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Abstract—Audio compression algorithms are used to obtain 
compact digital representations of high-fidelity audio signals for 
the purpose of efficient transmission over larger distances and 
storage. This paper presents an audio coder for real-time 
mutimedia applications. This coder applies a discrete wavelet 
transform to decompose audio test files into subbands to 
eliminate redundant data using spectral and temporal masking 
properties. This architecture is combined with a psychoacoustic 
model characterised by an external and middle ear model as a 
first part and a dynamic Gammachirp filter as a second part 
whose connections are selected in order to come close to the 
critical bands of the ear. Experimental results show the best 
performance of this architecture 
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I.  INTRODUCTION  

     Although wireless communication has played a great role 
in our lifestyle, transmission of high fidelity audio signal 
wirelessly at a reasonable cost is still challenging. Presently 
available audio coding techniques aim at reducing bitrate and 
put less concern on complexity and efficient wireless 
transmission. Such audio CODECs like ISO/MPEG and AAC 
[9] are suitable for non real−time applications and audio 
archive. In audio coding there is a trade-off between the 
compression ratio and reconstruction quality. Higher 
compression ratios imply more degradation on the sound 
quality when reconstructed. Any compression scheme should 
consider these facts and should also provide a good control 
mechanism to use the limited bandwidth and maintain 
acceptable quality, keeping in mind the computational 
complexity. The variability of audio compression techniques 
offer various compressed audio quality, amount of data 
compression and levels of complexity. Despite this variability 
the present audio encoders are based on the Fourier transform 

which is localised only in frequency unlike the wavelet 
transform. This technique is a time-frequency localization 
analysis method for non-stationary signal and has been 
identified as an effective tool for data compression. The 
window width of wavelet analysis is adjustable. It is shorter at 
higher frequencies and larger at lower frequencies. The time-
frequency characteristic of a wavelet filter bank is a natural 
match to some of the properties of wideband speech and audio 
signal. This paper proposes an audio coding scheme based on 
subband analysis using the discrete wavelet transform and 
adopts an analysis of the frequency bands that come closer to 
the critical bands of the ear . Our goal is not to propose a new 
wavelet type but to apply the wavelet formalism for 
speech/music discrimination. Our motivation to apply 
wavelets to speech/music discrimination is due to their ability 
to extract time-frequency features and to deal with non-
stationary signals [8]. This paper is arranged as follows: 
Section 2 elaborates the proposed D.W.T encoder. Section 3 
will focus on the the Gammachirp model. Section 4 aims at 
presenting the architecture of the psychoacoustic model using 
the dynamic Gammachirp wavelet. Experimental results are 
shown in section 5. A sound quality evaluation will be 
presented in section 6. Finally, a hardware implementation of 
the D.W.T CODEC will be carried out to conclude this work. 
 

II. THE D.W.T AUDIO ENCODER 

      The architecture of the classical perceptual MPEG1 audio 
compression [1] is shown in the following Figure 1. This 
model use signal analysis, psychoacoustic models, bit 
allocation and coding blocks. At the ISO/MPEG1 layer III 
(MP3) coding scheme [1], the time to frequency mapping 
block includes a polyphase analysis filter bank followed by 
decimation of a factor of 32 [1], feeding a modified discrete 
cosine transform (MDCT) [1] and adaptive segmentation 
block, also connected with the psychoacoustic model. The bit 
allocation block includes block companding, quantization and 
Huffman coding [1]. 
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Figure 1.   The classical MPEG1 audio encoder 

A. Stucture of The D.W.T Encoder 

 This section explains the structure of the proposed D.W.T 
codec using as input wave file audio. Each file has the 
following properties (Sample rate Fe=44.1Khz and 
Bitrate=705Kbits/s) and is troncatured at 1024 samples. The 
encoder is based on discrete wavelet transform D.W.T, which 
has strong relations with subband analysis and filter bank. 

