
Mangesh V. Bedekar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1012-1017

Web Browser Personalisation
Design of a Client Side Web-page Access Prediction Mechanism

Mangesh V. Bedekar
CS-IS Group,

BITS-Pilani, K. K. Birla, Goa Campus,
Zuarinagar, Goa, INDIA. Pin – 403 726.

mangesh.bedekar@gmail.com

Nilesh Kulkarni
CS-IS Group,

BITS-Pilani, K. K. Birla, Goa Campus,
Zuarinagar, Goa, INDIA. Pin – 403 726.

nileshbits@gmail.com

Atish Kathpal
CS-IS Group,

BITS-Pilani, K. K. Birla, Goa Campus,
Zuarinagar, Goa, INDIA. Pin – 403 726.

atish.kathpal@gmail.com

Abstract— Web usage prediction has become a widely addressed
topic with the huge proliferation of World Wide Web and
computers. Most of the work done in this area of research is
centered around prediction of what links the user is expected to
visit next given his usage history, making suggestions for new
web-sites he may be interested in and the like. We propose two
algorithms to make browsers intelligent enough to gauge usage
patterns.

This algorithms are a blend of statistical and fuzzy logic
techniques to gauge the surfing pattern of users, hence
intelligently predicting the time ranges of likely user hits for
particular websites, speeding up the browsing experience by
means of caching and preloading of predicted websites.

Thus our design intends to make the browsers intelligent to speed
up and better organize the browsing experience.

Keywords-Web Access Patterns, User Profiling, Profile
creation, learning, relearning, unlearning

I. INTRODUCTION

Web has become a common place for all computer users in
today’s times and our sole, or at least the most common,
interfaces to the web, is our web-browser. An average internet
user at U.S. visits 100 websites a month and his complete
browsing history ideally resides on his own machine, within
his own browser.

Clearly, all the usage patterns one can talk about are resident
on the user’s own system. The goal of this paper is to tap the
presence of this enormous usage history, in order to construct
more robust, adaptable and intelligent browsers of tomorrow.

The pattern recognition done on the user’s system may then be
communicated to the website owners or the user’s peers and
the likes, depending on the choices of the user.

We, through this paper take up a different perspective by
concentrating at recognizing usage patterns such that we can
successfully utilize the abundant data of visited websites
(basically history of usage), to predict when the user is likely

to open the already visited websites, again. Hence, trying to
learn, unlearn and relearn the usage patterns for commonly as
well as sparsely visited websites.

The primary focus of the paper is to make our browsers more
intelligent to improve the user’s browsing experience by
means of astute recommendations, pre-scheduling, pre-loading
and caching of web-pages visited before, specific for each
user’s usage pattern, hence also speeding up the process of
browsing.

The crux, hence, is to recognize these patterns with the
browser’s history being our primary, knowledge base.

Figure 1. The Flow Diagram of the Proposed System

Through this paper we propose two algorithms to aid our
process of usage pattern recognition and consequent actions.

Knowledge Base -
Usage, History, Dwell Time at websites, Date,

Time of visit, Number of visits etc.

Method to detect, process, derive and match
web usage patterns

Actions include change in Knowledge Base,
Populating the list of web-pages for pre-loading,

Caching and scheduling.
Ordering web-pages based on priority.

Deriving short, mid and long term usage patterns

ISSN : 0975-3397 1012

Mangesh V. Bedekar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1012-1017

The first is the pattern matching algorithm which identifies the
usage patterns. The second is the confidence algorithm, which
determines how confident the agent is with respect to the
predicted patterns. The actions the agent takes are based on the
results of the confidence algorithm.

II. PREDICTION ALGORITHMS

The Prediction Algorithms we present in this paper uses a
combination of two factors to predict the user’s web access
pattern.

A. Pattern Matching

Clock Time Prediction (Pattern Matching Algorithm) will be
done using the Average and Standard Deviation of the time
difference between consecutive accesses.

B. Testing for Normal Distribution

We initially planned to use Pearson’s Chi-Square Test to
test normality of the distribution, but we realized that we would
not have sufficient statistics (this test requires ten thousands or
better); so we decided to use a [customized] version of the
back-of-the-envelope test to check the normality. The
customization would take care of pattern fluctuations due to
random human behavior.

The Back-of-the-envelope test we will use will check
whether 68% of the statistics lie within 1 standard deviation of
the average, to ensure if it is actually a normal distribution.

