
Ijaz Ali Shoukat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1295-1302

 A novel method of dynamic permanent caching with resourceful built up
and imperative access

Ijaz Ali Shoukat Mohsin Iftikhar

Department of Computer Science Department of Computer Science
College of Computer & Information Sciences College of Computer & Information Sciences

 King Saud University, Riyadh, KSA King Saud University, Riyadh, KSA
ishoukat@ksu.edu.sa miftikhar@ksu.edu.sa

Abstract – Caching is built up each time when the
machine starts up according to user’s application
usability. This built up procedure escalates the efficiency
of application’s usage for the next coming access of same
application. This cache history is vanished when power is
switched off. Most of the time, a user uses the same
common applications in his/her daily routine, particularly
during the working hours. Moreover, against every new
start up, the user bears the penalty of cache rebuilt to
achieve better and efficient access because on first time
access, the application is opened without caching which
results more time to open rather than the second time
after the cache has already built up.
This paper proposes a novel idea of intelligent and
permanent caching which can build up dynamically and
can be stored permanently in one part of cache chip
according to user’s application usability. This paper
describes an algorithm that how CPU can build a
dynamic and intelligent Electrically Editable Permanent
Cache (EEPC) according to the probability of user’s
application usage in a computer machine. For proposed
EEPC, we implement a Probability Calculation Table
(PCT) by reusing available compression techniques and
through introducing some basic change in cache storage
policy. On the other hand L1 and L2 implementation is
also the part of this study; for example, History Table
(HT) is maintained for L1 and L1 is physically addressed
to the main memory. Whereas, L2 is virtually addressed
with the main memory and fully associative to handle
misses. We mainly focus on Cache design enhancement,
improvement in cache speed and implementation issues.

Key Words - PCT, HT, EEPC, Compression, L1, L2,
Graphically Proposed Architecture, Intelligent Permanent
Cache Storage Algorithm & Technique

I. INTRODUCTION

Cache memory is efficient and tiny chip resides between
main memory and CPU or within the CPU of computer.
There are two major types of cache memory

 L1 Cache
 L2 Cache

But in some new processors L3 cache is also exits.
Where L1 cache is small SRAM which is the part of the
processor and fast enough. L2 cache is additional kind of
cache memory in order to increase cache capacity and to
overcome the issues of address translation. L2 exits
between L1 and main memory. Here some basic cache

terminologies are described below which must be known
for full understating of caching discussion.

A. Cache Hit: Cache hit is the requested action from
cache memory to get desire contents (address, index, tag,
and data) without reading the main memory [1].

B. Cache Miss
If we hit the cache to get our desire contents but the
desire contents (address, index, tag, data) are not
available in the cache and as a result desire contents are
taken from main memory this is called cache miss [1].

C. Write Through Cache
If we write the desire contents from cache by writing
them into main memory at the same time in such a way
desire contents reside in both (cache and RAM) [2].

D. Write Back / Copy Back
In case of successful cache hit desire contents are only
written to cache memory while in case of cache miss the
desire contents are written into main memory [2].

E. Cache Memory Mapping / Types
The construction of cache memory depends upon the
mapping action which helps to take recently used or
requested data from RAM to the processor for
performing some necessary actions. Cache chip holds the
most recently used contents (Address or both address and
data) in it so that there may be a chance, the processor
requires same data again that it has used earlier. Different
approaches were used to map the data from main
memory to the cache. There are different types of cache
memory are available. Some of them are as follows [3].

a. Fully Associative Mapping [3]
By taking both, data and full address from Random
Access Memory (RAM), the contents are stored simply
in cache memory, this approach is said to be fully
associative mapping. Each cache location and incoming
memory address is simultaneously compared in order to
find the requested data, if compare operation is
successful then it is called 'hit' and the desire contents are
transferred to the processor for performing necessary
operations. In case of un-successful hit the request is
forward to RAM for purpose of getting data. When data
is found then a copy is saved in cache before providing it
to the processor. This procedure of un-successful hit is
known as ' Cache Miss'. To store the un-necessary
complete address with its data is space consuming as
cache memory is small in size. On the other hand its
main advantage is that no transformation of address

ISSN : 0975-3397 1295

Ijaz Ali Shoukat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1295-1302

algorithm is required for manipulation of addresses
because it stores complete address of data.