 

 
Figure 2.  The D.W.T Encoder 

The D.W.T is applied to the audio input signal with 8 levels 
of decomposition, thus concentrating energy in lower 
frequency bands (higher levels). This part decomposes and 
transforms the audio frame [17] into wavelet domain. The 
decomposition tree consists of 28 subbands chosen to 
resemble the critical band [11][19] of human hearing as 
depicted in Figure 3. Each subband will be quantized 
according to the signal to mask ratio (SMR) calculated by the 
dynamic Gammachirp Psychoacoustic Model . 
 

 
Figure 3.   The discrete wavelet transform repartition 

TABLE I.  THE  D.W.T SUBBAND REPARTITION 

Subband [
minF - 

maxF ] 

(HZ) 

Center 
Frequency 

0f (Hz) 

Number 
of 

samples 

1 [0 – 90] 45 4 
2 [90 – 170] 130 4 
3 [170 – 260] 215 4 
4 [260 – 340] 300 4 
5 [340 - 520] 430 8 
6 [520 – 690] 605 8 
7 [690 – 860] 775 8 
8 [860 – 1030] 945 8 
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9 [1030 – 1200] 1115 8 
10 [1200 – 1400] 1300 8 
11 [1400 – 1700] 1550 16 
12 [1700 – 2100] 1900 16 
13 [2100 – 2400] 2250 16 
14 [2400 – 2800] 2600 16 
15 [2800 – 3100] 2950 16 
16 [3100 – 3400] 3250 16 
17 [3400 – 4100] 3750 32 
18 [4100 – 4800] 4450 32 
19 [4800 – 5500] 5150 32 
20 [5500 – 6200] 5850 32 
21 [6200 – 6900] 6550 32 
22 [6900 – 8300] 7600 64 
23 [8300 – 9600] 8950 64 
24 [9600 – 11000] 10300 64 
25 [11000 – 13800] 12400 128 
26 [13800 – 16500] 15150 128 
27 [16500 – 19300] 17900 128 
28 [19300 – 22000] 20650 128 

 
     In order to evaluate the proposed D.W.T repartition, we 
compared the positions of its center frequencies with the real 
one. As shown in Figure 4 the second repartition using D.W.T 
has approximately the same repartition. 
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Figure 4.  Comparison between the real and D.W.T centers frquencies 

repartition 

 
To avoid cases where wavelet coefficients exceeded the 

number of samples in time domain, each frame is viewed as 
periodic. In order to decompose frame and down-sampling by 

two at each level of the tree, we used the following equation: 
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 The number of samples ( Xs ) is equal to n.  

 The number of wavelet function coefficients (W ) is  
       equal to m 

ISSN : 0975-3397 1342



Khalil Abid et. al. / (IJCSE) International Journal on Computer Science and Engineering 
Vol. 02, No. 04, 2010, 1340-1354  

 

 The number of  scaling functions ( S ) is equal to m 
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Figure 5.  Example of wavelet coefficients using different subbands in 

different resolutions J 

B. Bits Allocation 

      The SMR, the output of the psychoacoustic model, is used 
for bit allocation to the quantized frequency samples resulting 
from analysis subband filtering. To allocate bits for the 
subband, we find the mask−to −noise ratio (in dB) 
MNR=SNR−SMR. The bits are incrementally allocated to 
subbands from lowest MNR to highest MNR. This gives a set 
of step sizes. We recompute SNR and MNR with the new step 
sizes and iterate until all bits have been allocated 

 

C. Frame Header Structure of The Wavelet Encoder 

      The wavelet encoder file is built up from smaller parts 
called frames. The first part uses 24 bits and is called “sync”. 
The  wavelet encoder forms frames of 1024 samples per audio 
channel.  

