
D. Pandey et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 948-954

IMPROVED ROUND ROBIN POLICY
A MATHEMATICAL APPROACH

D. Pandey
Dept of Mathematics

C C S University
Meerut, India,

pandey_diwakar2k1@rediffmail.com

Vandana
Dept of Computer Applications
Bharat Institute of Technology

 Meerut, India,
ranavd@rediffmail.com

Abstract : This work attempts to mathematically formulize the
computation of waiting time of any process in a static n-process,
CPU-bound round robin scheme. That in effect, can calculate
other performance measures also. An improvement in the
existing round robin algorithm has also been worked out that
provides priority to processes nearing completion. The
suggested approach uses two ready queues, wherein a process is
returned to the second ready queue after the completion of its
penultimate round. This policy reduces the average waiting time
and increases the throughput, in comparison to the conventional
round robin scheme, while maintaining the same level of CPU
utilization and no substantial increase in the overheads. The
mathematical formulation of this policy is transparent enough; it
provides, for each process, the actual order of shifting to the
second queue and also the order of termination.
Keywords: CPU scheduling, quantum, dispatcher, context switch,
throughput.

I. INTRODUCTION

 In CPU scheduling, processes are allocated to CPU on
the basis of some specified criteria. There are several methods
in existence for this purpose. A preemptive scheduling
algorithm possesses the right to take away the control of CPU
from a process before its completion. During each such
scheduling decision, a context switch occurs, meaning that the
current process will stop its execution and put itself back to
the ready queue and another process will be dispatched. An
improvement in CPU scheduling algorithm is basically an
attempt of optimizing some or all of the following criteria:
1. CPU Utilization: Keep CPU utilization as high as possible.
2. Throughput: Complete as many processes as possible in

every unit of time.
3. Turnaround Time: Reduce the total time span of the

process.
4. Waiting Time: Reduce the total time that a process spends

in ready queue.
5. Response Time: Reduce the time between the submission of

request and the first response. This measure is the amount
of time it takes to start responding [1].

 The Round Robin (RR) service discipline is a popular
and widely used discipline in many real-world, time-sharing
systems because of its fairness. In this discipline, a process is
served by the CPU for a single quantum q at a time. If the
burst time of the process is less than a quantum, this process
is terminated in its first round and the process next in the
ready queue is taken by the CPU, assigning a fresh quantum q
to it. If the burst time of the process exceeds the quantum size
q, the job’s processing is interrupted at the end of its quantum
and it is returned to the rear end of the ready queue, awaiting

service quantum in the next round. This is done to provide fair
service to all processes.
 The RR scheduling policy gives better responsiveness
but worse turnaround time and waiting time. However, it
maintains the weighted turn around of processes
approximately equal to the number of active processes in the
system [2]. The RR policy does not perform well in terms of
throughput since it treats all processes alike, without giving
any favoured treatment to shorter processes.
 In CPU-bound processes, reduction of turnaround time,
waiting time and response time are all equivalent to a
single.criterion of reducing the waiting time only. In waiting
line phenomena, usually simulation models are the powerful
tools to quantify the waiting time and other performance
criteria because an exact probability distribution cannot be
assigned to its behavior. In the present work, we have first
attempted to mathematically formulize the computation of
waiting time of any process in an n-process CPU-bound
Round Robin service. That, in effect, can calculate other
performance measures also.
 Among several variants of Round Robin, the one called
Selfish Round Robin [3] uses a structure of multilevel
feedback queues in which only the last queue is active and the
rest serve as holding queues with increasing priorities
attached to them. In the present work, we have also suggested
an improvement in the existing Round Robin algorithm that
provides priority to the processes nearing completion. Unlike
selfish round robin, the suggested approach uses two active
ready queues, wherein a process is returned to the second
ready queue after the completion of its penultimate round.
The Improved Round Robin Policy (IRRP) reduces the
waiting time of every process and hence improves all
performance measures, including the throughput while
maintaining the same level of CPU utilization and no
substantial increase in the overheads. The mathematical
formulation is transparent to the extent that for each process it
provides actual order of it being transferred to the second
queue and also its order of termination.
 The rest of the paper is organized as follows. In
Section 2, we analytically examine the components of the
existing Round Robin service algorithm and obtain
mathematical expressions for various performance criteria
under this service scheme for CPU-bound processes. In
Section 3, we develop a new Round Robin service scheme
and in Section 4, several mathematical formulae have been
obtained for the new scheme, which can significantly reduce
simulation efforts. The fifth and last section presents the
comparison of results obtained by working on different data-

ISSN : 0975-3397 948

D. Pandey et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 948-954

sets with conventional Round Robin scheme and the new
approach.

