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Abstract : This work attempts to mathematically formulize the 
computation of waiting time of any process in a static n-process, 
CPU-bound round robin scheme. That in effect, can calculate 
other performance measures also. An improvement in the 
existing round robin algorithm has also been worked out that 
provides priority to processes nearing completion.  The 
suggested approach uses two ready queues, wherein a process is 
returned to the second ready queue after the completion of its 
penultimate round. This policy reduces the average waiting time 
and increases the throughput, in comparison to the conventional 
round robin scheme, while maintaining the same level of CPU 
utilization and no substantial increase in the overheads. The 
mathematical formulation of this policy is transparent enough; it 
provides, for each process, the actual order of shifting to the 
second queue and also the order of termination. 
Keywords: CPU scheduling, quantum, dispatcher, context switch, 
throughput. 

I.  INTRODUCTION 

          In CPU scheduling, processes are allocated to CPU on 
the basis of some specified criteria. There are several methods 
in existence for this purpose. A preemptive scheduling 
algorithm possesses the right to take away the control of CPU 
from a process before its completion. During each such 
scheduling decision, a context switch occurs, meaning that the 
current process will stop its execution and put itself back to 
the ready queue and another process will be dispatched. An 
improvement in CPU scheduling algorithm is basically an 
attempt of optimizing some or all of the following criteria: 
1. CPU Utilization: Keep CPU utilization as high as possible. 
2. Throughput: Complete as many processes as possible in 

every unit of time. 
3. Turnaround Time: Reduce the total time span of the 

process. 
4. Waiting Time: Reduce the total time that a process spends 

in ready queue. 
5. Response Time: Reduce the time between the submission of 

request and the first response. This measure is the amount 
of time it takes to start responding [1]. 

          The Round Robin (RR) service discipline is a popular 
and widely used discipline in many real-world, time-sharing 
systems because of its fairness. In this discipline, a process is 
served by the CPU for a single quantum q at a time. If the 
burst time of the process is less than a quantum, this process 
is terminated in its first round and the process next in the 
ready queue is taken by the CPU, assigning a fresh quantum q 
to it. If the burst time of the process exceeds the quantum size 
q, the job’s processing is interrupted at the end of its quantum 
and it is returned to the rear end of the ready queue, awaiting 

service quantum in the next round. This is done to provide fair 
service to all processes. 
          The RR scheduling policy gives better responsiveness 
but worse turnaround time and waiting time. However, it 
maintains the weighted turn around of processes 
approximately equal to the number of active processes in the 
system [2]. The RR policy does not perform well in terms of 
throughput since it treats all processes alike, without giving 
any favoured treatment to shorter processes. 
        In CPU-bound processes, reduction of turnaround time, 
waiting time and response time are all equivalent to a 
single.criterion of reducing the waiting time only. In waiting 
line phenomena, usually simulation models are the powerful 
tools to quantify the waiting time and other performance 
criteria because an exact probability distribution cannot be 
assigned to its behavior. In the present work, we have first 
attempted to mathematically formulize the computation of 
waiting time of any process in an n-process CPU-bound 
Round Robin service. That, in effect, can calculate other 
performance measures also.    
          Among several variants of Round Robin, the one called 
Selfish Round Robin [3] uses a structure of multilevel 
feedback queues in which only the last queue is active and the 
rest serve as holding queues with increasing priorities 
attached to them. In the present work, we have also suggested 
an improvement in the existing Round Robin algorithm that 
provides priority to the processes nearing completion.  Unlike 
selfish round robin, the suggested approach uses two active 
ready queues, wherein a process is returned to the second 
ready queue after the completion of its penultimate round. 
The Improved Round Robin Policy (IRRP) reduces the 
waiting time of every process and hence improves all 
performance measures, including the throughput while 
maintaining the same level of CPU utilization and no 
substantial increase in the overheads. The mathematical 
formulation is transparent to the extent that for each process it 
provides actual order of it being transferred to the second 
queue and also its order of termination. 
           The rest of the paper is organized as follows. In 
Section 2, we analytically examine the components of the 
existing Round Robin service algorithm and obtain 
mathematical expressions for various performance criteria 
under this service scheme for CPU-bound processes. In 
Section 3, we develop a new Round Robin service scheme 
and in Section 4, several mathematical formulae have been 
obtained for the new scheme, which can significantly reduce 
simulation efforts. The fifth and last section presents the 
comparison of results obtained by working on different data-
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sets with conventional Round Robin scheme and the new 
approach.  