 
 

Figure 6.  The wavelet encoder function 

 
     This encoder codes data in different groups varying from 4 
to 128 samples for each subband. The encoder uses  different 
scale factor for each samples group. Each scaling factor will 
be coded in 6 bits data for each subband and is sent only for 
the subband with non zero bits allocation. Finally all scales 

will be stored in the field of  168 bits data as shown in Figure 
6. In order to encode the 28 subbands, we used 112 bits data (4 
bits data for each one). The variable bits field contains the 
quantized wavelet coefficients whose length depends on the 
binary encoding of all subbands. Finally, in order to make 
easy the decoding and to maintain a fixed bitrate, we pad bit 
0’s  
 

 
Figure 7.  The frame header structure of the D.W.T encoder 

D. Normalization and Quantization of the wavelet 
Coefficients 

     The non-stationarity and dynamic range of audio signals is 
taken into account by segmentation and normalization after 
the signal has been decomposed into subbands [18]. It is 
typically assumed that audio signals can be considered 
stationary over approximately 20ms . At an input sampling 
rate of 44.1kHz, a segment length equivalent to 1024 input 
samples was chosen. This corresponds to a segment length of 
approximately 23ms. 
We applied the corresponding input troncatured audio wave 
file to the proposed D.W.T structure. We obtained finally the 
output wavelet coefficients. After downsampling, the number 
of samples per segment per subband varies from 4 to 128. 
Each of these segments is then normalized. We define 64 scale 
factors to be selected as appropriate for each subband. The 
scaled coefficients are uniformly quantized according to the 
number of bits received from bit allocation algorithm. 
 

III. THE GAMMACHIRP MODEL FOR COCHLEAR FILTERS 

     Several models have been proposed to simulate the 
working of the cochlear filters. Seen as its temporal-specter 
properties, the Gammachirp filter has been successful in the 
psychoacoustic research [2]. In addition to its good 
approximation in the psychoacoustical appareillement, it has a 
temporal spectar optimization of the human auditory filter 
(Irino and Paterson, 1997). The notion of the wavelet 
transform has a big importance in the signal treatment domain 
and in the speech analysis. The complex impulse response of 
the Gammachirp is [2][13]: 
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the parameter for the frequency modulation and  is the 

initial phase. ( )rERB f  is the equivalent rectangular bandwidth 

[10] of the filter at the center frequency
rf . It has the following 

equation [2][10]:  
                             ( ) 24.7 0.108r rERB f f                             (6) 

    It has been demonstrated that the Gammachirp filter fits 
human psychoacoustic masking data well when the parameter 
‘C’ is associated with the sound pressure level SP  (dB) 

typically as [14]: 
                                  3.38 0.107. SC P                                   (7) 

 

A. Amplitude Spectrum of the Gammachirp filter 

    The amplitude spectrum of The Gammachirp filter has the 
following expression: 
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The peak frequency is obtained as follows:  
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p

f c b ERB f
f

n


                            (11) 

 
     The first term in Eq.(8) represents the amplitude spectrum 
of the Gammatone since ( ) 1S f  when c 0 . 

Thus, the term  ( )S f produces a shift in the peak frequency 

according to Eq.(11) and introduces asymmetry into the 
amplitude spectrum. The amplitude of Eq.(7) is rewritten as: 
 

                           ( ) ( ) . ( )c TG f G f S f                         (12) 

 
Where ( )TG f  is the amplitude spectrum of the Gammatone, 

which is level-independent and invariant since n and b are 
constant. The gammachirp is represented by two cascaded 
filters: an invariant Gammatone filter and an asymmetric, 
level-dependent filter ( )S f   

.  

 
Figure 8.  The Fourier magnitude spectrum of the Gammachirp filter using 

different values of ‘C’ (C=-3…3) 

IV. THE DYNAMIC PSYCHOACOUSTIC MODEL 

.The proposed model consists of several processing stages, 
reflecting the above described structure of human auditory 
pathway as shown in the following Figure 9: 
 