Fig. 1 Fully associative mapping

b. Direct Mapping [3]
The cache memory location, which we want to use, is
directly addressed via (physical or virtual address) then it
is called direct cache mapping. In this type of memory
contains built in “cache replacement policy” on the
available cache line. Each location of the cache memory
holds contents at specified location address based on
lower half bits of an address of RAM. The remaining
higher bits are stored with the data in the cache memory
to complete the identification of cached data. Direct
mapping follows the mapping scenario in such a way,
every address (CPU or RAM) is partitioned into two
designated parts (1) index made up by lower significant
bits and (2) tag made up by higher significant bits.

Fig. 2 Direct mapping

This type of memory is simple and efficient because it
can have various indexes in cache chip at the same time
as same indices are reside on the same location.

c. Set Associative Mapping [3]
Various kind of direct mapped cache is the base for the
development of Set Associative Mapping, therefore, each
direct mapped cache behaves like a set. Its development
follows the rule; two direct mapped caches are needed
for two ways set associative cache. A committee of
blocks is consists of same index and variable tags in
cache chip. As a full address, most significant bits of
RAM are marked where the block address is the next
coming least significant bits for the set in a block. This
address mapping scheme is regarded as bit selection as
shown in the Fig. 3 below.

0 1 2 3 4… … 25783 … … 10 38….

Sets Block Tag

Fig. 3 Memory address division

This type of memory has the ability to reduce thrashing
but thrashing cannot be completely handled due to
algorithm’s own functions.

d. Sector Mapping [3]
The process of dividing the RAM and Cache into logical
sectors is called sector mapping. Each sector consists of
more than one block but RAM to Cache mapping is done
via one to one map rule. It follows the working
functionality of Fully Associative Mapping in such a way
a tag resides in cache chip to located the RAM address.
Its diagram is shown in Fig.4 below.

Fig. 4 Sector Mapping

ISSN : 0975-3397 1296

Ijaz Ali Shoukat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1295-1302

II. IMPLEMENTATION ISSUES OF CACHE

The speed of main memory and CPU has a valuable gap
as processor is fast more and main memory is slow more,
therefore there should be criteria in which both are
synchronized with respect to their speed in order to get
optimized performance. This need caused the presence of
cache memory. Fast accessing of main memory is made
possible with the use of cache memory in such a way the
most recently used application’s addresses are stored in
cache and at the time of need these addresses are firstly
located in the cache. if the address is present in the cache
it is selected quickly and data is accessed efficiently. But
if the address is not located in the cache then firstly these
are located in the memory and then data accessing
procedure will start therefore, as a result, time is lost. It
means cache should be used and it must be efficient and
large to little more in capacity with limited acceptable
cost. Where the cache overcame the speed inconsistency
there is at the same time it generates some issues of
implementations in terms of access and address
translation procedure.

According to author of research paper referenced at [4],
access delay is due to the access of address tag and
address mapping. But actually, the delay is some more
rather than the above estimation because another kind of
delay i.e. to access data from memory or storage is also
there. Other kind of fast memory named as cache
memory is associated with the CPU in the form of two
dimensional arrays. The first dimension is the set of steps
used to access address tag and other is to perform address
mapping. The ability of cache memory is estimated with
the following factors

1. Cache hit time.

2. Cache miss rate and miss penalty.

Because while accessing or hitting the cache may address
translation is need but it depends upon the architectural
design of processor and cache memory. Some
Arithmetic Logic Unit (ALU) design based on real
physical address generating capability and some
generates virtual address, Therefore in case of real
address there is no need of address mapping but in case
of virtual address, address mapping is needed. Virtual
address generation has two problems:-

1. Some time is wasted for translation procedure that

caused the lack of efficiency.

2. “The most serious drawback of the virtual address

cache is that multiple virtual addresses may be
mapped to the same physical address, i.e. synonyms
may occur “[4].

Synonyms problem can be controlled as follows. Either
synonyms should not be occurred or index bit that is used
to select the cache should be same for both virtual and
physical address [4] [5] [6].

Similarly, cache misses cause some extra delay in cache
performance. Following are the possible misses in cache.

A. Compulsory Miss
Very first cache block reference generates a compulsory
miss.

B. Capacity Miss
When block misses in write to the cache due to cache
low capacity rather than the block is called capacity miss.

C. Conflict Miss
When block removes or overwrites into cache due to the
mapping of other block into the same set. The necessary
miss cannot be removed or minimized but the other two
misses can be minimized to make the cache performance
more efficient. The capacity misses can be avoided by
using I/O approach [7].