II. MATHEMATICAL FORMULATION OF ROUND
ROBIN SCHEME

 Let 1 2, ,..... nP P P be n-processes arranged in FCFS

manner in a ready queue (to be referred as Q1), having ix

and ; 1, 2,...ir i n , as their expected CPU bursts and

number of rounds required for completion, respectively.
Further, let q denote a fixed quantum in time-units. Following

expression can be used to calculate ir .

/ , % 0

(/) 1, .
i i

i
i

x q if x q
r

x q otherwise

 ….…(1)

where ix and q are assumed to have integral values and the

symbols ‘%’ and ‘/’ denote modulus and division operators,

respectively. For example, if 1 2P and P are two processes

having their CPU bursts as 1 2250 275x and x , then for

a quantum size q =50, 1 2r and r will be 5 and 6 respectively.

Every process will be executed for one complete quantum in
each round, except for the last round where it may be less
than or equal to one quantum. The time requirement for a

process iP in its last round (denoted by iq) is the remainder of

(/)ix q .

 Remaining CPU burst-time is updated after every

round. We use ,i jx and ,i jq to denote the remaining CPU

burst and the executed portion of CPU burst, respectively, for

the ith process in thj round. Obviously, the remaining CPU

time requirement of a process iP in thr round can be given

by:

 , , 1 , 1i r i r i rx x q ….…(2)

where , 1i rq can be obtained from the following

, 1

, 1
, 1

, ;

, .
i i r

i r
i r

q if x q
q

q if x q

 …..…(3)

Total waiting time for a process iP that terminates in th
ir

round (iP (TWT)) can be calculated by summing up its

Waiting Time (WT) in all rounds from first to th
ir round.

WT of iP in round 1 = 1,1 2,1 1,1(......)iq q q ,

WT of iP in round 2

=
1,1 2,1 ,1 1,2 2,2 1,2(......) (......)i i n iq q q q q q ,

WT of iP in round 3

 =
1,2 2,2 ,2 1,3 2,3 1,3(......) (......)i i n iq q q q q q ,

…………………………………………..

WT of iP in round ir

=
1, 1 2, 1 , 1 1, 2, 1,(......) (......)

i i i i i ii r i r n r r r i rq q q q q q .

Total waiting time of the process iP can be obtained by

summing up all above expressions.

iP (TWT) =
1

,1
1

()
i

k
k

q

 + ,1

1

[
n

k
k i

q

1

,2
1

]
i

k
k

q

 +

1

,2 ,3
1 1

[]
n i

k k
k i k

q q

 +……+
1

, 1 ,
1 1

[]
i i

n i

k r k r
k i k

q q

 ..….(4)

=

,1 ,1 ,2 ,2 , 1 , 1 , ,
1 1 1 1

[] [] [] []
i i i i

n n n i

k i k i k r i r k r i r
k k k k

q q q q q q q q

 = ,1 ,2 , 1 , ,
1 1 1

[....]
i

i i

rn i

k k k r k r i k
k k k

q q q q q

Using ,
1

ir

i k i
k

q x

 , following expression is obtained for

()iP TWT

1

, ,
1 1 1

,
1

, 1;

()

, 1.

i

i

i

rn i

k j k r i i
k j k

i i

k r i i
k

q q x for r

P TWT

q x for r

 ..….(5)

where , 0j rq

for, jr r , since the processes that have

already been completed in earlier rounds will not contribute to
the right hand side of (5).