II. MATHEMATICAL FORMULATION OF ROUND 
ROBIN  SCHEME 

           Let 1 2, ,..... nP P P  be n-processes arranged in  FCFS   

manner in a ready queue (to be referred as Q1), having ix  

and ; 1, 2,...ir i n , as their expected CPU bursts and  

number of rounds required for completion, respectively. 
Further, let q denote a fixed quantum in time-units. Following 

expression can be used to calculate ir .   

        
/ , % 0

( / ) 1, .
i i

i
i

x q if x q
r

x q otherwise


  

                      ….…(1)                 

where ix and q are assumed to have integral values and the 

symbols ‘%’ and ‘/’ denote modulus and division operators, 

respectively. For example, if 1 2P and P  are two processes 

having their CPU bursts as 1 2250 275x and x  , then for 

a quantum size q =50, 1 2r and r  will be 5 and 6 respectively. 

Every process will be executed for one complete quantum in 
each round,  except for the last round where it may be less 
than or equal to one quantum. The time requirement for a 

process iP  in its last round (denoted by iq ) is the remainder of 

( / )ix q . 

            Remaining CPU burst-time is updated after every 

round. We use ,i jx  and ,i jq  to denote the remaining CPU 

burst and the executed portion of CPU burst, respectively, for 

the  ith  process in thj  round. Obviously, the remaining CPU 

time requirement of a process iP  in thr round can be given 

by:  

            , , 1 , 1i r i r i rx x q                                        ….…(2) 

where , 1i rq   can be obtained from the following 

        
, 1

, 1
, 1

, ;

, .
i i r

i r
i r

q if x q
q

q if x q






 

                         …..…(3)       

Total waiting time for a process iP  that terminates in th
ir  

round ( iP (TWT)) can be calculated by summing up its 

Waiting Time (WT)  in all rounds from first to th
ir  round. 

WT  of  iP  in round 1 =  1,1 2,1 1,1( ...... )iq q q     ,                             

WT  of  iP  in round 2  

=   
1,1 2,1 ,1 1,2 2,2 1,2( ...... ) ( ...... )i i n iq q q q q q         , 

WT  of  iP  in round 3 

 =   
1,2 2,2 ,2 1,3 2,3 1,3( ...... ) ( ...... )i i n iq q q q q q         , 

………………………………………….. 

WT of  iP   in round ir   

=  
1, 1 2, 1 , 1 1, 2, 1,( ...... ) ( ...... )

i i i i i ii r i r n r r r i rq q q q q q            . 

Total waiting time of the process iP  can be obtained by 

summing up all above expressions. 

iP (TWT) = 
1
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1
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                                                                                     ..….(4) 
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 , following expression is obtained for 
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                                                                                        ..….(5)   
 

where   , 0j rq 
 
for, jr r , since the processes that have 

already been completed in earlier rounds will not contribute to 
the right hand side of (5).  

