
L. Thulasimani et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1003-1011

Design And Implementation of Reconfigurable
Rijndael Encryption Algorithms For
Reconfigurable Mobile Terminals

L.Thulasimani
Lecturer Department of Electronics and

Communication Engineering
PSG College of Technology, Coimbatore

l_thulasi@yahoo.com; lthulasi@gmail.com

M.Madheswaran
Principal

Muthayammal Engineering College, Rasipuram
Madheswaran.dr@gmail

ABSTRACT:

In any wireless communication security is crucial during
data transmission. The encryption and decryption of data
is the major role in the wireless communication for
security of the data. Encryption algorithms are used to
ensure the security in the transmission channels.
Similarly the area and the power consumption is another
major thing to be viewed since most of the mobile
terminals are battery operated. So a mobile terminal
which has an encryption unit with less area and power
consumption is appreciated. This paper deals with the
Advanced Encryption Standard (AES) which works on a
128 bit data encrypting it with 128,192,256 bits of keys
(ciphers) in a single hardware unit.

Key words: Rijindael Cipher, reconfiguration,encryption,
decryption

I.INTRODUCTION:

In wireless platform AES has many
applications for example blackberry enterprise
solutions offer two wireless securities in thier smart
phones and one of them is AES. AES is a WPA/802
11i encryption protocol used along with WEP2 is used
with many encryption standards. In [2] Abdul Samiah,
Arshad Aziz and Nassar Ikram implemented the AES
algorithm in software using C-programming via Dev-
C++4.9.9.1 compiler but software version of AES
algorithm gives more payload for CPU thus it is
slower when compared with hardware versions. In [3]
Lia Huai, Xuecheng Zou done the hardware
implementation for AES CCM using 128-bit data and
128-bit key thus he updated the work by offloading
the CPU payload and using a dedicated hardware kit.
But here the hardware implementation is done only

for 128-bit key if we need 192,256 bit keys we need
to design another dedicated hardware which is the
waste of hardware and power used to activate it. The
proposed work is to develop a hardware architecture
that can be reconfigured to three different keys (128-
bit, 192-bit, 256-bit) with a 128-bit data input and
128-bit data output is developed and the flow chart is
shown in fig 1. In this paper the proposed work in
which encryption process and decryption are
explained with the flow of steps along with thier
algorithms which are iteratively used for encrypting
and decrypting and the results along with discussions
are presented.

II.DESCRIPTION OF AES ALGORITHM:

Advanced Encryption Standard is the
successor of Data Encryption Standard which was in
use during the early 1977 to 1990. In DES encryption
is based on a symmetric key algorithm that uses a 56-
bit key. However by the mid 1990’s, it was clear that
the DES with 56-bit is insecure for many applications
since the key is very small. Then it was upgraded to
Triple DES which was believed to be practically
secure although there are theoretical attacks. Thus in
Nov-26-2001 the FEDERAL INFORMATION
PROCESSING STANDARDS PUBLICATION
197(FIPS 197) specifies an algorithm called
Advanced Encryption Standard (AES). AES is based
on the principle known as Substitution Permutation
network (SP-network) which means there will be a
series of linked mathematical operations in the block
cipher algorithm.AES encrypts a data block of 128-

ISSN : 0975-3397 1003

L. Thulasimani et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1003-1011

bits which is fixed with three different key sizes
128,192,256 bits. The operations are based on
Rinjdael algorithm. The input of AES algorithm is
128-bit or 16 byte data which can be specified as a
block. The basic unit of processing in the AES
algorithm is a byte. All byte values in the AES
algorithm will be presented as the concatenation of its
individual bit values (0 or 1) between the braces in the
order (b7, b6, b5, b4, b3, b2, b1, b0). These bytes are
interpreted as finite field elements using a polynomial
representation as follows

b7X
7+ b6X

6+ b5X
5+ b4X

4+ b3X
3+ b2X

2+ b1X+b0 =

Internally in AES algorithm operations are
performed on a two-dimensional array of bytes called
the state. The state consists of four rows of bytes, each
containing Nb bytes, where Nb is the block length
divided by 32 (4 for 128-bit key, 6 for 192-bit key, 8
for 256-bit key). Likewise the key length and number
of rounds(iterations) differ from key to key as shown
in table 1.

Table1 Different keys and its attributes

Algorithm
Key length
(Nk words)

Block Size
(Nb words)

Number of
rounds (Nr)

AES-128 4 4 10
AES-192 6 4 12
AES-256 8 4 14

For encryption and decryption there are 4
different steps

Sub Bytes: Every byte in the state is replaced
by another one using Rinjdale S-box (Substitution
Box).