 Average Waiting Time =
1

() /
n

i
i

P TWT n

 ……..(6)

Turnaround time of a process iP can be calculated by the

following expression:

1

() /
n

i
i

AverageTurnaround Time P TT n

 …..(7)

 III. IMPROVED ROUND ROBIN POLICY (IRRP)

 In Round Robin principle, processes are executed in the
order of their arrival. However unlike FCFS, the processes get
only a fixed quantum of CPU time in each round. RR
therefore avoids a long wait for first CPU response. A process
may thus need several rounds for completion. A major
drawback in Round Robin policy is that even if a process is
near completion, it is still placed at the rear end of Q1, which
not only increases the total waiting time but also lowers the
throughput.
 IRRP is an attempt to combine the basic functionalities
of RR with an improvement towards the priority assigned to
the processes nearing completion. In view of (1), it is obvious

that the time requirement for completion of a process iP after

ISSN : 0975-3397 949

D. Pandey et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 948-954

(1)th
ir round will be at the most one time quantum. We

therefore, consider a priority queue (to be referred as Q2) in
addition to the ready queue Q1. An additional queue has been
used by Pandey et.al. [4] for dispatching priority in context of
FCFS scheduling. All processes, after being served by the
CPU in penultimate round, are sent to the rear end of Q2
instead of Q1. Thus the processes which need only one
quantum or less will be terminated in the first round itself
from Q1, while all others will be terminated on being
dispatched from Q2. Therefore processes going to CPU
through Q1, if not terminated, may return back to the rear end
of either Q1 or Q2. As shown in Fig.1, this approach
organizes the pending requests in two queues. The scheduling
policy adopts cycle of three processes for the purpose of
sequential allocation to CPU; it starts with two processes from
Q1 followed by one process from Q2.The policy can be
violated only under following special situations:

(i) At any stage, after dispatching two processes from
Q1, if Q2 is found to be empty, another pair of
processes will be dispatched from Q1.

(ii) If Q1 is left with a single process, Q2 will have its
turn immediately after the dispatch of the single
process from Q1.

(iii) If Q1 is left with no process, Q2 will function as a
single ready queue.

Queue1………. Terminated

 Queue2…...............

Figure 1

The scheduling policy can further be improved by adopting
some different cycle. Precise idea is to appropriately choose a
pair of numbers p and q (p>q) that determine the number of
processes from Q1 and Q2 for allocation to CPU in the cycle.
An optimal choice may however, depend on the number of
processes and the size of their CPU bursts. In the present
work, we shall confine our discussion to p=2 and q=1.This
policy provides better estimates than the conventional RR
policy in respect of all performance measures, including the
throughput, without any significant increase in the overheads.

IV. MATHEMATICAL COMPUTATIONS FOR IRRP

 In an effort to obtain mathematical expressions for
various performance measures of IRRP, we first need to know
the order in the sequence (in terms of elapsed time slices of
CPU use) in which a process is finally terminated under the

new policy. Let 1 2, ,... nP P P be n processes under

consideration, needing 1 2, ,... nr r r rounds of CPU execution

respectively. We use following notations in addition to those
given in Section 2.

, :i rp Number of processes jP (having index j < i) gone to

Q2 up to thr round;

, :r ip Number of processes jP (having index j > i) gone to

Q2 up to thr round;

:rp = ,i rp + ,r ip ;

() :iQ P Order in the sequence in which a process iP goes to

Q2;
' () :iT P Tentative order in the sequence in which a

process iP terminates on completion;

() :iT P Actual order in the sequence in which a process iP

terminates on completion.

To determine ()iT P we first need to know ()iQ P .

Determination of ()iQ P

 In IRRP, a process iP , requiring ir rounds of CPU

executions, moves to Q2 after (ir -1)th execution. Thus, its

order in the sequence for going to Q2 can be obtained by first

determining its order at (ir -1)th execution under conventional

RR policy (to be denoted by 1(,)RR i iQ P r) and subtracting

from it the number of processes gone to Q2 prior to iP up to

(2)thr round, that may affect 1(,)RR i iQ P r . In fact all

processes that have gone to Q2 up to (3)thr round and only

those processes jP having j < i, gone to Q2 in (2)thr

round will affect the order of iP in (1)thr round.

Therefore, this number is (3,r ip + , 2i rp).

For ir = 1; ()iQ P = 0, since a process terminating in the first

round would never go to Q2.