  Average Waiting Time =  
1

( ) /
n

i
i

P TWT n

    ……..(6) 

Turnaround time of a process iP  can be calculated by the 

following expression:  

1

( ) /
n

i
i

AverageTurnaround Time P TT n


    ....…..(7)

 III. IMPROVED ROUND ROBIN POLICY (IRRP) 

          In Round Robin principle, processes are executed in the 
order of their arrival. However unlike FCFS, the processes get 
only a fixed quantum of CPU time in each round. RR 
therefore avoids a long wait for first CPU response. A process 
may thus need several rounds for completion. A major 
drawback in Round Robin policy is that even if a process is 
near completion, it is still placed at the rear end of Q1, which 
not only increases the total waiting time but also lowers the 
throughput. 
          IRRP is an attempt to combine the basic functionalities 
of RR with an improvement towards the priority assigned to 
the processes nearing completion. In view of (1), it is obvious 

that the time requirement for completion of a process iP  after 
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( 1)th
ir  round will be at the most one time quantum. We 

therefore, consider a priority queue (to be referred as Q2) in 
addition to the ready queue Q1. An additional queue has been 
used by Pandey et.al. [4] for dispatching priority in context of 
FCFS scheduling.  All processes, after being served by the 
CPU in penultimate round, are sent to the rear end of Q2 
instead of Q1. Thus the processes which need only one 
quantum or less will be terminated in the first round itself 
from Q1, while all others will be terminated on being 
dispatched from Q2. Therefore processes going to CPU 
through Q1, if not terminated, may return back to the rear end 
of either Q1 or Q2. As shown in Fig.1, this approach 
organizes the pending requests in two queues. The scheduling 
policy adopts cycle of three processes for the purpose of 
sequential allocation to CPU; it starts with two processes from 
Q1 followed by one process from Q2.The policy can be 
violated only under following special situations: 
 

(i) At any stage, after dispatching two processes from 
Q1, if Q2 is found to be empty, another pair of 
processes will be dispatched from Q1.  

(ii) If Q1 is left with a single process, Q2 will have its 
turn immediately after the dispatch of the single 
process from Q1. 

(iii) If Q1 is left with no process, Q2 will function as a 
single ready queue. 

 
                                                                                                                                                                                   
 
   
Queue1……….             Terminated 

          
 

 Queue2…............... 
 
 

Figure 1 
 
The scheduling policy can further be improved by adopting 
some different cycle.  Precise idea is to appropriately choose a 
pair of numbers p and q (p>q) that determine the number of 
processes from Q1 and Q2 for allocation to CPU in the cycle. 
An optimal choice may however, depend on the number of 
processes and the size of their CPU bursts. In the present 
work, we shall confine our discussion to p=2 and q=1.This 
policy provides better estimates than the conventional RR 
policy in respect of all performance measures, including the 
throughput, without any significant increase in the overheads.  

IV.  MATHEMATICAL  COMPUTATIONS  FOR  IRRP 

       In an effort to obtain mathematical expressions for 
various performance measures of IRRP, we first need to know 
the order in the sequence (in terms of elapsed time slices of 
CPU use) in which a process is finally terminated under the 

new policy. Let 1 2, ,... nP P P  be n processes under 

consideration, needing 1 2, ,... nr r r  rounds of CPU execution 

respectively. We use following notations in addition to those 
given in Section 2. 

, :i rp  Number of processes jP  ( having index j < i ) gone to 

Q2 up to thr round; 

, :r ip  Number of processes jP  ( having index j > i ) gone to 

Q2 up to thr round; 

:rp  = ,i rp + ,r ip ; 

( ) :iQ P  Order in the sequence in which a process iP  goes to 

Q2; 
' ( ) :iT P  Tentative order in the sequence in which a 

process iP  terminates on completion;  

( ) :iT P   Actual order in the sequence in which a process iP  

terminates on completion.  

To determine ( )iT P  we first need to know ( )iQ P . 

Determination of ( )iQ P  

           In IRRP, a process iP , requiring ir  rounds of CPU 

executions, moves to Q2 after ( ir -1)th execution. Thus, its 

order in the sequence for going to Q2 can be obtained by first 

determining its order at ( ir -1)th execution under conventional 

RR policy (to be denoted by 1( , )RR i iQ P r ) and  subtracting 

from it the number of processes  gone to Q2 prior to iP  up to 

( 2)thr  round, that may affect 1( , )RR i iQ P r . In fact all 

processes that have gone to Q2 up to ( 3)thr  round and only 

those processes jP  having j < i, gone to Q2 in ( 2)thr   

round will affect the order of iP  in ( 1)thr  round. 