Shift Rows: Every row in the state (4×4
array) is shifted left k bytes and the k depends on the
key and the row number.

Mix Column: A linear mixing operation
which operates on the columns of the state, combining
the four bytes in each column.

Add Round key: Each byte of the state is
combined with a round key, which is different key for
each round and derived from the Rinjdale key
schedule.

The sequence in which the operation is
carried out is as follows:

Round 1:

A. Add Round key.

Following Rounds:

A. Sub Bytes.
B. Shift Rows.
C. Mix Column.
D. Add Round Key.

Final Round:

A. Sub Bytes.
B. Shift Row.
C. Add Round Key.

This is shown in fig1. The AES algorithm can be
implemented in both hardware and software. The
software implementation of AES algorithm is a slow
process when compared with hardware process.

A.AES Encryption:

Encryption is the process of converting the plain
text into a format which is not easily readable and is
called as cipher. The cipher is got by doing a series of
mathematical operations iteratively.

a) Sub Bytes:

In this sub bytes step the data in the plain text is
substituted by some pre-defined values from a
substitution box. The substitution box which is used
commonly is rinjdale substitution box. The
substitution box is invertible.

b) Shift Rows:

In shift rows operation the rows in the 4×4 matrix
is shifted to left r bits and r varies with the rows of the
matrix(r=0 for row1, r=1 for row2, r=2 for row3, r=3
for row 4). This process is illustrated in fig 2.

Figure 1. Shift Rows

ISSN : 0975-3397 1004

L. Thulasimani et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1003-1011

This has the effect of moving positions of lower
positions in the row, while the lowest bytes wrap
around to the top of the row.

c) Mix Columns:

Mix column is calculated using the below formula.

Ro 2 3 1 1 a0
R1 = 1 2 3 1 a1
R2 1 1 2 3 a2
R3 3 1 1 2 a3

Here a0, a1, a2, a3 is calculated using the

polynomials as below
a(x) = {2}x3 + {3}x2 + {1}x + {1}.
The mix column transformation operates on

the state column by column, treating each column as
a four term polynomial. The columns are considered
as polynomials over GF(28) and multiplied modulo
x4 + 1 with a fixed polynomial a(x) which is got from
the above formula. This can also written as a matrix
multiplication

s’(x) = a(x) s(x)

Figure 2 Mix Column

d) Add Round Key:

In the add round key step the 128 bit data is
xored with the sub key of the current round using the
key expansion operation. The add round key is used
in two different places one during the start that is
when round r=0 and then during the other rounds that
is when 1 ≤ round≤ Nr, where Nr is the maximum
number of rounds. The formula to perform the add
round key is

S’(x) = S(x) R(x)
S’(x) – state after adding round key
S(x) – state before adding round key

R(x) – round key

e) Key Expansion:

The key expansion has three steps:

a) Byte Substitution subword()
b) Rotation rotword()
c) Xor with RCON (round constant)
The input to key schedule is the cipher key

K. Key expansion generates a total of Nb(Nr + 1)
words. The algorithm requires an initial set of Nb
words, and each of the Nr rounds requires Nb words
of key data. The resulting key schedule consists of a
linear array of 4-byte words, denoted [wi], with i in
the range 0 ≤ i < Nb(Nr + 1).

The subword()function takes a four byte
input and applies the byte substitution operation and
produces an output word. The rotword() takes a word
[a0, a1, a2, a3] as input and performs a cyclic
permutation to produce [a1, a2, a3, a0] as output
word. The round constant word array rcon[i] is
calculated using the below formula in rinjdale finite
field.
rcon[i]= mod + + +x+1
 The first Nk words of the expanded key are
filled with the cipher key. Every following word w[i]
is equal to the xor of previous word w[i-1] and the
word Nk positions earlier w[i-Nk]. For words in
positions that are a multiple of Nk, a transformation
is applied to w[i-1] prior to the XOR, followed by an
XOR with a round constant Rcon[i]. This
transformation consists of a cyclic shift of the bytes
in a word rotword() and byte substitution subword().
But in key expansion of 256-bit cipher if Nk=8 and i-
4 is a multiple of Nk then subword() function is
applied to w[i-1] prior to the xor. The algorithm for
the key expansion routine is:

