
M.V.Vijaya Saradhi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 720-725

FCE: A QUALITY METRIC FOR COTS BASED SOFTWARE DESIGN

M.V.VIJAYA SARADHI 1 B.R.SASTRY 2

 1 Assoc.Prof, Dept. of CSE, 2 Director, ASTRA,

 ASTRA, Hyderabad, India. Bandlaguda, Hyderabad, India.

Abstract: The software that is based on component is
aimed at developing large software systems
thorough combining the existing software
components. Before integrate different components,
first one need to identify whether functional and non
functional properties of different components are
feasible and required to be integrated to develop
new system or software. Deriving a quality measure
for reusable components has proven to be
challenging task now a days. This paper proposes a
quality metric that provides benefit at both project
and process level, namely Fault Clearance
Effectiveness (FCE). This paper identifies the
different characteristics that component should have
so that it can be used again and again. Component
qualification is a system of finding out the fitness for
use of existing components that will be used to
develop a new system.

Keywords: Component; FCE Metric; Reusability

I. INTRODUCTION

There are two phases in this system discovery and
evaluation. In the first phase the properties are analyzed
and relate to the functionality of the component and
other qualities like adaptability, usability, portability,
reliability and in the second phase components will be
selected based its properties and their Fault clearance
effectiveness.
High quality software is assured with component based
approach and this approach was adopted by the total
software industry. Due to budget and time limits, with
the traditional approach it is not possible to deliver
qualitative software. This position is considered as
‘software crises’ [1]. The reuse facility of components
of existing software’s in component based software
development approach will save time and money.
Component based approach manages complexities of
the software especially those lead to software crises. In
this approach even complex software need not be
developed from basic, the existing software
components can be used. Identifying the existing
software components that are required to develop new

software is enough. Identified components may be used
directly without any modification or customize
according to the requirements [3]. This will help to
reduce the cost and time that will incur to develop and
market the software and hence it results in increased
productivity. As time is saved by using the existing
components, more time can be devoted to enhance the
quality of the software.

II. QUALITY OF COMPONENTS AND SUCCESS
IN THEIR REUSABILITY

 Usage of the existing components is dependent on
the quality of the existing components and reuse will
demand software testing and quality assurance.
Especially while using these components to trade
between organizations, software testing quality
assurance should be given high priority. Quality of the
component will decide the lifetime of the same. The
components that have properties that can be reused will
have long life the rest will die with in no time. More
than any other software programs, components should
undergo strenuous tests as there is possibility for errors
in every application that uses the components. The
developers’ reputation will be at stake when the project
has high reliability and availability requirements. A
responsible developer can’t blame any third party for
the unreliable behavior of the project. All most all
component explorers need to clarity about

 The potentiality of the component to provide
needed functionality in the new application

 Its test performance
 Its implications on the new system regarding

performance, reliability, robustness,
maintainability, portability etc

As the component serves the needed behavior in a
particular situation it is considered to be as a reusable
component [1]. In order to reuse the component at high
level one should consider varied situations to reuse the
components. A software component may be victimized
for more distinct applications, in diametric performing
and study environments, by divergent developers using
other methods and tools, for dissimilar users in
divergent organizations.

ISSN : 0975-3397 720

M.V.Vijaya Saradhi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 720-725

III. QUALITY COMPONENT and its
CHARACTERISTICS

 Understandability, portability etc are the additional
non-functional properties that a qualitative component
provides apart from the functional properties. In terms
of quality attributes only these properties are expressed.
While developing system with available components,
the important activity is characterization of
component's qualities and their role in enclosing system
[1]. The following are the qualities that a good quality
component will have.
1) Comprehensibility - Based on the expected effort
required to identify the concept behind a component
and its applicability, the comprehensibility is defined
[2]. Comprehensibility further can be attributed to
documentation. Any component's documentation will
explain how to use the component and how to configure
the component. By providing the component's
document the developer will communicate with the user
and make it easy to the user to understand the utility
and functionality of the component.
2) Compliance - The comfort with which component
can be changed and utilized. The flexibility of a
component to use it with other component by making
required modifications in applications or environments
apart from the intended use.
3) Communicability - Capacity to interact with the
components of the software system in a reasonable
manner or capacity to adapt the component with
nominal modifications to accomplish the same goal. By
analyzing the need for interface in-between different
components the interdependency of the component can
be estimated.
4) Portability - Component should fit on a varied range
of computer platforms with miner modifications