 
Figure 9.  The human auditory pathway 

      The fundamental concept of the perceptual encoder is to 
eliminate the audio signals that human cannot perceive 
because of signal masking or ambiguity. In fact, we need not 
encode nor be interested in signal components that are below 
the hearing threshold. Three masking patterns, which are the 
absolute threshold of hearing, frequency masking and 
temporal masking [7][16], are therefore used to find the 
appropriate quantizing bits for each subband while minimizing 
the quantization noise. The ear model will be divided into two 
architectures, the first one representing the external and 
middle ear model, and the second representing the inner ear 
model. 
     The operating of the new psychoacoustic model is as 
follows: We segmented the audio wave file signal using a 
1024 points Hanning window.  The segmented signal is 
filtered using the non linear external and middle ear model. Its 
transfer properties may be affected by the activity of middle 
ear muscles in case of high level sounds. Under this 
assumption, it is possible to model this model utilizing only a 
digital filter with appropriate frequency response which is 
given by the following analytical expression [14]:  
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Figure 10.     The transfer function of the external and middle ear model 

 
     The output signal of the outer and middle ear model filter is 
applied to a Gammatone filter bank (28 subbands) caracterized 
by 28 centers frequencies proposed by the discrete wavelet 
transform repartition. On each subband we calculate the sound 
pressure level Ps (dB) in order to have  the corresponding 
subband chirp term C.  Those 28 values of chirp term C 
corresponding to 28 subbands of the Gammatone filter bank 
lead to the corresponding Gammachirp filter bank   
 
 

 

 

 
Figure 11.  Determination of the  Gammachirp filter bank corresponding to 

each troncatured audio wave signal (1024 samples)  

 
Note:  
 
The Gammatone filter bank is series of 28 subbands.  
 

( )H t is the filtering result of the input wave signal (1024 

samples) using the correponding external and middle ear 
model filter  
 

( )iG t : is the filtering result of the input ( )H t signal using 

the corresponding thi ( 1 28i  ) Gammatone filter 
characterised by its subband(i)  
 

iPs  : is the sound pressure level of ( )iG t  

 

iC : is the corresponding iPs  chirp term 

 
 

 
Figure 12.  Decomposition of the Gammachirp Filter 

 
     On each subband of the dynamic Gammachirp filter bank 
we determine tonal and non tonal components [20]. This step 
begins with the determination of the local maxima, followed 
by extracting the tonal components (sinusoidal) and non tonal 
components (noise) in every bandwidth of a critical band. The 
selective suppression of tonal and non tonal components of 
masking is a procedure used to reduce the number of maskers 
taken into account for the calculation of the global masking 
threshold. 
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Figure 13.  Example of the psychoacoustic model graphical output 

    The remaining tonal and non tonal components are those 
which are above the hearing absolute threshold [1][3]. 
Individual masking threshold takes account of the masking 
threshold for each remaining component. Lastly, global 
masking threshold is calculated by the sum of tonal and non 
tonal components which are deduced from the spectrum to 
determine finally the signal to mask ratio 

 
Figure 14.  The different steps of the dynamic psychoacoustic model 

 
Figure 15.  Change of the dynamic psychoacoustic model from one 

troncatured wave signal (1024 samples) to another 

      We used the term ‘dynamic’ because if we move from one  
toncatured  wave  signal to another the shape of the 
Gammachirp filter bank used by the psychoacoustic model 
will be modified 
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V. EVALUATION OF SOUND COMPRESSION RATIO 

The compression ratio CR is defined by the following 
expression: 

                  _ _

_ _

size wav signal
CR

size compressed signal
                  (14) 

 
     The input signal is divided in N different troncatured audio 
wave samples (1024 samples). Each one will be encoded using 
the following D.W.T encoder as shown in Figure 16 to obtain 
finally the specific frame header.  

  
Figure 16.  The detail architecture of the D.W.T encoder 

 
The N all header frames will be decoded using the decoder 
block system as shown in Figure 17 to obtain finally our 
compressed signal.  
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Figure 17.  The D.W.T decoder 

 
 

 

 
Figure 18.  The D.W.T encoder and decoder  

 
     In order to evaluate the proposed codec using the D.W.T 
and the dynamic Gammachirp psychoacoustic model, we used 
for various bitrates some types of sound such as Slow, Soul 
and Rock. The evaluation is based on the compression ratio 
defined as the quotient between the size of the original file and 
the compressed file. Table 2 contains the types of the sound 

files used for the test, their capacities, their durations and the 
compression ratios calculated for each bitrate. 