Table 2 Algorithm for key expansion

KeyExpansion(byte key[4*Nk], word w[Nb*(Nr+1)],
Nk)
begin
word temp
i = 0
while (i < Nk)
{
 w[i] = word(key[4*i], key[4*i+1]
 key[4*i+2]i+3])
 i = i+1
}
end while
i = Nk
while (i < Nb * (Nr+1)]
{
 temp = w[i-1]
 if (i mod Nk = 0)
 temp = SubWord(RotWord(temp)) xor Rcon[i/Nk]
 else if (Nk > 6 and i mod Nk = 4)
 temp = SubWord(temp)
 end if

 S(x)

ISSN : 0975-3397 1005

L. Thulasimani et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1003-1011

 w[i] = w[i-Nk] xor temp
 i = i + 1
}
end while
end
Thus with all the above operations the algorithm for
the encryption of the data is as follows. Since it
begins and ends with the add round key operation
there is no wasted un keyed step in the beginning or
the end.

Table 3 Algorithm for encryption

byte state[4,Nb]
state = in

AddRoundKey(state, keySchedule[0, Nb-1])

for round = 1 step 1 to Nr–1
 {
 SubBytes(state)
 ShiftRows(state)
 MixColumns(state)
 AddRoundKey(state)
 keySchedule[round*Nb, (round+1)*Nb-1])
}
SubBytes(state)
ShiftRows(state)
AddRoundKey(state, keySchedule[Nr*Nb,
(Nr+1)*Nb-1])
out = state

B.AES Decryption:

 The decryption of the data which was
encrypted using the AES is done by inverting all the
encryption operations with the same key with which
it is encrypted since the AES is a symmetric
encryption standard. In the decryption process the
sequence of the transformations differs from that of
the encryption but the key expansion for encryption
and decryption are the same. However several
properties of the AES algorithm allow for an
equivalent decryption with the same sequence of
transformations as that in encryption. The operations
of the decryption are listed below

a) Inverse Sub Bytes.
b) Inverse Shift Rows.
c) Add Round Key.
d) Inverse mix columns.

Inverse Sub Bytes: This operation is same as it is in
the encryption process but the only difference is the
inverse of the substitution box is used here since the
substitution box which we used in the encryption is
invertible.

Inverse Shift Rows: The inverse shift rows operation
inverses the shift row operation in the encryption
process by right shifting the elements in the rows.
Add Round Key: The add round key process is the
same as that of the one in the encryption process.
Inverse Mix Columns: In inverse mix column
operation the same operation in the mix column is
done but with the different matrix as specified below.
the algorithm for decryption process is:

Table 4 Algorithm for decryption

byte state[4,Nb]
state = in
AddRoundKey(state, keySchedule[Nr*Nb,
(Nr+1)*Nb-1])
for round = Nr-1 step -1 downto 1
{
 InvShiftRows(state)
 InvSubBytes(state)
 AddRoundKey(state)
 keySchedule[round*Nb, (round+1)*Nb-1])
 InvMixColumns(state)
}
InvShiftRows(state)
InvSubBytes(state)
AddRoundKey(state, keySchedule[0, Nb-1])
out = state

III.SIMULATION RESULTS OF SOFTWARE

IMPLEMENTATION.

 A mat lab program was developed using the
above algorithms and the simulation results for
different keys are tabulated below in table 5.

128-bit data and 128-bit key
data =

'32' '43' 'f6' 'a8'
'88' '5a' '30' '8d'
'31' '31' '98' 'a2'
'e0' '37' '07' '34'

key =
'2b' '7e' '15' '16'
'28' 'ae' 'd2' 'a6'
'ab' 'f7' '15' '88'
'09' 'cf' '4f' '3c'

cipher =

'00' '96' 'b0' 'db'
'43' '9e' 'd6' '82'
'06' '9e' 'f9' 'ac'
'bd' 'aa' 'ce' '3e'

dedat =
'32' '43' 'f6' 'a8'
'88' '5a' '30' '8d'
'31' '31' '98' 'a2'
'e0' '37' '07' '34'

128-bit data and 192-bit key
data =
 '32' '43' 'f6' 'a8'
 '88' '5a' '30' '8d'

key1 =
 '8e' 'da' 'c8' '80' '62' '52'
 '73' '0e' '10' '90' 'f8' '2c'
 'b0' '64' 'f3' '79' 'ea' '6b'
 'f7' '52' '2b' 'e5' 'd2' '7b'

ISSN : 0975-3397 1006

L. Thulasimani et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1003-1011

 '31' '31' '98' 'a2'
 'e0' '37' '07' '34'

cipher =
 'd3' '5e' '9e' '35'
 '87' 'b0' '04' '8b'
 '76' '3f' '56' 'ff'
 'd4' '7f' '49' '6e'

dedat =
 '32' '43' 'f6' 'a8'
 '88' '5a' '30' '8d'
 '31' '31' '98' 'a2'
 'e0' '37' '07' '34'

Here the simulation result shows the data, key used,
cipher (encrypted data) and decrypted data. The next
step is to develop a hardware architecture using
VERILOG and FPGA.

