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Abstract— Web usage prediction has become a widely addressed 
topic with the huge proliferation of World Wide Web and 
computers. Most of the work done in this area of research is 
centered around prediction of what links the user is expected to 
visit next given his usage history, making suggestions for new 
web-sites he may be interested in and the like. We propose two 
algorithms to make browsers intelligent enough to gauge usage 
patterns. 

This algorithms are a blend of statistical and fuzzy logic 
techniques to gauge the surfing pattern of users, hence 
intelligently predicting the time ranges of likely user hits for 
particular websites, speeding up the browsing experience by 
means of caching and preloading of predicted websites. 

Thus our design intends to make the browsers intelligent to speed 
up and better organize the browsing experience. 

Keywords-Web Access Patterns, User Profiling, Profile 
creation, learning, relearning, unlearning 

I.  INTRODUCTION 

Web has become a common place for all computer users in 
today’s times and our sole, or at least the most common, 
interfaces to the web, is our web-browser. An average internet 
user at U.S. visits 100 websites a month and his complete 
browsing history ideally resides on his own machine, within 
his own browser. 
 
Clearly, all the usage patterns one can talk about are resident 
on the user’s own system. The goal of this paper is to tap the 
presence of this enormous usage history, in order to construct 
more robust, adaptable and intelligent browsers of tomorrow. 
 
The pattern recognition done on the user’s system may then be 
communicated to the website owners or the user’s peers and 
the likes, depending on the choices of the user. 
 
We, through this paper take up a different perspective by 
concentrating at recognizing usage patterns such that we can 
successfully utilize the abundant data of visited websites 
(basically history of usage), to predict when the user is likely 

to open the already visited websites, again. Hence, trying to 
learn, unlearn and relearn the usage patterns for commonly as 
well as sparsely visited websites. 
 
The primary focus of the paper is to make our browsers more 
intelligent to improve the user’s browsing experience by 
means of astute recommendations, pre-scheduling, pre-loading 
and caching of web-pages visited before, specific for each 
user’s usage pattern, hence also speeding up the process of 
browsing. 
 
The crux, hence, is to recognize these patterns with the 
browser’s history being our primary, knowledge base.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.   The Flow Diagram of the Proposed System 

 
Through this paper we propose two algorithms to aid our 
process of usage pattern recognition and consequent actions. 
 

Knowledge Base - 
Usage, History, Dwell Time at websites, Date, 

Time of visit, Number of visits etc. 

Method to detect, process, derive and match 
web usage patterns 

Actions include change in Knowledge Base, 
Populating the list of web-pages for pre-loading, 

Caching and scheduling. 
Ordering web-pages based on priority. 

Deriving short, mid and long term usage patterns  
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The first is the pattern matching algorithm which identifies the 
usage patterns. The second is the confidence algorithm, which 
determines how confident the agent is with respect to the 
predicted patterns. The actions the agent takes are based on the 
results of the confidence algorithm. 
 

II. PREDICTION ALGORITHMS 

The Prediction Algorithms we present in this paper uses a 
combination of two factors to predict the user’s web access 
pattern. 

A. Pattern Matching 

Clock Time Prediction (Pattern Matching Algorithm) will be 
done using the Average and Standard Deviation of the time 
difference between consecutive accesses. 

B. Testing for Normal Distribution 

We initially planned to use Pearson’s Chi-Square Test to 
test normality of the distribution, but we realized that we would 
not have sufficient statistics (this test requires ten thousands or 
better); so we decided to use a [customized] version of the 
back-of-the-envelope test to check the normality. The 
customization would take care of pattern fluctuations due to 
random human behavior. 

The Back-of-the-envelope test we will use will check 
whether 68% of the statistics lie within 1 standard deviation of 
the average, to ensure if it is actually a normal distribution. 

If the access pattern tests positive for a normal distribution, 
we set the predicted access time to between  

[Last access time + average – Standard Deviation] to 
[Last access time + average + Standard Deviation] 

Example - let us consider a person who accesses 
“www.xmail.com” everyday morning between 9 to 10AM., 
sometimes a bit outside that time frame. In this case, the 
average time between accesses will fall around 24 Hrs, with a 
standard deviation of around 1/2 Hr (a little lesser, depending 
on the actual distribution of the access times, but near enough 
nonetheless).  