TABLE II.   D.W.T COMPRESSION RATIO VALUES USING A BITRATE OF   
96 KBITS/S, 128 KBITS/S AND 160 KBITS/S 

Signal. 
wav 

Duration 
(s) 

Capacity 
(Ko) 

96 
Kbit/s 

128 
Kbits/s 

160 
Kbits/s 

Slow 28 2426 12.578 10.661 8.239 
Soul 22 1910 12.629 10.734 8.481 
Rock 20 1680 12.893 10.954 8.612 
Jazz 25 2166 12.735 10.824 8.569 

 
The weakest compression ratio is given for the flow of 160 
Kbits/s and the highest is given for the flow of 64 Kbits/s. 
However, the weaker the bitrate, the higher the compression 
ratio is and the less intelligible its quality becomes. Based on 
the results obtained in Table 2, the proposed encoder using the 
D.W.T repartition (28 subbands) and the dynamic 
Gammachirp filter bank takes account of the masking 
phenomenon and the critical bands. The second part of our 
evaluation will focus on comparing the compression ratio 
obtained from the proposed D.W.T model and the classical 
MPEG1 one using a bitrate of 128kbits/s which gives the best 
compromise between compression ratio and sound quality [4].  

 

TABLE III.  COMPARISON BETWEEN THE CLASSICAL MPEG1 ENCODER 
AND THE PROPOSED D.W.T ENCODER 

 
The classical 

MPEG1  encoder 

The proposed 
D.W.T encoder 

Number of subbands 32 28 

 
Number of samples per 

subband 

 
32 

(for each subband) 

 
Between : 
4 and 128 

(as shown in Table 1) 
 

Size of the troncatured 
signal 

1024 samples 
 

1024 samples 

Psycho- 
Acoustic 

model 

Classical 
Psychoacoustic 

model 

 
Psychoacoustic 
Model using an 

external and middle 
ear model and  a 

dynamic 
Gammachirp         

filter bank 
 

 
    Table 4 contains the type of the sound files used for the test, 
the compression ratio values using the classical MPEG1 codec 
and the proposed D.W.T one  

TABLE IV.  THE SOUND COMPRESSION RATIO COMPARISON USING THE 
CLASSICAL MPEG1 ENCODER AND THE PROPOSED D.W.T ENCODER  

(BITRATE: 128KBITS/S) 

Signal.wav 
The classical 

MPEG1 codec 

The proposed 
D.W.T codec 

Slow 7.393 10.661 
Soul 7.614 10.734 
Slow 7.393 10.661 

      The Table 4 reveals that sound compression using D.W.T 
is the best one. In fact, its average compression ratio presents 
an improvement of 42.23% in comparison to the classical 

    Signal.wav= Nx Frame of 1024 Audio Samples 
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MPEG1 coder. The spectrum of original and compressed 
signal using the D.W.T and the classical MPEG1 model are 
shown in Figures 19 and 20.  
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Figure 19.  Spectrum of the original and the compressed signal using the 

D.W.T model 
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Figure 20.  Spectrum of the original and the compressed signal using the 

classical MPEG1 model  

     The compressed signal is the mask effect of the global 
masking threshold on the original audio file spectrum. 
Concerning the D.W.T model, we note that the global masking 
thershold masked the spectrum of the original wave signal 
from 11700Hz. This action introduces a degradation and 

inaudibility for all frequencies superior to this frequency 
(11700Hz). All those frequencies are inaudible since theirs 
amplitudes are below the absolute threshold of hearing. In our 
view, the D.W.T model is better in comparison to the classical 
MPEG1 one. In fact, if we compare the spectrum of the two 
compressed signals appearing in Figures 19 and 20 we remark 
that the frequency degradation begins at 16500Hz concerning 
the classical MPEG1 model and 11700Hz for the D.W.T 
model. We remark also that D.W.T frequencies degradation is 
more important. So the average of all D.W.T frequencies 
amplitude is about 1dB whereas it is 11dB for the classical 
model 