D. Measuring the Cache performance Mathematically

The general mathematical cache memory performance
formula becomes as follows

ACAT = Cache hit_time + Cache(Miss_rate x Miss_penalty) [8]

Where,

ACAT= Average Cache Access Time

Hit_time takes about 0.25 – 1.0 ns. i.e. 1 clock cycle

Miss_penalty takes about 75 – 100 clock cycles

Miss_rate is cache dependent!

III. LITERATURE REVIEW

From 1989 to 2001 research focuses on cache
performance with different approaches in order to get
optimized efficiency of cache with affordable cost. But
every time when any attempt is made for this purpose, it
results some other delays or disadvantages. Therefore,
efficiency and disadvantages are compensated and
optimized cache efficient could not be achieved at
optimized level. Here some comparison of adopted
strategies is represented with some other parameters in
tabular form below. We made this table in the light of
various research paper and slides.

ISSN : 0975-3397 1297

Ijaz Ali Shoukat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1295-1302

A. Research implementation comparison [4] [8] [9] [10]

TABLE 1. Implementation Comparison
Idea Parameters Strategy adopted Advantages Disadvantages Cost

Larger cache size Introduce L2 & L3 cache
Fewer capacity misses
Miss penalty decrease

Longer access time
Efficiency is lacked

High

Grater cache
associativity

Fewer conflict misses
decrease miss rates

Longer access time
Complexity increase
Efficiency is lacked

consistent

Physical Address
cache

 No” multiple” address mapping fear
Address translation delay
involved

medium

Virtual Address
cache

Delay decrease in successful
condition,
Absence of address does not
generate miss problems because it
searched under other virtual address.

Synonyms problem (multiple
virtual address mapping with
physical address)

Write-through policy
(for cache only)

No write-back time penalty,
easier write-miss handling

Wasted memory bandwidth,
Longer access time
Efficiency is lacked

Consistent

Reduce Miss rate
Larger Block size,
Higher associatively,
compiler optimization

Miss penalty is minimized
Less Access time

Complexity increase medium

Reduce Miss
Penalty

Multi level cache
Critical word first and early
restart

Less access time Miss penalty increased high

Reduce Hit Time
Small and simple cache
Avoid address Translation

Faster access Low Capacity low

L2 Compression [8]
Frequent Pattern
Compression Algorithm [11]

Cache capacity increased 29 – 75%
L2 Miss ration reduced by 9 -24%
Overall 17% speed is up

Due to decompression L2
access latency increased

Medium

Parallelism pipelining Improve access time
Dependency and conflicts
generation

Medium

B. Comparison of Cache Mapping Techniques [12] [13] [13]

TABLE 2. Cache Mapping Comparison

Cache Types Hit Ratio Searching Advantages / Disadvantages

Direct Mapped ***** *******

Fast
Simple
One to one address map
Maximum misses conflicts

Fully Associative ******* ****

No address translation
Any sector can map any where
No conflict misses
Expensive
More space is required
Searching is slow

N-Way Set
Associative, N>1

Good when n increase

 Worse as N Increases

Compromised solution
Conflict misses are greatly reduced.

Hence, the above comparison Table - 2 shows that the set associative mapping techniques is better comprised way to
handle the clash of conflict misses as well as the gap between CPU and memory speed. The problem with set
associative mapping is the worst case of search from large no. of increasing data entries; therefore, for searching point
of view direct mapping is more suited. But each mapping techniques has its own value.

ISSN : 0975-3397 1298

Ijaz Ali Shoukat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1295-1302

C. Available cache in different processors

The different cache sizes which are implemented
according to processor’s manufactures are shown in a
Table -3 [14] [15].

TABLE 3
Processor L1, L2, L3 size
Ultra SPARC IV 64KB-D, 32KB-I, 16MB
PA-RISC 8800 1.5MB, 32MB, NA
Opteron 128KB, 1MB, NA
Xeon 16KB, 512KB, 4MB
Power5 64KB, 1.5MB, 36MB
Itanium2 32KB, 256KB, 6-9MB
Athlon XP 128 KB, 256 KB
Athlon XP+ 128 KB, 512 KB
Pentium 4 (I) 20 KB, 256 KB
Pentium 4 (II,
“Northwood”)

20 KB, 512 KB

Athlon 64 128 KB ,512 KB
Athlon 64 FX 128 KB , 1024 KB
Pentium 4 (III, “Prescott”) 28 KB, 1024 KB

Above Table 3 contains collectively all three caches
without mentioning, which cache is on the chip and
which of them is off the CPU chip.

