
Preeti Gupta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1406-1410

REVIEW of SOME MINIMUM-PROCESS
SYNCHRONOUS CHECKPOINTING SCHEMES

for MOBILE DISTRIBUTED SYSTEMS
Preeti Gupta#1, Parveen Kumar #2, Anil Kumar Solanki#3

1Singhania University,

 Pacheri Bari, (Rajasthan) India

*2Meerut Institute of Engineering & Technology,

 Meerut (INDIA)-250005
Email:pk223475@yahoo.com

*3Meerut Institute of Engineering & Technology,

 Meerut (INDIA)-250005

Abstract— The term Distributed Systems is used to describe a

system with the following characteristics: i) it consists of several

computers that do not share memory or a clock, ii) the computers

communicate with each other by exchanging messages over a

communication network, iii) each computer has its own memory

and runs its own operating system. A mobile computing system is

a distributed system where some of processes are running on

mobile hosts (MHs), whose location in the network changes with

time. The number of processes that take checkpoints is minimized

to 1) avoid awakening of MHs in doze mode of operation, 2)

minimize thrashing of MHs with checkpointing activity, 3) save

limited battery life of MHs and low bandwidth of wireless

channels. In minimum-process checkpointing protocols, some

useless checkpoints are taken or blocking of processes takes place.

To take a checkpoint, an MH has to transfer a large amount of

checkpoint data to its local MSS over the wireless network. Since

the wireless network has low bandwidth and MHs have low

computation power, all-process checkpointing will waste the

scarce resources of the mobile system on every checkpoint.

Minimum-process coordinated checkpointing is a preferred

approach for mobile distributed systems. In this paper, we discuss

various existing minimum-process checkpointing protocols for

mobile distributed systems.

Keywords- Checkpointing algorithms; parallel & distributed
computing; rollback recovery; fault-tolerant systems

I. INTRODUCTION

Parallel computing with clusters of workstations is being used
extensively as they are cost-effective and scalable, and are able

to meet the demands of high performance computing. Increase
in the number of components in such systems increases the
failure probability. It is, thus, necessary to examine both
hardware and software solutions to ensure fault tolerance of
such parallel computers. To provide fault tolerance, it is
essential to understand the nature of the faults that occur in
these systems. There are mainly two kinds of faults: permanent
and transient. Permanent faults are caused by permanent
damage to one or more components and transient faults are
caused by changes in environmental conditions. Permanent
faults can be rectified by repair or replacement of components.
Transient faults remain for a short duration of time and are
difficult to detect and deal with. Hence it is necessary to
provide fault tolerance particularly for transient failures in
parallel computers. Fault-tolerant techniques enable a system to
perform tasks in the presence of faults. It is easier and more
cost effective to provide software fault tolerance solutions than
hardware solutions to cope with transient failures [1, 2].
Local checkpoint is the saved state of a process at a processor at
a given instance. Global checkpoint is a collection of local
checkpoints, one from each process. A global state is said to be
“consistent” if it contains no orphan message; i.e., a message
whose receive event is recorded, but its send event is lost. A
transit message is a message whose send event has been
recorded by the sending process but whose receive event has
not been recorded by the receiving process [1, 7].
The problem of taking a checkpoint in a message passing
distributed system is quite complex because any arbitrary set of
checkpoints cannot be used for recovery [9]. This is due to
the fact that the set of checkpoints used for recovery must form
a consistent global state.
Checkpointing is classified into following categories:

 Asynchronous/Uncoordinated Checkpointing
 Synchronous/Coordinated Checkpointing
 Quasi-Synchronous or Communication-induced

Checkpointing

ISSN : 0975-3397 1406

Preeti Gupta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1406-1410

 Message Logging based Checkpointing
The problem of taking a checkpoint in a message passing

distributed system is quite complex because any arbitrary set of
checkpoints cannot be used for recovery. This is due to the
fact that the set of checkpoints used for recovery must form a
consistent global state.

