controller. Transportation Research Part C, 4(4), 231-
248.
[5]. List, G. F., & Cetin, M. (2004). Modeling traffic signal control using Petri
nets. IEEE Transactions on Intelligent Transportation Systems, 5(3), 177-187.
[6]. Jensen, K. (1992). Colored Petri nets: basic concepts, analysis methods
and practical use, Vol. 1. New York: Springer.
[7]. List, G. F., & Cetin, M. (2004). Modeling traffic signal control using Petri
nets. IEEE Transactions on Intelligent Transportation Systems, 5(3), 177-187.
[8]. Tzes, A., Kim, S., & McShane, W. R. (1996). Applications of Petri
networks to transportation network modeling. IEEE Transactions on
Vehicular Technology, 45(2), 391-400.
[9]. Google Api playground

AUTHORS PROFILE

 Manuj Darbari is working as Associate Professor in
Department of Information Technology, Babu Banarasi
Das National Institute of Technology, Lucknow. He has
guided several masters students and guiding two doctoral
thesis in the field of MIS and Soft computing. He has
published more than twenty five research papaers in
national and international journal. He is also reviwer of
many international journals.

 Prateek Kumar Singh,Rakesh Kumar,Sameer Eshan are
students of undergraduate program of
BBDNITm,Lucknow.

 Savitur Prakash is workimg as senior design engineer at

lucknow doordarshan his area of interest include digital
image processing and soft computing.

ISSN : 0975-3397 1040