If the access pattern tests positive for a normal distribution,
we set the predicted access time to between

[Last access time + average – Standard Deviation] to
[Last access time + average + Standard Deviation]

Example - let us consider a person who accesses
“www.xmail.com” everyday morning between 9 to 10AM.,
sometimes a bit outside that time frame. In this case, the
average time between accesses will fall around 24 Hrs, with a
standard deviation of around 1/2 Hr (a little lesser, depending
on the actual distribution of the access times, but near enough
nonetheless).

Let the last access time be 9.15AM. Hence, the prediction
algorithm will set the access prediction time to between
8.45AM to 9.45AM.

The strength of this algorithm is that it can singly handle
daily, weekly, fortnightly or monthly access patterns, and give
equivalent results for each such pattern provided enough
statistics are available.

C. Acting on the Prediction

The decision of whether to act on the prediction or not is given
by the value of the confidence variable. When the URL is first
accessed, this value is seeded to a reasonable initial value. This
value increases and decreases as dictated by the Confidence
algorithm. When this confidence hits a particular threshold

value, the prediction time is actually used and the webpage is
pre-fetched and kept ready for access by the user.

D. Confidence Algorithm

This algorithm caters to all the three important aspects of
our usage pattern recognition, namely: learning, unlearning and
relearning. In this section we explain the unlearning and
relearning aspects.

For successful unlearning we keep track of all of the
websites accessed in each user session. The essence would be
to be in a position to constantly gauge the pattern of the usage
of the website (even after having “learnt” it once), and
accordingly unlearn / relearn if there are conflicts with the
learnt pattern.

E. How to unlearn?

There may be two ways to unlearn / relearn the patterns:-

User specified unlearning

Under this, like the head suggests, the user will be in a
position to exercise complete control over the learnt patterns
and hence would have the freedom to make our agent unlearn
them, if need be.

Automatic unlearning

This would be the real challenge for our AI system. We
propose a rather uncluttered method of effectively and
intelligently gauging the drift of the user from the previously
learnt patterns.

We explain our technique by means of the simple example,
which will be referred back to throughout this text.

Example: Let us say that our agent, detected a weekly
pattern for www.X.org website with the pattern details as
follows: Sunday 8AM to 10AM visits. (Average: 9AM,
Standard Deviation: ± 1 hour)

Now any change in the above pattern, needs to be gauged
by our agent. Hence we propose to maintain the following
variables which help us gain control over gauging the user
pattern constantly, keeping us vigilant towards any significant
variations in the same.

Variables to keep track of current user patterns, and how
they compare with predicted/learnt ones.

F. Confidence

The variable quantifies the confidence we have in our
learnt/predicted pattern. Every time the user accesses the
website (say the above www.X.org) within the predicted time
bar, the confidence values increases.

We propose a logarithmic function for confidence. An
explanation on the choice of function is given ahead in the
paper. Function to find confidence.

Confidence = log2(W) (1)

ISSN : 0975-3397 1013

Mangesh V. Bedekar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1012-1017

Where W is the weight we attach to our confidence
variable.

Quite obviously, it would make little sense to hardcode the
increase in confidence, only within the predicted time slot of
Average ± Standard Deviation. Hence, we propose a
customized, fuzzy distribution of increase in confidence,
described as follows.

G. Increase in confidence

As the graph below clearly shows, we vary values of
weight, W with respect to variations in the exact time of access
of the website.

If the website is accessed within +/- 1 Standard Deviation
of predicted time, W is incremented by 1.

If the time of access lies in +/- 2 of Standard Deviation then
W is incremented by 0.75, and so on.

Thus, the fuzziness is implemented by means of smooth
variations in W and hence confidence, with respect to offset
from the predicted time.

Beyond ±4 Standard Deviation, we do not increase the
confidence.

Figure 2. The Standard Deviations curve for function

H. Why logarithm?
As the graph in figure3 represent, the nature of the curve of

logarithmic functions highly complements the way we would
like our confidence values to increase. The increase is quick to
start with, every “hit” leading to an observable increase, while
as the hits reach higher values, the confidence converts into
authority. We now know, that the user behaves just the way we
have predicted, hence our confidence reaches a relatively stable
region in the curve.

The reason for having chosen base as 2 is completely based
on our choice for having a more wide and intuitive scale of ~10
for the confidence, rather than that of ~3 as in case of log base
10. It is also observable from the graphs below that a lower
base allows more evident variations in the corresponding

confidence values, hence leading to better spacing of
confidence values with respect to W values.