In coordinated or synchronous checkpointing, processes
coordinate their local checkpointing actions such that the set of
all recent checkpoints in the system is guaranteed to be
consistent [add reference list……]. In case of a fault, every
process restarts from its most recent permanent/committed
checkpoint. Hence, this approach simplifies recovery and it
does not suffer from domino-effect. Furthermore, coordinated
checkpointing requires each process to maintain only one
permanent checkpoint on stable storage, reducing storage
overhead and eliminating the need for garbage collection. Its
main disadvantage is the large latency involved in output
commits [15].

The coordinated checkpointing protocols can be classified
into two types: blocking and non-blocking. In blocking
algorithms, as mentioned above, some blocking of processes
takes place during checkpointing [4]. In non-blocking
algorithms, no blocking of processes is required for
checkpointing [5].

In a centralized algorithm like Chandy-lamport [7], there is
one node which always initiates the checkpoints and
coordinates the participating nodes. The disadvantage of a
centralized algorithm is that all nodes have to initiate
checkpoints whenever the centralized node decides to
checkpoint. Nodes can be given autonomy in initiating
checkpoints by allowing any node in the system to initiate
checkpoints.

The existence of mobile nodes in a distributed system
introduces new issues that need proper handling while
designing a checkpointing algorithm for such systems. These
issues are mobility, disconnections, finite power source,
vulnerable to physical damage, lack of stable storage etc. [2].
The location of an MH within the network, as represented by its
current local MSS, changes with time. Checkpointing schemes
that send control messages to MHs, will need to first locate the
MH within the network, and thereby incur a search overhead
[2]. Due to vulnerability of mobile computers to catastrophic
failures, disk storage of an MH is not acceptably stable for
storing message logs or local checkpoints. Checkpointing
schemes must therefore, rely on an alternative stable repository
for an MH’s local checkpoint [2]. Disconnections of one or
more MHs should not prevent recording the global state of an
application executing on MHs. It should be noted that
disconnection of an MH is a voluntary operation, and frequent
disconnections of MHs is an expected feature of the mobile
computing environments [2]. The battery at the MH has limited
life. To save energy, the MH can power down individual
components during periods of low activity [2]. This strategy is
referred to as the doze mode operation. An MH in doze mode is
awakened on receiving a message. Therefore, energy
conservation and low bandwidth constraints require the

checkpointing algorithms to minimize the number of
synchronization messages and the number of checkpoints.
Prakash & Singhal [16] proposed a nonblocking minimum-
process coordinated checkpointing protocol for mobile
distributed systems. They proposed that a good checkpointing
protocol for mobile distributed systems should have low
overheads on MHs and wireless channels; and it should avoid
awakening of an MH in doze mode operation. The
disconnection of an MH should not lead to infinite wait state.
The algorithm should be non-intrusive and it should force
minimum number of processes to take their local checkpoints.
In minimum-process coordinated checkpointing algorithms,
some blocking of the processes takes place [4, 10] or some
useless checkpoints are taken [[5, 11].

II. SOME MINIMUM-PROCESS COORDINATED CHECKPOINTING

PROTOCOLS FOR MOBILE DISTRIBUTED SYSTEMS

A. Cao and Singhal non-intrusive Algorithm [5]

Cao and Singhal achieved non-intrusiveness in the
minimum-process algorithm by introducing the concept of
mutable checkpoints. In their algorithm, initiator, say Pin,
sends the checkpoint request to any process, say Pj, only if Pin
receives m from Pj in the current CI. Pj takes its tentative
checkpoint if Pj has sent m to Pin in the current CI; otherwise,
Pj concludes that the checkpoint request is a useless one.
Similarly, when Pj takes its tentative checkpoint, it propagates
the checkpoint request to other processes. This process is
continued till the checkpoint request reaches all the processes
on which the initiator transitively depends and a checkpointing
tree is formed. During checkpointing, if Pi receives m from Pj
such that Pj has taken some checkpoint in the current initiation
before sending m, Pi may be forced to take a checkpoint, called
mutable checkpoint. If Pi is not in the minimum set, its mutable
checkpoint is useless and is discarded on commit. The huge
data structure MR[] is also attached with the checkpoint
requests to reduce the number of useless checkpoint requests.
The response from each process is sent directly to initiator.