Let the last access time be 9.15AM. Hence, the prediction 
algorithm will set the access prediction time to between 
8.45AM to 9.45AM. 

The strength of this algorithm is that it can singly handle 
daily, weekly, fortnightly or monthly access patterns, and give 
equivalent results for each such pattern provided enough 
statistics are available. 

C. Acting on the Prediction 

The decision of whether to act on the prediction or not is given 
by the value of the confidence variable. When the URL is first 
accessed, this value is seeded to a reasonable initial value. This 
value increases and decreases as dictated by the Confidence 
algorithm. When this confidence hits a particular threshold 

value, the prediction time is actually used and the webpage is 
pre-fetched and kept ready for access by the user. 

D. Confidence Algorithm 

This algorithm caters to all the three important aspects of 
our usage pattern recognition, namely: learning, unlearning and 
relearning. In this section we explain the unlearning and 
relearning aspects. 

For successful unlearning we keep track of all of the 
websites accessed in each user session. The essence would be 
to be in a position to constantly gauge the pattern of the usage 
of the website (even after having “learnt” it once), and 
accordingly unlearn / relearn if there are conflicts with the 
learnt pattern. 

E. How to unlearn? 

There may be two ways to unlearn / relearn the patterns:- 

User specified unlearning 

Under this, like the head suggests, the user will be in a 
position to exercise complete control over the learnt patterns 
and hence would have the freedom to make our agent unlearn 
them, if need be. 

Automatic unlearning 

This would be the real challenge for our AI system. We 
propose a rather uncluttered method of effectively and 
intelligently gauging the drift of the user from the previously 
learnt patterns. 

We explain our technique by means of the simple example, 
which will be referred back to throughout this text. 

Example: Let us say that our agent, detected a weekly 
pattern for www.X.org website with the pattern details as 
follows: Sunday 8AM to 10AM visits. (Average: 9AM, 
Standard Deviation:  ± 1 hour) 

Now any change in the above pattern, needs to be gauged 
by our agent. Hence we propose to maintain the following 
variables which help us gain control over gauging the user 
pattern constantly, keeping us vigilant towards any significant 
variations in the same. 

Variables to keep track of current user patterns, and how 
they compare with predicted/learnt ones. 

F. Confidence 

The variable quantifies the confidence we have in our 
learnt/predicted pattern. Every time the user accesses the 
website (say the above www.X.org) within the predicted time 
bar, the confidence values increases. 

We propose a logarithmic function for confidence. An 
explanation on the choice of function is given ahead in the 
paper. Function to find confidence. 

Confidence = log2(W)  (1) 
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Where W is the weight we attach to our confidence 
variable. 

Quite obviously, it would make little sense to hardcode the 
increase in confidence, only within the predicted time slot of 
Average ± Standard Deviation. Hence, we propose a 
customized, fuzzy distribution of increase in confidence, 
described as follows.  

G. Increase in confidence 

As the graph below clearly shows, we vary values of 
weight, W with respect to variations in the exact time of access 
of the website.  

If the website is accessed within +/- 1 Standard Deviation 
of predicted time, W is incremented by 1. 

If the time of access lies in +/- 2 of Standard Deviation then 
W is incremented by 0.75, and so on.  

Thus, the fuzziness is implemented by means of smooth 
variations in W and hence confidence, with respect to offset 
from the predicted time.  

Beyond ±4 Standard Deviation, we do not increase the 
confidence.  

 

 

 

 

 

 

 

 

 

 

Figure 2.  The Standard Deviations curve for function 

H. Why logarithm? 
As the graph in figure3 represent, the nature of the curve of 

logarithmic functions highly complements the way we would 
like our confidence values to increase. The increase is quick to 
start with, every “hit” leading to an observable increase, while 
as the hits reach higher values, the confidence converts into 
authority. We now know, that the user behaves just the way we 
have predicted, hence our confidence reaches a relatively stable 
region in the curve.  

The reason for having chosen base as 2 is completely based 
on our choice for having a more wide and intuitive scale of ~10 
for the confidence, rather than that of ~3 as in case of log base 
10. It is also observable from the graphs below that a lower 
base allows more evident variations in the corresponding 

confidence values, hence leading to better spacing of 
confidence values with respect to W values.  