Also, we cannot force any upper limit on confidence values,
but logarithm function ensures that after a while, we have a
very minute and steady increase in the confidence values,
hence making it easier for us to unlearn a pattern quickly
enough, as would be discussed in details in the following
topics.

Figure 3. Plot for log(base-2) and log(base-10)

I. Decay of confidence

We discussed the increase in confidence above, but there is
little (if not no) use of confidence metric if we do not exercise a
way to reduce it to, which in fact is central to the idea of
unlearning. Decay of confidence, is a tricky thing, especially
because we cannot set any upper limit on the value of
confidence, as it increases and yet we would want to unlearn
the pattern (i.e. reduce confidence) quickly enough with
evident drifts in usage pattern.

In our model we consider that a single time unexpected
access to www.X.org does not go on to say that our pattern
recognition was wrong. It is human tendency to make at least a
few abrupt and unusual accesses to websites. We would want
such accesses to not affect the confidence drastically. On the
other if there are consecutive accesses to the website, all at
unexpected times, our confidence should get affected
significantly.

Thus we propose to maintain two variables to keep track of
such behaviors.

Waccess - It keeps track on the total number of wrong
accesses so far.

ISSN : 0975-3397 1014

Mangesh V. Bedekar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1012-1017

WCaccess - It keeps track of the number of consecutive
wrong accesses.

WCaccess and Waccess help us to enable a step decay of
the logarithmic confidence graph.

Decrement function for W:

f = (WCaccess) * Y * (0.5) (2)

Where Y is a discrete step function based on Waccess value
and calculated as follows,

 (3)

The above function is basically holding the weight of the
decrement factor.

NOTE – (*) The step values of Y could be given different
discrete values depending on the average time between
accesses. This is just a sample function definition for Y for
demonstration.

The value of WCaccess is reset every time the consecutive
sequence of wrong time accesses is broken, while the value of
Waccess stays in memory always.

J. Kill

Like the name of our second variable, for tracking down
changes in user pattern, suggests, this variable indicates if it’s
time to kill the pattern we had previously learnt. The kill
variable is incremented by +1 every time there is no visit to the
website at all, within the range of the average time between
visits.

For the case of our example given above, if there would be
no visit to www.X.org for a week’s time, then the value of Kill
would be incremented by 1. (Since the pattern of www.X.org
was weekly, i.e. the average time between visits was roughly a
week).

The pattern would be completely killed incase there is no
visit for a considerable amount of time, leading the value of
Kill variable shooting above its threshold. Killing of pattern
would simply mean that the user no more visits the website (at
least not according to the intervals we expect him to). Hence,
on re–visits to the website after the pattern has been killed, a
fresh pattern would be spawned, and i.e. re-learning would be
initiated.

We propose to set different Kill value thresholds for daily,
weekly, monthly and yearly patterns.

K. Relearning

Relearning will be initiated when the confidence falls
below or equal to a set threshold, say zero. Such a situation
would mean that the website is still being accessed by the user
but the pattern of access is not as predicted by our agent. Thus,
we would need to start from square one and re-populate the
prediction function for the website under question.

This situation, though very similar to learning, is a little
distinct in the sense that we already know that the website is
being frequently accessed.

Also we have a prior knowledge of this website being a hot
favorite with the user, which is why we learnt its pattern in the
first place. The recent change in user’s behavior can be tracked

 1* ; 0 < Waccess < 5

Y= 10* ; 5 < Waccess < 10

 50* ; 10 < Waccess

ISSN : 0975-3397 1015

Mangesh V. Bedekar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1012-1017

down easily by repopulating the prediction function, by using
the last Waccess entries in the history table for the website.

As it is the incorrect accesses, that suggest the deviation
from the usual by the user. The Waccess number of entries may
not be accurate enough but would serve as a very good starting
point for us to retrace the usage pattern.

III. SCOPE

The paper concentrates on the design aspects of algorithms
that can considerably enhance a browsers utility to the user,
beyond just being an interface to the web. It extends the task of
a browser to being a more user friendly interface to the web,
wherein the browser acts as an agent that knows the users
behavior and hence adapts accordingly to optimize the
browsing experience as per the user’s behavioral and usage
patterns.

As parts of further enhancements, we could make these
patterns available to the peers of the user, for example to other
users of the same browser and system and also to users across
the network whom the user might want to share his patterns
with.

Taking these patterns online, would further mean the user
could get the same experience of browsing even while
travelling, as all his behaviors populated offline, could be made
to be in sync with online servers. We intend to follow up this
work by implementing and testing our techniques by means of
developing add-ons to Mozilla Firefox, in order to test the
performance of our techniques.