B. A Probabilistic Algorithm by Kumar & Kuma [14]

They have proposed a coordinated checkpointing protocol
for mobile distributed systems, where only interacting
processes are required to checkpoint. They are able to maintain
exact dependencies among processes and make an approximate
set of interacting processes at the beginning. In this way, the
time to collect coordinated checkpoint is reduced. It also
reduces number of useless checkpoints and blocking of
processes. They have tried to minimize the blocking of
processes by buffering some messages at the receiver end for a
short duration. During blocking period, processes are allowed
to do their normal computations and send messages. They have
proposed a probabilistic approach to reduce the number of
useless checkpoints. Thus, the proposed protocol is
simultaneously able to reduce the useless checkpoints and
blocking of processes at very less cost of maintaining and
collecting dependencies and piggybacking checkpoint sequence

ISSN : 0975-3397 1407

Preeti Gupta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1406-1410

numbers onto normal messages. Concurrent initiations of the
proposed protocol do not cause its concurrent executions.

The basic idea can be understood by the following
description. Suppose, during the execution of the checkpointing
algorithm, Pi takes its checkpoint and sends m to Pj. Pj receives
m such that it has not taken its checkpoint for the current
initiation and it does not know whether it will get the
checkpoint request. If Pj takes its checkpoint after processing m,
m will become orphan. In order to avoid such orphan messages,
they propose the following technique. If Pj has sent at least one
message to a process, say Pk and Pk is in the tentative
minimum set, there is a good probability that Pj will get the
checkpoint request. Therefore, Pj takes its induced checkpoint
before processing m. An induced checkpoint is similar to the
mutable checkpoint. In this case, most probably, Pj will get the
checkpoint request and its induced checkpoint will be converted
into permanent one. There is a less probability that Pj will not
get the checkpoint request and its induced checkpoint will be
discarded. Alternatively, if there is not a good probability that
Pj will get the checkpoint request, Pj buffers m till it takes its
checkpoint or receives the commit message. They have tried to
minimise the number of useless checkpoints and blocking of
the process by using the probabilistic approach and buffering
selective messages at the receiver end. Exact dependencies
among processes are maintained. It abolishes the useless
checkpoint requests and reduces the number of duplicate
checkpoint requests.

C. HYbrid of Minimum Process & All Process checkpointing
Scheme by Kumar [13]

In minimum-process checkpointing, some processes, having
low communication activity, may not be included in the
minimum set for several checkpoint initiations and thus may
not advance their recovery line for a long time. In the case of a
recovery after a fault, this may lead to their rollback to far
earlier checkpointed state and the loss of computation at such
processes may be exceedingly high. In all-process
checkpointing, recovery line is advanced for each process after
every global checkpoint but the checkpointing overhead may be
exceedingly high, especially in mobile environments due to
frequent checkpoints. MHs utilize the stable storage at the
MSSs to store checkpoints of the MHs Thus, to balance the
checkpointing overhead and the loss of computation on
recovery, he designed a hybrid checkpointing algorithm for
mobile distributed systems, where an all-process checkpoint is
taken after certain number of minimum-process checkpoints.
The number of times, the minimum-process checkpointing
algorithm is executed, depends on the particular application and
environment and can be fine-tuned.