Therefore, this number is ( 3,r ip  + , 2i rp  ). 

For ir  = 1; ( )iQ P = 0, since a process terminating in the first 

round would never go to Q2.  

For ir  = 2; ( )iQ P = ( ,1) 0RR iQ P  = i -0 = i, since the order 

of execution of iP  in first round under RR policy is thi and no 

process can go to Q2 up to ( 2)thr  round.    

For ir  3;     3, , 2( ) ( , 1) ( )
i ii RR i i r i i rQ P Q P r p p           

                                                                                      ….(8)        

       To determine, ( )iQ P for ir =3 onwards, we need to 

calculate ( , 1)RR i iQ P r  . We must therefore evaluate the 

number of time slices that have been used by the CPU in each 

round, before iP  is executed in ( 1)th
ir  round under RR 

policy. Let rt  and ,i rt  respectively denote the number of 

processes terminated up to thr round and the number of 

processes jP   ( having index j < i ), terminated up to 

thr round under conventional RR policy . 

P2 P1 

P3 

 
CPU 
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   In first round all n processes will be executed by the CPU, 
so total number of processes executed in first round = n    
Total number of processes to be executed in the second round 
= n - the number of processes terminated up to first round 

 = n - 1t  

Total number of processes to be executed in the third round= 
n - number of processes terminated up to second round 

 = n - 2t  

……………………………………….... 

Total number of processes to be executed in the ( 2)th
ir   

round= n – number of processes terminated up to 

( 3)th
ir  round 

 = n - 3ir
t   

In the ( 1)th
ir   round we are concerned with only those 

processes which are executed prior to iP  in this round. It is 

obvious that the processes terminating after the th
iP process in 

( 2)th
ir  round will not contribute to the order of iP  in 

( 1)th
ir  round.  

Therefore the number of processes executed up to iP  in the 

( 1)th
ir   round = i – ( number of processes jP  ( having index 

j < i ), terminated up to ( 2)th
ir  round) = i – , 2ii rt     

Summing up all above expressions and using 0 0t  ,  

( , 1)RR i iQ P r  =  ( n - 0t ) + (n - 1t ) + (n - 2t ) +…+ 

 (n - 3ir
t  ) + i –  , 2ii rt   

= 
3

0

( )
ir

k
k

n t




 + i – , 2ii rt  , for 3ir  .                            ….(9)                                            

From (8) and (9), following expression is obtained for ( )iQ P ; 

ir  3.  

3, , 2( ) ( , 1) ( )
i ii RR i i r i i rQ P Q P r p p                                          

           = 
3

0

( )
ir

k
k

n t




 + i – , 2ii rt  3, , 2( )
i ir i i rp p   , 

             =
3

1
0

( )
ir

k
k

n p





  +  i – , 3ii rp  3, , 2( )
i ir i i rp p   ,  

substituting  , 1 ,i r i rp t  , where ,0ip = ,1it = number of 

processes terminating before iP  in the first round and 

1r rp t  , where 1 0 0p t    and 0 1p t = number of 

processes terminating in the first round. 

             =
3

1
0

( )
ir

k
k

n p





 +i- 3ir
p  , 2ii rp  ,       

       since , 3 3, 3i i ii r r i rp p p    .                             ……(10) 

  To understand the working of expression (10), let us 

consider an example of following five processes functioning 

under RR policy having a quantum of 50 time units :    

P1(350), P2(125), P3(475), P4(250), P5(75). 