Also, we cannot force any upper limit on confidence values, 
but logarithm function ensures that after a while, we have a 
very minute and steady increase in the confidence values, 
hence making it easier for us to unlearn a pattern quickly 
enough, as would be discussed in details in the following 
topics. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 3.  Plot for log(base-2) and log(base-10) 

I. Decay of confidence 

We discussed the increase in confidence above, but there is 
little (if not no) use of confidence metric if we do not exercise a 
way to reduce it to, which in fact is central to the idea of 
unlearning. Decay of confidence, is a tricky thing, especially 
because we cannot set any upper limit on the value of 
confidence, as it increases and yet we would want to unlearn 
the pattern (i.e. reduce confidence) quickly enough with 
evident drifts in usage pattern. 

In our model we consider that a single time unexpected 
access to www.X.org does not go on to say that our pattern 
recognition was wrong. It is human tendency to make at least a 
few abrupt and unusual accesses to websites. We would want 
such accesses to not affect the confidence drastically. On the 
other if there are consecutive accesses to the website, all at 
unexpected times, our confidence should get affected 
significantly.  

Thus we propose to maintain two variables to keep track of 
such behaviors. 

Waccess - It keeps track on the total number of wrong 
accesses so far. 
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WCaccess - It keeps track of the number of consecutive 
wrong accesses. 

WCaccess and Waccess help us to enable a step decay of 
the logarithmic confidence graph. 

Decrement function for W: 

f = (WCaccess) * Y * (0.5)  (2) 

Where Y is a discrete step function based on Waccess value 
and calculated as follows, 

 

 
      (3) 
 
 
 

The above function is basically holding the weight of the 
decrement factor.  

NOTE – (*) The step values of Y could be given different 
discrete values depending on the average time between 
accesses. This is just a sample function definition for Y for 
demonstration. 

The value of WCaccess is reset every time the consecutive 
sequence of wrong time accesses is broken, while the value of 
Waccess stays in memory always.  

J. Kill 

Like the name of our second variable, for tracking down 
changes in user pattern, suggests, this variable indicates if it’s 
time to kill the pattern we had previously learnt. The kill 
variable is incremented by +1 every time there is no visit to the 
website at all, within the range of the average time between 
visits. 

For the case of our example given above, if there would be 
no visit to www.X.org for a week’s time, then the value of Kill 
would be incremented by 1. (Since the pattern of www.X.org 
was weekly, i.e. the average time between visits was roughly a 
week).  

The pattern would be completely killed incase there is no 
visit for a considerable amount of time, leading the value of 
Kill variable shooting above its threshold. Killing of pattern 
would simply mean that the user no more visits the website (at 
least not according to the intervals we expect him to). Hence, 
on re–visits to the website after the pattern has been killed, a 
fresh pattern would be spawned, and i.e. re-learning would be 
initiated. 

We propose to set different Kill value thresholds for daily, 
weekly, monthly and yearly patterns. 

K. Relearning 

Relearning will be initiated when the confidence falls 
below or equal to a set threshold, say zero. Such a situation 
would mean that the website is still being accessed by the user 
but the pattern of access is not as predicted by our agent. Thus, 
we would need to start from square one and re-populate the 
prediction function for the website under question. 

This situation, though very similar to learning, is a little 
distinct in the sense that we already know that the website is 
being frequently accessed. 

Also we have a prior knowledge of this website being a hot 
favorite with the user, which is why we learnt its pattern in the 
first place. The recent change in user’s behavior can be tracked 

 1* ; 0 < Waccess < 5 
 

Y= 10* ; 5 < Waccess < 10 
 

       50*        ; 10 < Waccess 
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down easily by repopulating the prediction function, by using 
the last Waccess entries in the history table for the website. 

As it is the incorrect accesses, that suggest the deviation 
from the usual by the user. The Waccess number of entries may 
not be accurate enough but would serve as a very good starting 
point for us to retrace the usage pattern.  

III. SCOPE 

The paper concentrates on the design aspects of algorithms 
that can considerably enhance a browsers utility to the user, 
beyond just being an interface to the web. It extends the task of 
a browser to being a more user friendly interface to the web, 
wherein the browser acts as an agent that knows the users 
behavior and hence adapts accordingly to optimize the 
browsing experience as per the user’s behavioral and usage 
patterns.  