In coordinated checkpointing, an ever-increasing integer csn
is generally piggybacked onto normal messages [5, 15]. He
proposed a strategy to optimize the size of the csn. In order to
address different checkpointing intervals, he has replaced
integer csn with k-bit CI. Integer csn is monotonically
increasing, each time a process takes its checkpoint, it
increments its csn by 1. k-bit CI is used to serve the purpose of

integer csn. The value of k can be fine-tuned. In the present
study, we assume that all-process coordinated checkpoint is
taken after the execution of minimum-process algorithm for
seven times which requires only three-bit CI. In this case, any
delay of a message that extends to more than seven CIs may
cause a false checkpoint, i.e., it may trigger a checkpoint even if
an initiator does not trigger checkpointing activity. Thus, in this
algorithm, such delay needs to be avoided. During the period,
when a process sends its dependency set to the initiator and
receives the minimum set, may receive some messages, which
may alter its dependency set, and may add new members to the
already computed minimum set. In order to keep the computed
minimum set intact and to avoid useless checkpoints as in, he
proposed to block the processes for this period. He has
classified the messages, received during the blocking period,
into two types: (i) messages that alter the dependency set of the
receiver process (ii) messages that do not alter the dependency
set of the receiver process. The former messages need to be
delayed at the receiver side. The messages of the later type can
be processed normally. All processes can perform their normal
computations and send messages during their blocking period.
When a process buffers a message of former type, it does not
process any message till it receives the minimum set so as to
keep the proper sequence of messages received. When a
process gets the minimum set, it takes the checkpoint, if it is in
the minimum set. After this, it receives the buffered messages,
if any. By doing so, blocking of processes is reduced as
compared to [4].

D. KUMAR & KHUNTETA ALGORITHM [17]

In this paper, authors design a minimum process algorithm
for Mobile Distributed systems, where no useless checkpoints
are taken and an effort has been made to optimize the blocking
of processes. They propose to delay the processing of selective
messages at the receiver end only during the checkpointing
period. A Process is allowed to perform its normal
computations and send messages during its blocking period. In
this way, they try to keep blocking of processes to bare
minimum. They captured the transitive dependencies during the
normal execution by piggybacking dependency vectors onto
computational messages. In this way, they try to reduce the
Checkpointing time by avoiding formation of Checkpointing
tree. The Z-dependencies are well taken care of. The proposed
scheme forces zero useless checkpoints at the cost of very small
blocking.

The basic idea of this scheme as described as follows.
During the execution of checkpointing algorithm, a process Pi

may receive m from Pj such that Pj has taken its tentative
checkpoint for the current initiation whereas Pi has not taken. If
Pi processes m and it receives checkpoint request later on and
takes its checkpoint, then m will become orphan in the recorded
global state. We propose that such messages should be
buffered at the receiver end. In the present discussion, Pi

processes m only after taking its tentative checkpoint if it is a
member of the minimum set; otherwise, Pi processes m after

ISSN : 0975-3397 1408

Preeti Gupta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1406-1410

getting the exact minimum set and knowing that it is not a
member of the minimum set.
P1 _______________________________
R1[0001]
 t1
P2 ______________________________
R2[0010]

 m2[1100] m3 {after m3, R3 is 1101}
P3 _____________________________
R3[0100]
 m1[1000]
P4 _____________________________
R4[1000]

 Time

Figure. 1 Basic Idea

In the figure 1 P4 sends m1 to P3 along with its own
dependency vector R4[1000]. When P3 receives m1 it updates its
own dependency vector by taking logical OR of R4 & R3[0100],
which comes out to be 1100. When P3 send m2 to P2, it appends
R3[1100] along with m2. When P2 receive m2, it updates its own
dependency vector R2 by taking logical OR of R2 and R3, which
comes out to be [1110]. In this way, partial transitive
dependencies are captured during normal computation. It
should be noted that all the transitive dependencies are not
captured during normal computation. At time t1, the
dependency vector of P2 shows that P2 is not transitively
dependent upon P1, due to m3 and m2.