VI. AUDIO TEST QUALITY 

A. Evaluation Using the MUSHRA Listening Test 

     Subjective assessment of sound quality is the best way to 
evaluate encoders performance. As a result of a heavy 
compression, we always have to expect some kind of 
impairment. The main objective of every compression 
algorithm is to make this impairment as much pleasant for a 
human ear as possible. There are several known methods used 
for subjective assessment of audio codecs quality. For this 
purpose we used the EBU MUSHRA method, the most 
suitable for testing compressed audio samples with a very low 
bitrates.  
      MUSHRA stands for MUltiple Stimulus with Hidden 
Reference and Anchors [5] and is a methodology for 
subjective evaluation of audio quality, to evaluate the 
perceived quality of the output from lossy audio compression 
algorithms. It is defined by ITU-R recommendation BS.1534-
1 [5]. The MUSHRA test method is the result of 6 years work 
by many people [6]. It was devised to meet a need for a 
subjective test method that was appropriate to intermediate 
audio quality systems. It is used in tests that are repeatable and 
reproducible. The fundamental characteristics are: 1. multiple 
stimuli being offered to the subject; 2. one of the stimuli is a 
known reference; 3. one of the stimuli is a hidden reference; 4. 
other stimuli must include hidden anchors with clearly defined 
parameters. The test method has been used by several different 
laboratories and is proving to be very effective. In the Mushra 
test the listener is presented with several audio stimuli for 
which the listener must give a score between 0 and 100 
depending upon their opinion of the quality. The scale  has 
five ranges : “excellent” (100-80), “good” (80-60),  “fair” (60-
40),  “poor” (40-20) and “bad” (20-0) [16]. 
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Figure 21.  The grading scale for the MUSHRA listening test. 

     The selection of compression formats and their specific 
encoders is a key part of the test preparation phase. Due to 
extreme time consumption for this type of tests, we decided to 
compare the proposed audio D.W.T format with only three 
most widespread audio formats- OGG, AAC and WMA. We 
picked the following particular encoders:                                                                         

The proposed D.W.T encoder                                               
AAC encoder included in Apple iTunes 7.0.1                                              
WM Encoder using WMA 9.1 codec                             
OggEnc 1.0.2 (part of VorbisTools 1.1.1)                                                  

     In order to do a good test, it is important to choose the test 
audio signals with some critical elements (such as percussion) 
to be sure that assessors will be able to even identify the 
compressed sample. To keep a reasonable length of an entire 
test session, we decided to pick only four musical samples. 
Here is a brief list of chosen music sequences defined in the 
following Table 5:  

TABLE V.   THE MUSHRA TEST SEQUENCES                                             

Sequence Type Artist Sound Duration (s) 

Sequence1 Soul 
Stevie 

Wonder 
Living For 
The City 

30 

Sequence2 Slow 
Witney 
Houston 

A song 
for you 

25 

Sequence3 Rock Kevin Barker Worth it 20 

Sequence4 Jazz 
Maurice 
Brown 

Time Tick 
Tock  

25 

      This test was intended for comparison of codecs on low 
bitrates. Our choice was 32 Kbits/s and 64 Kbits/s. The main 
goal of this experiment was to compare sound quality of the 
proposed D.W.T audio codec with other widely used audio 
codecs on very low bitrates. Those codec are already 
mentioned above. Twenty persons took part in this subjective 
test. Listeners were mostly between 15 and 25. So they likely 
still have a good hearing. Seven of them had a previous 
experience with similar listening tests. 
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Figure 22.  The  MUSHRA listening test (Sequence 1) 
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Figure 23.  The  MUSHRA listening test  (Sequence 2). 
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Figure 24.   The  MUSHRA listening  test (Sequence 3) 
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Figure 25.   The  MUSHRA listening  test  (Sequence 4) 
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     The test results for each sequence are displayed separately 
in Figures 22, 23, 24 and 25. As for the 32 Kbits/s bitrate, the 
proposed D.W.T model is the best assessed codec over all 
sequences. As for the 64 Kbits/s bitrate, the results are much 
more balanced and the D.W.T model is not always the best. 
Figure 26 is a numerical representation of overall test results. 
On bitrate 64 kbits/s, there are no significant quality 
differences. The quality of most codecs was evaluated as 
"Good". Only AAC was rated as "Fair". A different  situations 
are on the 32 Kbits/s bitrate. Quality of Ogg and AAC fell 
down almost to "Poor", in the case of WMA to "Fair". It is 
very interesting that D.W.T model has a higher rating on bit- 
rate 32 Kbits/s than on 64 Kbits/s.  It may be because the 
quality of other samples in comparison with D.W.T model was 
so poor that listeners were much more generous while giving 
"marks". 
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Figure 26.   The global MUSHRA listening test 