For ir = 2; ()iQ P = (,1) 0RR iQ P = i -0 = i, since the order

of execution of iP in first round under RR policy is thi and no

process can go to Q2 up to (2)thr round.

For ir 3; 3, , 2() (, 1) ()
i ii RR i i r i i rQ P Q P r p p

 ….(8)

 To determine, ()iQ P for ir =3 onwards, we need to

calculate (, 1)RR i iQ P r . We must therefore evaluate the

number of time slices that have been used by the CPU in each

round, before iP is executed in (1)th
ir round under RR

policy. Let rt and ,i rt respectively denote the number of

processes terminated up to thr round and the number of

processes jP (having index j < i), terminated up to

thr round under conventional RR policy .

P2 P1

P3

CPU

ISSN : 0975-3397 950

D. Pandey et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 948-954

 In first round all n processes will be executed by the CPU,
so total number of processes executed in first round = n
Total number of processes to be executed in the second round
= n - the number of processes terminated up to first round

 = n - 1t

Total number of processes to be executed in the third round=
n - number of processes terminated up to second round

 = n - 2t

………………………………………....

Total number of processes to be executed in the (2)th
ir

round= n – number of processes terminated up to

(3)th
ir round

 = n - 3ir
t

In the (1)th
ir round we are concerned with only those

processes which are executed prior to iP in this round. It is

obvious that the processes terminating after the th
iP process in

(2)th
ir round will not contribute to the order of iP in

(1)th
ir round.

Therefore the number of processes executed up to iP in the

(1)th
ir round = i – (number of processes jP (having index

j < i), terminated up to (2)th
ir round) = i – , 2ii rt

Summing up all above expressions and using 0 0t ,

(, 1)RR i iQ P r = (n - 0t) + (n - 1t) + (n - 2t) +…+

 (n - 3ir
t) + i – , 2ii rt

=
3

0

()
ir

k
k

n t

 + i – , 2ii rt , for 3ir . ….(9)

From (8) and (9), following expression is obtained for ()iQ P ;

ir 3.

3, , 2() (, 1) ()
i ii RR i i r i i rQ P Q P r p p

 =
3

0

()
ir

k
k

n t

 + i – , 2ii rt 3, , 2()
i ir i i rp p ,

 =
3

1
0

()
ir

k
k

n p

 + i – , 3ii rp 3, , 2()
i ir i i rp p ,

substituting , 1 ,i r i rp t , where ,0ip = ,1it = number of

processes terminating before iP in the first round and

1r rp t , where 1 0 0p t and 0 1p t = number of

processes terminating in the first round.

 =
3

1
0

()
ir

k
k

n p

 +i- 3ir
p , 2ii rp ,

 since , 3 3, 3i i ii r r i rp p p . ……(10)

 To understand the working of expression (10), let us

consider an example of following five processes functioning

under RR policy having a quantum of 50 time units :

P1(350), P2(125), P3(475), P4(250), P5(75).

Table 1, demonstrates determination of ()iQ P according to

(10).
Table 1

Pi ri 3

1
0

()
ir

k
k

n p

3ir

p , 2ii rp ()iQ P

P1 7 20 3 0 18
P2 3 5 0 0 7
P3 10 25 4 2 22
P4 5 14 2 1 15
P5 2 5 0 0 5

Determination of ()iT P

 The actual order of termination ()iT P for the process

iP (needing ir rounds for completion) depends not only on

()iQ P but also on the number of processes already present in

Q2 at the arrival of iP . Therefore a tentative value ' ()iT P

for the order of termination is first obtained, which is later
finalized according to the situation. In the determination of

' ()iT P , we take into account following facts:

1. IRRP adopts a cycle of two processes first from Q1,
followed by one process from Q2, for the purpose of
allocation to CPU.

2. All processes needing two or more rounds for
completion will be terminated only through Q2.

3. Processes terminating in their first round of
execution do not move to Q2.

 In view of the above points, it can easily be observed

that if a process iP is assumed to be the first process going to

Q2 then its order in the sequence for termination will be an

odd number with respect to ()iQ P . Therefore to

obtain ()iT P , either 1 or 2 must respectively be added to

()iQ P according to its even or odd value. Further, if iP is

not the first process to go to Q2, then the number of processes

already gone to Q2 before iP must also be added in the

earlier sum in order to get the value of ()iT P . Assuming in

to be the number of processes gone to Q2 before iP , following

expression is obtained for ' ()iT P .