Table 1, demonstrates determination of  ( )iQ P according to 

(10).          
Table 1 

Pi ri 3

1
0

( )
ir

k
k

n p





  
3ir

p   , 2ii rp   ( )iQ P  

P1 7 20 3 0 18 
P2 3 5 0 0 7 
P3 10 25 4 2 22 
P4 5 14 2 1 15 
P5 2 5 0 0 5 

 

Determination of ( )iT P  

          The actual order of termination ( )iT P  for the process 

iP  (needing ir  rounds for completion) depends not only on 

( )iQ P  but also on the number of processes already present in 

Q2 at the arrival of iP . Therefore a tentative value ' ( )iT P  

for the order of termination is first obtained, which is later 
finalized according to the situation. In the determination of 

' ( )iT P , we take into account following facts:  

1. IRRP adopts a cycle of two processes first from Q1, 
followed by one process from Q2, for the purpose of 
allocation to CPU.  

2. All processes needing two or more rounds for 
completion will be terminated only through Q2. 

3. Processes terminating in their first round of 
execution do not move to Q2.  

          In view of the above points, it can easily be observed 

that if a process iP  is assumed to be the first process going to 

Q2 then its order in the sequence for termination will be an 

odd number with respect to ( )iQ P . Therefore to 

obtain ( )iT P , either 1 or 2 must respectively be added to 

( )iQ P  according to its even or odd value. Further, if iP  is 

not the first process to go to Q2, then the number of processes 

already gone to Q2 before iP  must also be added in the 

earlier sum in order to get the value of ( )iT P . Assuming in  

to be the number of processes gone to Q2 before iP , following 

expression is obtained for ' ( )iT P . 

 

       ' ( ) 1 , ( )
( )

( ) 2 ,
i i i

i
i i

Q P n if Q P iseven
T P

Q P n otherwise

 
   

         ..…..(11) 
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where in  denotes the number of processes jP  satisfying 

( ) ( )j iQ P Q P . 

      The tentative value ( )iT P  given by (11) may differ from 

the actual value ( )iT P  in some special situations, for 

example, when Q1 falls short of the requisite number of 
processes to be dispatched according to IRRP cycle or Q1 
being emptied  or the  process under consideration being the 
last, second last or third last etc.. It must however be noted 
that in all the cases, the order of the last terminating process is 

always equal to
1

n

i
i

r

 .  These situations require following  

modifications in ' ( )iT P  to arrive at the actual termination 

point ( )iT P . 

Case I:  ' ( )iT P   
1

2
n

i
i

r


 . 

  In view of the dispatch cycle adopted in IRRP, the difference 

between the termination of two processes must atleast be 

three, with an exception of some special cases referred earlier. 

To ascertain it, following modifications can be done: 

( ) 3, '( ) ( ) 3
( )

'( ) , ,

j i j

i

i

T P if T P T P
T P

T P otherwise

   
 ......(12) 

provided the modified termination number ( )iT P also  

remains within the bounds of this case, that is, ( )iT P < 

1

2
n

i
i

r


 , where ( )jT P  denotes the actual termination 

number of the process terminated immediately preceding iP  

(for the first terminating process, ( ) 0jT P  ). The case 

where ( )iT P   
1

2
n

i
i

r


  is dealt according to case II. 

Case II : ' ( )iT P  (or ( )iT P obtained from Case I) 


1

2
n

i
i

r


 . 

1

1

1

2, 3;

( ) 1, 2;

, 1.

n

i i
i

n

i i i
i

n

i i
i

r if n n

T P r if n n

r if n n








  




   



 








                    …...(13) 

To understand the working of expressions (11), (12) and (13), 

let us consider the example of ten processes functioning under 

RR policy with a quantum of 50 time units. 
Table 2 given immediately before section IV, demonstrates 
the functioning of the IRRP in terms of Q1 and Q2 and 

determines the values of  ( ), ( )i iQ P T P and ( )iT P with the 

help of  (11), (12) and (13). 
Waiting Time of a Process 

          The order of termination ( )iT P  of a process 

determines the number of time slices during which, CPU was 

in use, till the termination of iP . These time slices may 

include the following: 

1. All time slices consumed for the process iP ;   

2. Number of time slices of full quantum consumed for 

processes other than iP ; 

3. Number of time slices of full or part of the quantum, 
consumed in the last round of the   

    processes terminated before iP .  