     Figure 26 is a graphical representation of overall test 
results. As mentioned above, the D.W.T model is a good 
choice when the finest sound quality at the very low bitrates is 
required. 

B. SNR Evaluation of The proposed CODEC 

     The second part of our sound quality evaluation consists in 
measuring the SNR corresponding to the proposed D.W.T 
codec which is given by the following equation [12]: 

                               
2

2

( )
10.log( )

( )
X

Y

S
SNR

S
                  (15) 

Where XS is the mean square of the speech signal and YS  is 

the mean square difference between the original and 
reconstructed signal. For this, we select 5 mono wave signals 
at 705.6kbits/s. Each one is inputed to the proposed D.W.T 
codec. Next we play the 5 D.W.T audio decoded signals which 
are compared to the audio signals decoded by the AAC, WMA 
and Ogg/Vorbis software decoder using the 64kbits/s bitrate. It 
is widely accepted that SNR cannot truly represent audio 
quality under perceptual codec and our results confirm this 
assumption. The SNR results are displayed in the following 
Figure 27. 
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Figure 27.  :SNR Evaluation of the proposed D.W.T CODEC in comparison to 

other schemes 

VII. ELECTRONIC IMPLEMENTATION OF THE PROPOSED 

D.W.T CODEC 

A. EvalHardware Description of The D.W.T CODEC 

The block diagram of the D.W.T codec is represented in the 
following Figure 28:
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Figure 28.   Block diagram of the proposed D.W.T codec 

 

     The D.W.T CODEC is very flexible encoder and decoder 
card. It utilizes high speed digital signal processing for real 
time D.W.T encoding or decoding of analog audio signals. 
Half duplex functionality permits for the same channel card to 
be configured to either encode or decode. Incorporation of the 
D.W.T encoding decoding algorithm results in digital 
compression of audio signals that reduces the required digital 
bandwidth to less than half of that required for conventional 
64 Kbits/s PCM [15] digitization techniques. As shown in 
Figure 28, the D.W.T CODEC consists of an embedded 
RISC/DSP processor, a number of modules that comprise the 
encoder, a number of modules that comprise the decoder, and 
a number of I/O modules. 
     As an audio encoder, it compresses audio data using a 
proprietary patent-pending motion estimation and rate control 
algorithm that has been optimized for low latency, fast scene 
detection and smooth bitrate allocation. The embedded 
RISC/DSP processor packetizes the compressed data into an 
output stream format selected by the user. The D.W.T Codec 

accepts two channels of 2I S  audio, and uses the audio 
encoder unctions in  the RISC/DSP to generate compressed  
audio data, which may be multiplexed into the output D.W.T 
audio compressed stream.  
      As an audio decoder, the D.W.T CODEC demultiplexes 
the audio bitstream into its audio and user data components 
and decompresses the audio information. The output audio is 