 ' () 1 , ()
()

() 2 ,
i i i

i
i i

Q P n if Q P iseven
T P

Q P n otherwise

 ..…..(11)

ISSN : 0975-3397 951

D. Pandey et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 948-954

where in denotes the number of processes jP satisfying

() ()j iQ P Q P .

 The tentative value ()iT P given by (11) may differ from

the actual value ()iT P in some special situations, for

example, when Q1 falls short of the requisite number of
processes to be dispatched according to IRRP cycle or Q1
being emptied or the process under consideration being the
last, second last or third last etc.. It must however be noted
that in all the cases, the order of the last terminating process is

always equal to
1

n

i
i

r

 . These situations require following

modifications in ' ()iT P to arrive at the actual termination

point ()iT P .

Case I: ' ()iT P
1

2
n

i
i

r

 .

 In view of the dispatch cycle adopted in IRRP, the difference

between the termination of two processes must atleast be

three, with an exception of some special cases referred earlier.

To ascertain it, following modifications can be done:

() 3, '() () 3
()

'() , ,

j i j

i

i

T P if T P T P
T P

T P otherwise

(12)

provided the modified termination number ()iT P also

remains within the bounds of this case, that is, ()iT P <

1

2
n

i
i

r

 , where ()jT P denotes the actual termination

number of the process terminated immediately preceding iP

(for the first terminating process, () 0jT P). The case

where ()iT P
1

2
n

i
i

r

 is dealt according to case II.

Case II : ' ()iT P (or ()iT P obtained from Case I)

1

2
n

i
i

r

 .

1

1

1

2, 3;

() 1, 2;

, 1.

n

i i
i

n

i i i
i

n

i i
i

r if n n

T P r if n n

r if n n

 …...(13)

To understand the working of expressions (11), (12) and (13),

let us consider the example of ten processes functioning under

RR policy with a quantum of 50 time units.
Table 2 given immediately before section IV, demonstrates
the functioning of the IRRP in terms of Q1 and Q2 and

determines the values of (), ()i iQ P T P and ()iT P with the

help of (11), (12) and (13).
Waiting Time of a Process

 The order of termination ()iT P of a process

determines the number of time slices during which, CPU was

in use, till the termination of iP . These time slices may

include the following:

1. All time slices consumed for the process iP ;

2. Number of time slices of full quantum consumed for

processes other than iP ;

3. Number of time slices of full or part of the quantum,
consumed in the last round of the

 processes terminated before iP .

 In the determination of total waiting time for the process

iP , we need to identify the time slices of each of the above

category and compute their number. The expression to
calculate total waiting time of a process is as follows:

()iP TWT = CPU time consumed before the termination

of iP , for processes other than iP

 = Quantum (number of full quantum slices used by other

processes before the termination of iP) + total CPU time used

by the processes terminated before iP , in their last rounds.

 = Quantum [()iT P - number of rounds needed for iP -

number of time slices used in the last rounds of the processes

terminating before iP] + sum of (burst time – time consumed

up to penultimate round) for all processes that have

terminated before iP .

() ()

(())* [(1)*)]
k

k i

i i i k k
P

T P T P

T P r n q x r q

Thus

() ()

() (())* [(1)*)]
k

k i

i i i i k k
P

T P T P

P TWT T P n r q x r q

 …….(14)

The average waiting time

n

i
i nTWTPAWT

1

/)(

 ..……(15)

ISSN : 0975-3397 952

D. Pandey et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 948-954

Table 2

R
O

U
N

D

ORDER OF PROCESSES

()iQ P

()iT P

()iT P

1 1Q
1P

2P

3P

4P

5P

6P

7P

8P

9P

10P

1P

 1

1P

 3

1P

3 2Q

1P

2 1Q
2P

3P

4P

5P

6P

7P

8P

9P

10P

5P 7P 9P 10P

14 16 18 19

5P 7P 9P 10P

16 19 22 25

5P 7P 9P 10P

16 19 22 25 2Q

5P

7P

9P

10P

3 1Q
2P

3P

4P

6P

8P

2P 3P

20 21

2P 3P

26 29

2P 3P

28 31 2Q

2P

3P

4 1Q
4P

6P

8P

4P 6P 8P

25 26 27

4P 6P 8P

34 35 38

4P 6P 8P

 34 36 37 2Q

4P

6P

8P

IV. RESULTS AND CONCLUSIONS

 We worked on several randomly generated data sets in
an attempt to compare performance of proposed IRRP with
conventional RR policy with respect to average waiting time.
Results obtained on different data sets are presented in Table
3.