Now we analyze the L1 and L2 cache size “on the Chip”

TABLE 4 [16]

Processor
Date of

Introduction
On-chip Cache Memory

L1 L2
8086 1978 -- --
80286 1982 -- --
80386 1985 -- --
80486 1989 8K B --
Pentium 1993 16K B --
Pentium
Pro

1995 16K B 256 / 512 KB

Pentium II 1997 32K B 256 / 512 KB
Pentium III 1999 32K B 512 KB

Moreover, we analyze the L2 cache place in different
Processor Models in a table- 5 as described below [15]

TABLE 5.

CPU L2 Place
Pentium, K5, K6 External, on the

Motherboard
Pentium Pro Internal, in the CPU
Pentium II, Athlon External, in a module

close to the CPU
Celeron (1st generation) None
Celeron (later gen.),
Pentium III, Athlon XP,
Duron, Pentium 4

Internal, in the CPU

D. Problem and need
The summary of research from1989 to 2010 follows the
cache memory research which revolves around the above
mention parameters as shown in the first column of the
comparison Table - 1. So in a single statement, we can

say that the research of cache memory is done to improve
speed and capacity with affordable cost. But this paper
introduces some other ideas as follows:-

1. Still no research idea is put forward for storing and

modifying the desire contents permanently into the
cache chip based on probability calculation table
(PCT by introducing some basic change in the
implementation of cache architecture.

2. Similarly, there is no idea also put forward to store
the cache contents dynamically in expert way
according the situation and behavior of user with
respect to the use of application. Recently just the
idea of access cache is introduced and implemented
in the HP-PA7200 that manage the cache by using
FIFO buffers based on observation and exits in fully
associative L1 cache off side the CPU chip [17].
The problem in this idea is delay which requires
every time to make the FIFO buffer when the system
will start.

Therefore, there is need to propose some new cache
implementation architecture which can introduce
intelligent factor in caching to overcome the cache
implementation issues as described in the compression
Table 1.

IV. METHODOLOGY OF PROPOSED CACHE
IMPLEMENTATION

We propose a little change in cache architecture as well
as also some basic change in cache filling scheme
according the probability of usages of application on
computer machine. The probability can be calculated
statistically by seeing the most no. of uses of any
application by giving them some numeric values which
can be stored in proposed cache named as Electrically
Editable Permanent Cache (EEPC). The probability
calculation table (PCT) will be able to change
dynamically time to time and will be overwritten
according to the highest probability of application use. In
case of managing PCT only CPU utilization is increased
to some extent which is negligible because CPU is much
faster and mostly remains free into measurable extent.
This EEP cache will contains the following
characteristics,

 Will be the part of the CPU and directly coordinate

with it.
 Will be able to store mostly used application’s

addresses permanently on the base of PCT.
 Will be able to change or over write according to

PCT like Electronically Editable Programmable
Read only Memory (EEPROM).

 It will directly coordinate with RAM and it will be
able to store desire address in full format to save
address translation time.

 Faster than RAM due small size. Even it will
respond efficiently than L1 and L2 because L1 and
L2 require one step cost more than EEPC.

 Not too much costly.
 Suggested size is 20 KB to 128 KB.

ISSN : 0975-3397 1299

Ijaz Ali Shoukat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1295-1302

CPU also contains L1 cache (128 KB to 1024 KB) on
chip and L2 (2 MB to desire MB) cache off chip.
Where L1 is direct mapped with main memory for faster
access and manage History Table (HT) of address
according to its capacity. L1 cache will be compressed
by using Frequent Pattern Compression Algorithm [11]
and the other comparison technique i.e. “Dictionary base
compression algorithm” as discussed by the study [18].
On the other hand the entries that exit in EEP Cache can
not be duplicated in L1 cache in order to save the cache
memory space and conflicts. L2 cache will contain the
following characteristics:-

 Larger Block size.
 Higher associatively.
 Virtually address with main memory.
 L2 cache will be compressed.