        In the determination of total waiting time for the process 

iP  , we need to identify the time slices of each of the above 

category and compute their number. The expression to 
calculate total waiting time of a process is as follows: 

( )iP TWT  = CPU time consumed before the termination 

of iP , for processes other than iP   

 = Quantum   (number of full quantum slices used by other 

processes before the termination of iP ) + total CPU time used 

by the processes terminated  before iP , in their last rounds. 

  = Quantum   [ ( )iT P - number of rounds needed for iP  - 

number of time slices  used in the last rounds of the processes 

terminating before iP ] + sum of ( burst time – time consumed 

up to penultimate round) for all processes that have 

terminated before iP . 

( ) ( )

( ( ) )* [ ( 1)* )]
k

k i

i i i k k
P

T P T P

T P r n q x r q



       

Thus 

( ) ( )

( ) ( ( ) )* [ ( 1)* )]
k

k i

i i i i k k
P

T P T P

P TWT T P n r q x r q



     

                                                                                                 
                                                                                …….(14) 

The average waiting time 
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i
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/)(
        

        ..……(15) 
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Table 2 
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ORDER OF PROCESSES 
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1P  
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9P

 
10P
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3P

 
4P

 
6P

 
8P

 

     
2P   3P  

 
20      21 
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26      29 

2P  3P  

  
28     31 2Q

 
2P

 
3P
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4P
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4P  6P  8P    

 
25    26    27 

4P  6P  8P  

 
34    35    38 

4P  6P  8P  

 
 34    36    37 2Q

 
4P
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IV.  RESULTS AND CONCLUSIONS 

        We worked on several randomly generated data sets in 
an attempt to compare performance of  proposed IRRP with  
conventional RR policy with respect to average waiting time. 
Results obtained on different data sets are presented in Table 
3. 

Table 3 
Data sets Size / 

Quantum 
Range of    

CPU Burst 
Average Waiting Time 
RR  IRRP

set 1     50/10 10-100 tu  1886 1649 
set 2     50/30 25-134 tu 2764 2159 
set 3     50/20 11-150 tu 3042 2595 
set 4     50/50 36-539 tu 8119 7072 
set 4     50/40 36-539 tu 8183 7306 
set 4     50/30 36-539 tu 8223 7505 
set 4     50/20 36-539 tu 8197 7719 
set 4     50/10 36-539 tu 8222 7982 

 
 
 Data set 4 has been worked on five different values of time 
quantum. IRRP shows better average waiting time than RR in 
all the cases. This would, in turn, amount to better results 
toward average turnaround time also. In terms of throughput, 
IRRP serves better than the conventional RR because of its 
policy of assigning priority to the processes nearing 
completion. Those processes that require only two rounds of 
CPU service, shall slightly delay the first CPU response of the 
processes following them but in all other  situations, the first  

CPU response time of IRRP and conventional RR remains the 
same.           
 For the visual perception of the difference in the performance 
of improved round robin policy against the conventional 
round robin policy we present the comparative bar-graphs for 
average waiting time and average turnaround time of the two 
policies in Figures 2 and 3. 
 

 
 

Figure 2 
 

1 2 3 4 5 6 7 8 9 10(80), (175), (200), (245), (125), (220), (140), (230), (150), (120)P P P P P P P P P P
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Figure 3 
 
The scheduling policy discussed in this work is competitive to 
the conventional Round Robin scheme in fairness, in the first 
assignment time of the processor and in respects of the 
overheads due to preemption, but it certainly performs better, 
in terms of average waiting time, average turnaround time and 
the throughput of the system. Moreover, the derivation of 
related mathematical expressions is useful, not only in 
reducing the simulation efforts but also in making the policy 
transparent to the extent that for each process it provides 
actual order of its being transferred to the second queue and 
also its order of termination. The method is different from the 
one suggested by Kleinrock [2] using multi-level feedback 
queues; however, a cross-application of the structure of multi-
level feedback queues with the basic approach of the new 
policy may be worked in future, to provide priority at 
different levels to the processes nearing completion. 
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