In coordinated checkpointing, if a single process fails to take
its checkpoint; all the checkpointing effort goes waste, because,
each process has to abort its tentative checkpoint. In order to
take the tentative checkpoint, an MH needs to transfer large
checkpoint data to its local MSS over wireless channels. Hence,
the loss of checkpointing effort may be exceedingly high.
Therefore, we propose that in the first phase, all concerned
MHs will take soft checkpoint only. Soft checkpoint is similar
to mutable checkpoint [4], which is stored on the memory of
MH only. In this case, if some process fails to take checkpoint
in the first phase, then MHs need to abort their soft checkpoints
only. The effort of taking a soft checkpoint is negligible as
compared to the tentative one. When the initiator comes to
know that all relevant processes have taken their soft
checkpoints, it asks all relevant processes to come into the
second phase, in which, a process converts its soft checkpoint
into tentative one. Finally, the initiator issues the commit
request.

E. Kumar & Garg Algorithm [18]

They propose a hybrid checkpointing algorithm, wherein, an
all-process coordinated checkpoint is taken after the execution
of minimum-process coordinated checkpointing algorithm for a
fixed number of times. In minimum-process checkpointing,
they try to reduce the number of useless checkpoints and
blocking of processes. They have proposed a probabilistic
approach to reduce the number of useless checkpoints. Thus,

the proposed protocol is simultaneously able to reduce the
useless checkpoints and blocking of processes at very less cost
of maintaining and collecting dependencies and piggybacking
checkpoint sequence numbers onto normal messages.
Concurrent initiations of the proposed protocol do not cause its
concurrent executions. They try to reduce the loss of
checkpointing effort when any process fails to take its
checkpoint in coordination with others.

In coordinated checkpointing, if a single process fails to take
its checkpoint; all the checkpointing effort goes waste, because,
each process has to abort its tentative checkpoint. In order to
take the tentative checkpoint, an MH needs to transfer large
checkpoint data to its local MSS over wireless channels. Hence,
the loss of checkpointing effort may be exceedingly high.
Therefore, they propose that in the first phase, all concerned
MHs will take soft checkpoint only. Soft checkpoint is similar
to mutable checkpoint [5], which is stored on the memory of
MH only. In this case, if some process fails to take checkpoint
in the first phase, then MHs need to abort their soft checkpoints
only. The effort of taking a soft checkpoint is negligible as
compared to the tentative one. When the initiator comes to
know that all relevant processes have taken their soft
checkpoints, it asks all relevant processes to come into the
second phase, in which, a process converts its soft checkpoint
into tentative one. Finally, the initiator issues the commit
request.

F. Hybrid of Synchronous & Asynchronous Checkpointing in
Mobile Systems [19]

It is difficult for multiple MHs to synchronously take
checkpoints since the wireless channels are less reliable and
may disconnect even during checkpointing. Mobile hosts are
prone to frequent failures and it may lead to frequent rollbacks.
Blocking of processes during checkpointing may degrade the
system performance.

In this scheme, authors propose a hybrid checkpointing
protocol that is non-blocking. MHs take checkpoints
independently. All to and fro messages of an MH pass through
its current local MSS. Therefore, an MSS logs the messages of
the MHs in its cell. If an MH fails to take its checkpoint and
transfer it to the current MSS, it can try later. MSSs take
checkpoints synchronously. A process on an MH can recover
independently. When a process on an MH crashes, a new
process is created using checkpoint of the crashed MH, and
then the logged messages are replayed in the order they were
originally received. When a process on an MSS fails, all
processes rollback to recent synchronous checkpoint. An MH
uses its recent committed checkpoint and message logs to reach
to a state consistent with the synchronous checkpoint. The
algorithm does not awaken an MH in doze mode operation. An
MH can remain disconnected for an arbitrary period of time
without affecting checkpointing activity.