Table 3
Data sets Size /

Quantum
Range of

CPU Burst
Average Waiting Time
RR IRRP

set 1 50/10 10-100 tu 1886 1649
set 2 50/30 25-134 tu 2764 2159
set 3 50/20 11-150 tu 3042 2595
set 4 50/50 36-539 tu 8119 7072
set 4 50/40 36-539 tu 8183 7306
set 4 50/30 36-539 tu 8223 7505
set 4 50/20 36-539 tu 8197 7719
set 4 50/10 36-539 tu 8222 7982

 Data set 4 has been worked on five different values of time
quantum. IRRP shows better average waiting time than RR in
all the cases. This would, in turn, amount to better results
toward average turnaround time also. In terms of throughput,
IRRP serves better than the conventional RR because of its
policy of assigning priority to the processes nearing
completion. Those processes that require only two rounds of
CPU service, shall slightly delay the first CPU response of the
processes following them but in all other situations, the first

CPU response time of IRRP and conventional RR remains the
same.
 For the visual perception of the difference in the performance
of improved round robin policy against the conventional
round robin policy we present the comparative bar-graphs for
average waiting time and average turnaround time of the two
policies in Figures 2 and 3.

Figure 2

1 2 3 4 5 6 7 8 9 10(80), (175), (200), (245), (125), (220), (140), (230), (150), (120)P P P P P P P P P P

ISSN : 0975-3397 953

D. Pandey et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 04, 2010, 948-954

Figure 3

The scheduling policy discussed in this work is competitive to
the conventional Round Robin scheme in fairness, in the first
assignment time of the processor and in respects of the
overheads due to preemption, but it certainly performs better,
in terms of average waiting time, average turnaround time and
the throughput of the system. Moreover, the derivation of
related mathematical expressions is useful, not only in
reducing the simulation efforts but also in making the policy
transparent to the extent that for each process it provides
actual order of its being transferred to the second queue and
also its order of termination. The method is different from the
one suggested by Kleinrock [2] using multi-level feedback
queues; however, a cross-application of the structure of multi-
level feedback queues with the basic approach of the new
policy may be worked in future, to provide priority at
different levels to the processes nearing completion.

REFERENCES
[1] Silberschatz, A., Galvin P.B., and Gagne, G. Operating System Concepts,
India, Wiley Student Edition, John Wiley, 2004.

[2] D.M. Dhamdhere Operating Systems: A Concept-Based Approach, New
Delhi: Tata McGraw-Hill 2002.

[3] L. Kleinrock, “A Continuum of Time Sharing Scheduling Algorithms”,
Proceedings of AFIPS, SJCC 453-458, 1970.

[4] D. Pandey, Vandana and M. K. Sharma “CPU Scheduling: FCFS with
Shorter Processes First”, MR Int. J. of Engg. and Tech. 1 (2):11-17,2008.

AUTHORS PROFILE

D. Pandey is Professor of Mathematics and Dean
Faculty of Engineering & Technology in Ch. Charan
Singh University, Meerut (India). He obtained his
Bachelors and Masters degrees from Allahabad
University (India) and doctorate from Meerut
University Meerut, (India). His research interests
include Reliability theories, Fuzzy Sets and Operating
systems. He has published more than 45 research

papers in various National and International Journals of repute in different
areas of Mathematics and Computer Science.

Vandana, an Asst. Prof., Dept of Computer Applications
in BIT college, Meerut (India), is a doctoral candidate in
Computer Science. She has published 3 research papers in
computer science. Her research interest includes CPU
scheduling theories, and Natural Language Processing.
She is life member of International Academy of Physical
Sciences.

ISSN : 0975-3397 954