As parts of further enhancements, we could make these 
patterns available to the peers of the user, for example to other 
users of the same browser and system and also to users across 
the network whom the user might want to share his patterns 
with.  

Taking these patterns online, would further mean the user 
could get the same experience of browsing even while 
travelling, as all his behaviors populated offline, could be made 
to be in sync with online servers. We intend to follow up this 
work by implementing and testing our techniques by means of 
developing add-ons to Mozilla Firefox, in order to test the 
performance of our techniques. 

IV. SYETEM DEVELOPMENT 

We designed a Firefox add-on to finally deploy and test our 
algorithms which has access to the browsing history of the 
browser and hence can perform the predictive analysis. 

We propose the design of a user friendly side bar to list 
down all the predicted scheduling and usage statistics along 
with the short and long term trends of usage.  

The history of URL visits will be condensed by keeping 
track of the following attributes for each URL. 

1 Id 

2 URL 

3 Count of visits 

4 Count of sessions when URL was visited 

5 Average time between visits 

6 Standard deviation of time between visits 

7 Time of first visit 

8 Time of last visit 

9 Session last visited 

A. Backend Technologies for add-on development 

SQLite Database - For maintaining the tables. We used 
SQLite manager add-on for FF. 

XUL - In computer programming, XUL (pronounced /zul/ 
"zool"), the XML User Interface Language, is an XML user 
interface markup language developed by the Mozilla project. 
XUL operates in Mozilla cross-platform applications such as 
Firefox 

JavaScript - For coding and implementation of algorithms 
developed in text so far. 

B. Priority of Recommendation [POR] 

[POR] = 1 = preload,  

[POR] = 2 = cache components,  

[POR] = 3 = always cache [maybe more levels].  

This POR value will be calculated based on average and 
Standard Deviation comparison as shown above. 

The actual implementation of this idea will be done as a 
Firefox add-on.  

 Web pages with very high probability will be 
completely preloaded into a hidden tab. 

 High Probability website components will be cached. 

To begin with, we will only consider visit types 1, 2, 3 
(link; typed, auto complete, history; bookmark), and ignore the 
others. 

C. Processing for recommendations 

 Process the history and condense data into the database. 

 Calculate new POR. 

 Preload / Cache appropriately [Take the appropriate 
action] 

Start the processing when Firefox has been idle for 5 
seconds (using the idle service of Firefox), check if anything 
needs to be preloaded according to Clock Time Prediction, and 
process that. 

Then read a few (like 10-20) next history visits (using 
Places API / direct DB access), process them and update the 
extension database. [Including POR] Loop till the user returns 
(hence few at a time, then poll if user is back, then again 
few…). 

D. Calculation of POR 

This value will be calculated depending on the attributes 
numbered 3-6 of the URL (as mentioned earlier).  

If [count / session > 0.9]  

[Take care of the fact that the user can access > 1 times 
every session.]  

POR = 3 
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[If the recommended URL is current homepage; don’t show 
it.] 

If [count > 200 AND (last-visit-date – first-visit-date) > 180 
days AND Normal Distribution] 

POR = 2 

Else if [count > 100 AND (last-visit-date – first-visit-date) 
> 90 days AND Normal Distribution] 

POR = 1 

In general, we do not want the user to delete his history 
which remains to be processed. Hence, we use observer to ask 
user for confirmation especially in regards to our extension. 

The add-on handles the following aspects, 

 Scan the history of browsing after every browser shut 
down request and process the same to update its own 
variables database. 

 Be able to gauge a user’s dwell time (i.e. active time on 
a tab). 

 Work in sync with the system clock in order to perform 
accurate scheduling. 

 Automatically bring predicted and scheduled tabs to 
focus. 

 Keep cached tabs hidden (out of focus). 

V. CONCLUSION 

In this paper we have proposed the design of web page 
access prediction algorithms based on users previous access 
patterns. The system is designed to run from inside the Firefox 
browser (as an add-on) and assist the user by intelligently 
prefetching / caching pages that are likely to be accessed y the 
user at that point in time. The add-on accesses the users history 
visits and gives recommendations to speed up browsing. 

The system is personalized to every user as each user’s 
access patterns will be different from others. 
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