In order to realize non-blocking during coordinated
checkpointing, an integer csn is generally piggybacked onto
normal messages [5], [15]. They propose a strategy to optimize
the size of the csn. In order to address different checkpointing

ISSN : 0975-3397 1409

Preeti Gupta et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 1406-1410

intervals (CIs), they have replaced integer csn used in [5], [15],
with k-bits CI. The number of bits used in CI can be fine tuned
in accordance with the system under consideration. If we use k-
bits CI, we will be able to distinguish only 2k different
checkpointing intervals and it will be implicitly assumed that
no message is delivered after 2k-1 checkpointing intervals. .
Higaki & Takizawa [24] originally proposed hybrid
checkpointing protocols where MHs checkpoint independently
and MSSs checkpoint synchronously.

G. Some More Checkpointing Schemes For Mobile Distributed
Systems

Biswas & Neogy [20] proposed a checkpointing and failure
recovery algorithm where mobile hosts save checkpoints based
on mobility and movement patterns. Mobile hosts save
checkpoints when number of hand-offs exceed a predefined
handoff threshold value. Gao et al [21] developed an index-
based algorithm which uses time-coordination for consistently
checkpointing in mobile computing environments. In time-
based checkpointing protocols, there is no need to send extra
coordination messages. However, they have to deal with the
synchronization of timers. This class of protocols suits to the
applications where processes have high message sending rate.
Rao and Naidu [22] proposed a new coordinated checkpointing
protocol combined with selective sender-based message
logging. The protocol is free from the problem of lost messages.
The term ‘selective’ implies that messages are logged only
within a specified interval known as active interval, thereby
reducing message logging overhead. All processes take
checkpoints at the end of their respective active intervals
forming a consistent global checkpoint. Singh & Cabillic [23]
proposed a minimum-process non-intrusive coordinated
checkpointing protocol for deterministic mobile systems, where
anti-messages of selective messages are logged during
checkpointing.

III. CONCLUSIONS

Minimum-process coordinated checkpointing is a suitable
approach to introduce fault tolerance in mobile distributed
systems transparently. This approach is domino-free, requires at
most two checkpoints of a process on stable storage, and forces
only a minimum number of processes to checkpoint. It may
require blocking of processes, extra synchronization messages,
piggybacking of some information along with computation
messages, or taking some useless checkpoints. In this paper we
have given introductory concepts related to checkpointing in
mobile distributed systems. We also gave a review of various
minimum-process checkpointing schemes especially designed
for mobile distributed systems.

REFERENCES

[1] Singhal, M, N G Shivratri, “Advanced concepts in Operating Systems,

Tata Mc Graw Hill, 1994.
[2] Acharya A., “Structuring Distributed Algorithms and Services for

networks with Mobile Hosts”, Ph.D. Thesis, Rutgers University, 1995.

[3] Cao G. and Singhal M., “On coordinated checkpointing in Distributed
Systems”, IEEE Transactions on Parallel and Distributed Systems, vol.
9, no.12, pp. 1213-1225, Dec 1998.

[4] Cao G. and Singhal M., “On the Impossibility of Min-process Non-
blocking Checkpointing and an Efficient Checkpointing Algorithm for
Mobile Computing Systems,” Proceedings of International Conference
on Parallel Processing, pp. 37-44, August 1998.

[5] Cao G. and Singhal M., “Mutable Checkpoints: A New Checkpointing
Approach for Mobile Computing systems,” IEEE Transaction On
Parallel and Distributed Systems, vol. 12, no. 2, pp. 157-172, February
2001.

[6] Cao G. and Singhal M., “Checkpointing with Mutable Checkpoints”,
Theoretical Computer Science, 290(2003), pp. 1127-1148.

[7] Chandy K. M. and Lamport L., “Distributed Snapshots: Determining
Global State of Distributed Systems,” ACM Transaction on Computing
Systems, vol. 3, No. 1, pp. 63-75, February 1985.