IV.HARDWARE IMPLEMENTATION OF RIJNDAEL

ENCRYPTION ALGORITHM

Many hardware implementation of Rijndael
encryption algorithm using VHDL is available. In
most of the case hardware implemetataion of AES
uses only the AES-128 candidate. some software
implementation of AES192 and AES -256 are
available. In the proposed architecture all candidates
of AES i.e. AES-128, AES192 and AES-256 are
implemented in the same device. The proposed
design is implemented using basic key components of
AES encryption algorithms. Iterative looping
techniques followed to implement the entire design
modules of AES encryption algorithm. The key
controller unit, key expansion unit, and round
function unit and mix column unit every thing are
implemented in hardware.

Figure 3. Flow Chart Of AES Encryption

Testing and Verification
To ensure the proposed design gives a better results
in terms of area and throughput the design is
implemented Xilinx 9.2 and FPGA device
XC2V6000BF957-6 used for downloading. In table 1.
The device utilization summary of complete
algorithm i.e. AES-128, AES-192, AES-256 in same
hardware is shown.

Cipher Text

Key(128/192/ Plain Text

Key

schedul

er

Roun

d Key

Roun

d Key

Roun

d Key

Roun

d Key

Roun

d Key

Roun

d Key

Sub

Shift rows

Mix

AddRound

Key

Sub

Shift rows

AddRound

Key

Sbo

sb

ISSN : 0975-3397 1007

L. Thulasimani et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1003-1011

Table 1. device utilization summary of AES
Encryption

FPGA Device

XC2V6000BF957-6

Allocated Area Used/Available %
utilization

CLB Slices 2943/33972 8

No. of LUT 5802/67584 8

IOs 836

IOBs 384/684 56

The proposed design is compared with other different
design implementation in Xilinx FPGA device. The
proposed device is implemented in
XC2V6000BF957-6 to have sufficient memory to
implement all the three different rijndael algorithm.
The maximum core frequency is 62.5 MHz Each
round are completed in one clock cycle and one clock
cycle for registering the input, so total clock cycle
need for processing 128-bit data is 12 clock for AES-
128. As a result 666.7 Mbps of throughput is
achieved. Throughput calculated by other researchers
is listed in table2.

Design Device Area
(CLBs)

Throughpu
t
Mbits/Sec

Gaj

XCV1000BG560-
6

2902 331.5

Dandalis XCV 1000 5673 353.0
Proposed
design

XC2V600BF957
-6

2943/3379
2

666.7

The table 2. Show s that proposed design outperform
all designs based on iterative looping in terms of area
and throughput. The performance of AES-192 and
AES 256 is also verified and simulation results are
given. The novel architecture to implement all aes
candidates in same hardware is proposed.
Conclusion:

 Thus the Encryption unit for a mobile
terminal is designed which encloses an encryption
and decryption unit using AES algorithm which
works with 128-bit data and three different keys 128,
192, 256 bits. Thus it can reduce the space by
enclosing three different encryption standards in a
single architecture and the power consumption can
also be reduced which makes it usable in battery
operated network devices having Bluetooth and
wireless communication devices like software radio.

REFERENCES

[1] “FPGA implementation and performance evaluation of
AES-CCM cores for wireless networks” Ignacio
Algredo-Badillo, Claudia Feregrino-Uribe, Ren´e
Cumplido, Miguel Morales-Sandoval Department of
Computer Science,

[2] “An Efficient Software Implementation of AES-CCM
for IEEE 802.11i Wireless Standard” Abdul Samiah,
Arshad Aziz and Nassar Ikram-2007

[3] “An Energy-Eficient AES-CCM Implementation for
IEEE802.15.4 Wireless Sensor Networks” Lian Huai,
Xuecheng Zou, Zhenglin Liu, Yu Han-2009
international conference.

[4] “Efficient Sequential Architecture for the AES
CCMMode in the 802.16e Standard” Jae Deok Ji Seok
Won Jung-2009 international conference.