A. Propose Cache Architecture with CPU

Here the proposed cache framework is described
graphically with CPU and Main Memory as shown in Fig
5. This proposed model is able to manage cache in
intelligent manner to some extent as shown in Fig. below.
Major change which we introduced in this model is the
EEPC which can maximize the performance (high speed,
instant access). L1 and L2 idea is the same as previously
implemented in currently available computer machines
with only a little change of mapping and compression
techniques in order to optimize the overall performance
of caching. Moreover we introduce a new heuristic of
storing and managing history table in L1 cache which
actually provides base for building up the EEPC in
expert way according to individual user’s probability of
application usability. This probability is managed by a
probability table in EEPC.

B. Working Methodology Algorithm

Begin

 {

Req_Add as binary Signal,
PCT as binary object
HT as binary object

Create or overwrite and compress PCT Buffer by
calculating the occurrence of application use and store
permanently in EEPC with highest value until EEP cache
is not full. In overwrite case least value will be overwrite

If EEPC size is full then manage HT runtime with some
low probability value without duplication. HT is write
back when any entry is removed from EEPC ‘ s PCT
buffer.

On Request of Req_Add

 CPU reads EEPC, L1, L2

 If Req_Add is found in EEPC
 {

Return to CPU
 Block L1, L2 request action

}

Else If Req_Add is not found in EEPC OR found in L1

{

Block EEPC & L2 request action

}

Else if Req_Add is not found in EEPC AND L2 OR
found in L2
{
Return to CPU
Block EEPC & L1 request action
}

Else //when complete Miss Occurs
{
Read Req_Add from Main Memory and fill the L2 and
also write HT if space is available.
}

End if
 End if
 End if
 End if
}
END

Fig. 5. EEPC Architecture

ISSN : 0975-3397 1300

Ijaz Ali Shoukat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1295-1302

V. IMPLEMENTATION RESULTS

TABLE 6. Implementation Results

Factors EEPC Role L1 Role L2 Role

Very first hit on
system start up
after shut down.

Most probably succeeded
Performance Cost = 3
CPU EEPCRAM

Fail

Fail

2nd hit when
caching will have
been built up.

In case of successful hit its access is
faster than L1 and L2
Performance Cost = 3
CPU EEPCRAM

No need of L1 and time will
be saved

No need of L2 and time will be saved

In case of EEPC
miss

Fail
L1 most probably will be used and
compensate it. So in case of Fail cost
be the same as L1

If L1 is successful
Performance Cost=4
CPU L1Address
TranslationRAM

If L1 Fail which is most rare case for a
new kind of application
Performance Cost= 5
CPUL2HDDAddress
TranslationRAM

Searching Fast as small size and no address
translation due to full address storage.

Medium due to large size as
compare to EEPC and
address translation.

Low

CPU over hedge Low Medium High

Table Managing
cost

PCT cost is Negligible due to small size
and fast speed of CPU.

Little more than normal L1 for
HT

High cost as there is need to update
both HT and PCT as well as EEPC
writing.

Overall
performance

Best and its performance cost is
consistent.

Better Good

The above results claim that the implementation of
EEPC can decrease the access cost of cache hits and
search. Furthermore, it can provide the facility of
caching on early restart of computer machine where the
other caching techniques are failed. Hence, the use EEPC
is able to improve overall cache performance as
described in Table 6.

VI. CONCLUSION

We have shown that the basic change in the cache
storage can improve the cache performance, for example,
a History Table (HT) is maintained for L1 and it is
physically addressed to the main memory, whereas L2 is
virtually addressed with the main memory and fully
associative to handle misses. The cache is partitioned
into three parts, (1) EEPC is the first part, which stores
mostly used user’s applications permanently; (2) L1 is
the second part, which stores history of user’s application
results, and (3) L2 is the third part, which behaves like
normal cache as in current computer systems. The
implementation of proposed cache memory architecture

can save the very first penalty of user when user starts
the machine and opens up any application. The
permanent caching can make a faster and instant possible
access against every regular application. The presented
cache memory architecture along with the proposed
algorithm is smart and efficient to a large extent because
caching can be built up according to user’s choice of
applications which is handled with History Table and
Probability Calculation Table. As a matter of fact, the
proposed cache architecture will provide a new platform
for the researchers and scientists to introduce intelligent
factors in cache memory. By using our proposed
architecture in new version of caches, the user
experience can be enhanced with a fast and instant access.
We have provided the framework to utilize the benefits
of three kinds of cache mapping techniques at the same
time. The implementation results (Table – 6) indicate
that the proposed Electrically Editable Permanent Cache
(EEPC) is an efficient, fast and more consistent as
compared to L1 and L2. Collectively the suggested
architecture of EEPC, L1 and L2 clearly seems to be an
improved scheme for cache memory architecture.