available in 2I S  or S/P-DIF digital audio format. The D.W.T 

CODEC includes a power management module (PMU) and a 
number of I/O interface modules such as Host/PCI interface 
(for an external processor, storage and other devices), ROM 
interface (for boot and other microcode) , General purpose 
input / output (GPIO), and Phase-locked loops (audio PLL). 
Two dedicated high-speed SDRAM buses connect the RISC to 
the two SDRAM interfaces. The encoder SDRAM bus is 32 
bits wide, and the decoder SDRAM bus is 64 bits wide. Both 
interfaces to the external SDRAM devices are 32 bits wide. 
All modules in the encoder exchange data among themselves 
via the encoder SDRAM bus. All modules in the decoder 
exchange data among themselves via the decoder SDRAM bus. 
The audio encoder core retrieves this data from SDRAM as 
needed. The audio encoding core reads and writes to the 
SDRAM the intermediate and final results of the D.W.T 
encoding process. This compressed data is available to the 
multiplexer in the RISC via the SDRAM. The audio input unit 
sends its input data to the RISC via the encoder SDRAM. 
Audio compression is done by the audio digital signal 
processing (DSP) extensions in the RISC. The DSP puts the 
compressed audio back into SDRAM so the data will be 
available to the multiplexer in the RISC.  

B. Audio Compression and Coding 

    Decoding functions have lower resource requirements. To 
reach preliminary results as soon as possible, we have 
implemented all the source program in language C after 
transformation from Matlab to C with mcc command. The 
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final C code has 10478 lines, and occupies 764Kbytes of 
memory, including input/output libraries from the emulation 
system. This code is tested into a PC-based prototyping board 
TMS320C54x DSK 
     Alternative simulations on fixed point TMS320C5416 DSP 
have been tried with very few success due to the length of 
simulation time required for the audio D.W.T compression. 
The choice of this DSP is due to the high performance 
required for the application. This DSP contains 8 functional 
units including two multipliers and two adders. We have 
measured on different pieces of compiled code (.asm files) the 
number of instructions that contain concurrent execution of 
functional units. Table 6 shows the number of instructions 
with concurrent execution upon the number of concurrent 
units. The first column designs the compiled file (.asm file) 
tested. Under column #Instr, the total number of instructions 
executed for each compiled file is found. Each following 
column 
 

TABLE VI.   NUMBER OF INSTRUCTIONS USING CONCURENT FUNCTIONAL 
UNITS                                       

Fle. asm #instr 2C 3C 4C 5C 6C 
 

PAM 
 

5874 
 

486 
 

82 
 

26 10 
 

1 

Main 362 10 2 1   
D.W.T-Enc 4920 342 74 54 24 8 
D.W.T-Dec 3620 88 64 54 24 8 

D.W.T 1820 158 76 28 16 8 
FFT 4372 196 54 32 7 1 

Frame 
Header 

 
 5530 

 
64 

 
14 

 
8 3 

 
2 

Quantize 1741 122 18 14 10 4 

 
Note: PAM is the abbreviation of the psychoacoustic model 

 

VIII. CONCLUSION 

      The demand for compression technology increases every 
year in parallel with the increase in aggregate bandwidth for 
the transmission of audio signals. A simple audio encoder 
scheme based on the Discrete Wavelet Transform and a 
dynamic Gammachirp psychoacoustic model is presented in 
this paper. D.W.T usage allows frequency dependant 
resolution in psychoacoustic model and frequency dependant 
windowing for quantisation. Masking effects may be better 
involved by such procedure and artefacts like pre-echo may be 
suppressed. Our D.W.T encoder was tested using the 
MUSHRA test sound and compared with other codecs using 
differents bitrates. This model can achieve transparent quality 
at bitrate 64Kbits/s and 32Kbits/s in real time for the 
monophonic CD quality audio signals. 
    We currently implement the codec in hardware. The 
Electronic D.W.T codec card corresponding to the Figure 28 is 
shown in Figure 29. The result should confirm its real−time 
performance and all other claims made here. We are also 
working towards lower bitrate (64kbits/s) discrete wavelet 

transform audio codec that would gain more momentum 
because it can match the current PCM bitrate at much better 
audio quality. A high selectivity was noticed and can lead to 
some interesting perspectives on audio coding using this type 
of model. 

 

 
Figure 29.  Electronic card of the D.W.T codec 
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