[8] Elnozahy E.N., Alvisi L., Wang Y.M. and Johnson D.B., “A Survey of
Rollback-Recovery Protocols in Message-Passing Systems,” ACM
Computing Surveys, vol. 34, no. 3, pp. 375-408, 2002.

[9] Kalaiselvi, S., Rajaraman, V., “A Survey of Checkpointing Algorithms
for Parallel and Distributed Systems”, Sadhna, Vol. 25, Part 5, October
2000, pp. 489-510.

[10] Koo R. and Toueg S., “Checkpointing and Roll-Back Recovery for
Distributed Systems,” IEEE Trans. on Software Engineering, vol. 13,
no. 1, pp. 23-31, January 1987.

[11] Parveen Kumar, Lalit Kumar, R K Chauhan, V K Gupta “A Non-
Intrusive Minimum Process Synchronous Checkpointing Protocol for
Mobile Distributed Systems” Proceedings of IEEE ICPWC-2005,
January 2005.

[12] Pushpendra Singh, Gilbert Cabillic, “A Checkpointing Algorithm for
Mobile Computing Environment”, LNCS, No. 2775, pp 65-74, 2003.

[13] Parveen Kumar, “A Low-Cost Hybrid Coordinated Checkpointing
Protocol for Mobile Distributed Systems”, Mobile Information Systems
[An International Journal from IOS Press, Netherlands] pp 13-32, Vol.
4, No. 1, 2007.

[14]. Lalit Kumar, Parveen Kumar “A Synchronous Checkpointing Protocol
for Mobile Distributed Systems: A Probabilistic Approach”,
International Journal of Information and Computer Security [An
International Journal from Inderscience Publishers, USA], pp 298-314,
Vol. 3 No. 1, 2007.

[15]. Silva L, Silva J 1992 Global checkpointing for distributed programs.
Proc. IEEE 11th Symp. On Reliable Distributed Syst. pp 155-162.

[16] R. Prakash and M. Singhal. “Low-Cost Checkpointing and Failure
Recovery in Mobile Computing Systems”. IEEE Trans. on Parallel
and Distributed System, pages 1035-1048,Oct. 1996.

[17] Kumar, P., & Khunteta, A. ,”A Minimum-Process Coordinated
Checkpointing Protocol For Mobile Distributed System”, International
Journal of Computer Science issues, Vol. 7, Issue 3.,2010

[18] Kumar, P., & Garg, R. ,” Soft-Checkpointing Based Coordinated
Checkpointing Protocol for Mobile Distributed Systems”, International
Journal of Computer Science issues, Vol. 7, Issue 3.,2010

[19] Lalit Kumar, Parveen Kumar, R K Chauhan, “Logging based Coordinated
Checkpointing in Mobile Distributed Computing Systems”, IETE
Journal of Research, vol. 51, no. 6, pp. 485-490, 2005.

[20] Biswas, S., & Neogy, S.,“A Mobility-Based Checkpointing Protocol for
Mobile Computing System”, International Journal of Computer
Science & Information Technology, Vol.2, No.1, pp135-151, 2010

[21] Gao, Y., Deng, C., & Che, Y. ,“ An Adaptive Index-Based Algorithm
Using Time-Coordination in Mobile Computing”, International
Symposiums on Information Processing, pp.578-585.,2008.

[22] Rao, S., & Naidu, M.M.,“A New, Efficient Coordinated Checkpointing
Protocol Combined with Selective Sender-Based Message Logging”,
International Conference on Computer Systems and Applications.
IEEE/ACS, 2008.

[23] Singh, P., & Cabillic, G. (2003). A Checkpointing Algorithm for Mobile
Computing Environment. LNCS, No. 2775, pp 65-74.

[24]. Higaki, H., & Takizawa, M. , Checkpoint-recovery Protocol for Reliable
Mobile Systems. Trans. of Information processing Japan, vol. 40, no.1,
pp. 236-244., 1999

ISSN : 0975-3397 1410