IV. SYETEM DEVELOPMENT

We designed a Firefox add-on to finally deploy and test our
algorithms which has access to the browsing history of the
browser and hence can perform the predictive analysis.

We propose the design of a user friendly side bar to list
down all the predicted scheduling and usage statistics along
with the short and long term trends of usage.

The history of URL visits will be condensed by keeping
track of the following attributes for each URL.

1 Id

2 URL

3 Count of visits

4 Count of sessions when URL was visited

5 Average time between visits

6 Standard deviation of time between visits

7 Time of first visit

8 Time of last visit

9 Session last visited

A. Backend Technologies for add-on development

SQLite Database - For maintaining the tables. We used
SQLite manager add-on for FF.

XUL - In computer programming, XUL (pronounced /zul/
"zool"), the XML User Interface Language, is an XML user
interface markup language developed by the Mozilla project.
XUL operates in Mozilla cross-platform applications such as
Firefox

JavaScript - For coding and implementation of algorithms
developed in text so far.

B. Priority of Recommendation [POR]

[POR] = 1 = preload,

[POR] = 2 = cache components,

[POR] = 3 = always cache [maybe more levels].

This POR value will be calculated based on average and
Standard Deviation comparison as shown above.

The actual implementation of this idea will be done as a
Firefox add-on.

 Web pages with very high probability will be
completely preloaded into a hidden tab.

 High Probability website components will be cached.

To begin with, we will only consider visit types 1, 2, 3
(link; typed, auto complete, history; bookmark), and ignore the
others.

C. Processing for recommendations

 Process the history and condense data into the database.

 Calculate new POR.

 Preload / Cache appropriately [Take the appropriate
action]

Start the processing when Firefox has been idle for 5
seconds (using the idle service of Firefox), check if anything
needs to be preloaded according to Clock Time Prediction, and
process that.

Then read a few (like 10-20) next history visits (using
Places API / direct DB access), process them and update the
extension database. [Including POR] Loop till the user returns
(hence few at a time, then poll if user is back, then again
few…).

D. Calculation of POR

This value will be calculated depending on the attributes
numbered 3-6 of the URL (as mentioned earlier).

If [count / session > 0.9]

[Take care of the fact that the user can access > 1 times
every session.]

POR = 3

ISSN : 0975-3397 1016

Mangesh V. Bedekar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1012-1017

[If the recommended URL is current homepage; don’t show
it.]

If [count > 200 AND (last-visit-date – first-visit-date) > 180
days AND Normal Distribution]

POR = 2

Else if [count > 100 AND (last-visit-date – first-visit-date)
> 90 days AND Normal Distribution]

POR = 1

In general, we do not want the user to delete his history
which remains to be processed. Hence, we use observer to ask
user for confirmation especially in regards to our extension.

The add-on handles the following aspects,

 Scan the history of browsing after every browser shut
down request and process the same to update its own
variables database.

 Be able to gauge a user’s dwell time (i.e. active time on
a tab).

 Work in sync with the system clock in order to perform
accurate scheduling.

 Automatically bring predicted and scheduled tabs to
focus.

 Keep cached tabs hidden (out of focus).

V. CONCLUSION

In this paper we have proposed the design of web page
access prediction algorithms based on users previous access
patterns. The system is designed to run from inside the Firefox
browser (as an add-on) and assist the user by intelligently
prefetching / caching pages that are likely to be accessed y the
user at that point in time. The add-on accesses the users history
visits and gives recommendations to speed up browsing.

The system is personalized to every user as each user’s
access patterns will be different from others.

VI. REFERENCES
[1] Wikipedia, Back-of-the-envelope normality test

http://en.wikipedia.org/wiki/Normality_test#Back_of_the_envelope_test

[2] Wikipedia, Student’s t-statistic: http://en.wikipedia.org/wiki/T-statistic

[3] “Adaptive Web Browser: An Intelligent Browser” by Md. Forhad Rabbi,
Tanveer Ahmed, Anindya Roy Chowdhury, Md. Ran-O-Beer Islam,
Department of Computer Science & Engineering, Shah Jalal University
of Science & Technology, Sylhet, Bangladesh.

[4] “An Approach to Web Page Prediction Using Markov Model and Web
Page Ranking” by Ruma Dutta , Anirban Kundu , Rana Dattagupta,
Debajyoti Mukhopadhyay.

ISSN : 0975-3397 1017