ISSN : 0975-3397 1301

Ijaz Ali Shoukat et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1295-1302

REFERENCES

[1] P. Koopman, “Cache Organization”, Memory System

Architecture, 18-548/15-548, cited at
http://www.ece.cmu.edu/~ece548/handouts/04cachor.pdf, visited
on May 25, 2010, (1998).

[2] A. K. Christopher, Cache Coherence in Distributed Systems,
Western Research Laboratory 100 Hamilton Avenue Palo Alto,
California 94301 USA, (1987).

[3] V. D. P. Ruud, “Memory Hierarchy in Cache-Based Systems”,
Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA
95045 U.S.A, 650 960-1300, Part No. 817-0742-10, 11/20/02,
Revision A Edition: November (2002).

[4] J. K.Peir., W. H. Windsor, A.J Smith, “Implementation Issues in
Modern Cache Memory”, Computer Science Division (EECS),
University of California, Berkeley, California 94720, (1998).

[5] K H. Inoue, Nonogaki, T. Urakawa, K. Shimizu., Plural virtual
address space processing system," US Patent No. 4145738, March
20, (1979).

[6] S. Bederman, “Cache Management System Using Virtual and
Real Tags in The Cache Directory," IBM Tech. Disc., 21(11), , pp.
4541, April (1979)

[7] G. Golan, “Summary for the seminar-Analysis of algorithms in
hierarchical memory”, (2004).

[8] Old Dominion University Slides – “Memory Hierarchy Design”

[9] B. Parham, “Book- Computer Architecture”, Microprocessors to
Supercomputers, Oxford University Press, New York, (ISBN 0-
19-515455-X), (2005).

[10] R. Alaa, Alameldeen and David. A, “Adaptive Cache
Compression for High Performance Processors”, wood
Computer Sciences Department, University of Wisconsin-
Madison, (2004).

[11] L. Benini, D. Bruni, A. Macii and E. Macii, “Hardware Assisted
Data Compression For Energy Minimization In Systems With
Embedded Processors”, Pages (449 -453), put forward in IEEE
2002 design Automation and test in Europe”, (2002).

[12] P. Koopman, Associativey- Memory System Architecture,
Pages(18-548/15-548), Cragon. (1998).

[13] C. M. Kozierok. (2001), The PC Guide, Site Version: 2.2.0 -
Version Date: April 17, 2001 , cited at:
(http://www.PCGuide.com).

[14] P. Ghosh, “ASE112: Adaptive Server Enterprise Performance
Tuning on Next Generation Architecture presentation Slides”.
(2004).

[15] Chapter 11. The L2 cache cited at:
http://www.karbosguide.com/books/pcarchitecture/chapter11.htm

[16] Chapter Four CPU Architecture, “Art of Assembly Language”,
Cited at
http://webster.cs.ucr.edu/AoA/Windows/HTML/CPUArchitecture
.html#1013234 , visited on February 02, 2010.

[17] G. Kurpanek, K. Chan, J. Zheng, E. DeLano andW. Bryg,
”PA7200: A PA-RISC Processor with Integrated High
Performance MP Bus Interface”, COMPCON Digest of Papers,
pp. 375-382 , Feb 1994

[18] A. F. Briglia, A. Bezerra. (Nokia Institute of Technology) , L.
Moiseichuk, (Nokia Multimedia, OSSO) and H. Gupta(VMware
Inc.), “Evaluating effects of cache memory compression on
embedded systems”.

AUTHOR’S PROFILE

Ijaz Ali Shoukat
Research Scholar - Department of Computer
Science, King Saud University, Riyadh, KSA.
M-Phil / MSCS – GC University, Lahore, Pakistan.
BSC.(Hons) – GC University, Faisalabad, Pakistan.
Member of (IACSIT) - International Association of
Computer Science and Information Technology.

 Mohsin Iftikhar, PhD
Assistant Professor - Department of Computer
Science, King Saud University, Riyadh KSA.
PhD (CS) - School of IT, The University of Sydney,
Australia.
M. Engg. Sc. (Telecommunications) - The
University of New South Wales, Australia.
B.Sc Electrical Engg. University of Engineering and
Technology, Lahore, Pakistan.

ISSN : 0975-3397 1302