[5] “Announcing the ADVANCED ENCRYPTION
STANDARD (AES)” Federal Information Processing
Standards Publication 197 November 26, 2001

[6] “An Efficient FPGA Implementation of Advanced
Encryption Standard Algorithm”Shuenn-Shyang Wang
and Wan-Sheng N

[7] “AES 128 Encryption/Decryption” David Leifker &
Gentre Graham Bradley University Department of
Electrical Engineering Advisor: Dr. Vinod Prasad

[8] K. Gaj, P. Chodowiec: Comparison of the Hardware
Performance of the AES Candidatesusing
Reconfigurable Hardware: The ThirdAdvanced
Encryption Standard CandidateConference, April 13-
14, 2000, New York,USA.

[9] A. Dandalis, V. K. Prasanna, J. D. P. Rolim: A
Comparative Study of Performance of AESCandidates
Using FPGAs: The Third Advanced Encryption
Standard Candidate Conference,April 13-14, 2000,
New York, USA.

[10] Dennis Ka Yau Tong, Pui Sze Lo, Kin HongLee, Philip
H.W. Leong, “A System LevelImplementation of
Rijndael on a Memory-slotbased FPGA Card”,
Proceedings of the 2002IEEE International Conference
on FieldProgrammable Technology (FPT), Hong
Kong,pp. 102-109, 2002

[11] A.J. Elbert, E. Yip, B. Chetwynd, C. Paar: An FPGA
Implementation and Performance Evaluation of the
AES Block Cipher CandidateAlgorithm Finalists, IEEE
Transactions on VLSI,August 2001, vol. 9, no. 4, pp.
545-557.

[12] M. McLoone, J.V McCanny: High Performance Single-
Chip FPGA Rijndael Algorithm Implementations,
CHES 2001, pp. 65-76.

[13] “Announcing the Advanced Encryption
Standard(AES)” Federal Information Processing
Standards Publication 197, November 26, 2001.

AUTHORS PROFILE
L. Thulasimani has obtained her BE and ME
degree from Coimbatore Institute of
Technology, India in 1998 and 2001
respectively. She has started her teaching
profession in the year 2001 in PSNA
Engineering College, Dindigul. At present she
is an Lecturer in department of Electronic and
Communication Engineering in PSG college of

Technology, Coimbatore .She has published 4 research papers in
International and National conferences. She is a part time Ph.D
research scalar in Anna University Chennai. Her areas of interest
are Wireless security, Networking and signal processing. She is a
life member of ISTE and IEEE.

ISSN : 0975-3397 1008

L. Thulasimani et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1003-1011

Dr. M. Madheswaran has obtained his Ph.D.
degree in Electronics Engineering from
Institute of Technology, Banaras Hindu
University, Varanasi in 1999 and M.E
degree in Microwave Engineering from
Birla Institute of Technology, Ranchi, India.
He has started his teaching profession in the
year 1991 to serve his parent Institution
Mohd. Sathak Engineering College,

Kilakarai where he obtained his Bachelor Degree in ECE. He has
served KSR college of Technology from 1999 to 2001 and PSNA
College of Engineering and Technology, Dindigul from 2001 to
2006. He has been awarded Young Scientist Fellowship by the
Tamil Nadu State Council for Science and Technology and Senior
Research Fellowship by Council for Scientific and Industrial
Research, New Delhi in the year 1994 and 1996 respectively. He
has published 120 research papers in International and National
Journals as well as conferences. His field of interest includes
semiconductor devices, microwave electronics, optoelectronics and
signal processing. He is a Senior member of IEEE, Fellow of
IETE, and IE and member of ISTE

Appendix and Simulation Results

In [13], there are several test vectors for all
candidates of AES. Different test vectors are used to
test the proposed design. The test vectors for all the
case are given below: Plaintext: 00 11 22 33 44 55 66
77 88 99 aa bb cc dd ee ff
Key: 00 01 02 03 04 05 06 07 08 09 0a 0b 0c
0d 0e 0f
Cipher text: 69 c4 e0 d8 6a 7b 04 30 d8 cd b7 80 70
b4 c5 5a
In Figures 4 gives the schematic proposed design and
5,6 and 7, the simulation outputs of the
abovementioned test vectors of the encryption
algorithms are given. The following figures show
schematic diagram and simulation outputs of the
AES encryption .

Figure 4 schematic Diagram AES-128/192/256 Architecture

ISSN : 0975-3397 1009

L. Thulasimani et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1003-1011

Figure 5 Simulation output of AES‐128 Encryption

Figure 6. Simulation output of AES‐192 Encryption

ISSN : 0975-3397 1010

L. Thulasimani et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1003-1011

Figure 7.Simulation output of AES‐256 Encryption

ISSN : 0975-3397 1011