5) Generality - The component should be a general
one. Component should so flexible that it should have
the entire feature that will enable the user to develop
specific instances of the components to cater the
application specific requirement. The level of the
generality of the component will be decided by
analyzing the efforts required to put the component
operation like installation, n-installation and controlled
features.
6) Dependability - Component should be trustworthy
in all dimensions as it will be justifiably placed on the
services it offers. Component will ensure the qualities
like reliability, availability, safety, security, usability
and expendability.
7) Consistent - Component should be consistent as far
as its utility is concerned and should address a specified
need. It may cater different needs across domains like
word processor or particular to a domain like system for
airline especially in emergency conditions. In general

domain specific components cater some internal
business need. But while developing the component it
should not be developed as specific as it will not be
feasible to reuse the component again and again. It
should have some provision to reuse as per
requirement.
8) Independent - component should not be dependent
on other components to the possible extent. This
independence will enhance the comfort in using that
component and also easy to incorporate in different
applications with nominal changes. Basically complex
components are highly dependent on other components.
It may not be possible to make any component totally
independent but it is very much required to make
components independent from the components that may
change with in no time.

9) Transparent Interface - Every component will
provide or require pre defined services from other
components. Interface of a component should be a
qualitative one as it plays major role in connecting
independently developed component.

Other than these technical issues that a reusable
component is expected to have there are some other non
technical issues that should be considered like earlier
business performance of the developer.

A few of non-technical issues are discussed here
 a) Proper documentation: Component should have
proper documentation about its utility, functionality,
reliability, validity etc. Documentation will reflect and
explain the quality of the component. In order to create
the confidence among the user community about the
component every developer need to provide a
qualitative documentation about the component. There
will be four categories in document of component they
are General Information, Information in detail,
Acceptance test and Support and additional
information.
b) Conventionality of Standards: To develop a
common component market that best approach is
standardization. Standards are defined by a component
model and conventions will be sent to developers.
Amicability of the component model is one of the
major features that out rates the other forms of
packaged software. Standardizing is one of the useful
technique in developing common interfaces and
infrastructure that helps in minimizing the chances of
mismatch that disturbs the productivity of the
component.
c) Availability of related information. Different needs
and testing activities will minimize the probable
problems of component reuse and enhances that quality
of the software. qualitative component has associated
with different artifacts that are updated as and when the

ISSN : 0975-3397 721

M.V.Vijaya Saradhi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 720-725

component is altered. These artifacts consist of the
specifications of the software, test suite, link of the
software specifications with the test cases in the test
suite. It will be easy to find out when some parts of the
specification changes and test suet that requires up
gradation and rerun again.
d) Assistance of the Vendor: A component will have
long life only when it is promoted by a economically
stable vendor. There will not be any insecurity about
the existence of the vendor. In situations like, when the
supplier is not ready to continue in the business process
and he will provide the source code to the user as per
the agreement.
e) Qualified: long term survival of the software is
dependent on the availability of the qualitative
components that create trust among the consumers.
Consumers will have trust on those that are qualified by
a third party. These third parties will check weather
components are functioning in the manner as advertised
by the developer and issues a certificate. So
components that carry good certificates will have long
life in the market.
As quality is crucial in all systems, its role is more in
product lines. A substandard product with side effects
will not only affects the business but also force to spend
lot of amounts for different reasons when the
component is used only in a single system. That’s the
reason the quality of the component is crucial for both
developer and component supplier.
The services that a component should render will be
defined by the architecture of the software where these
components are going to be used. The specified
standard requirements will guide the functional as well
as non-functional requirements. Defining requirements
of a component is an architect responsibility.

IV. MEASURING THE REUSABILITY
EFFICIENCY

 Calculating software longevity is a critical job but
very much required to build healthy software
development atmosphere. All most all software projects
will exceed its scheduled time limits as well as budget,
in spite of this it will have problems related to quality.
The objective of software calculation is to measure the
schedule; man hours required size of the product, stage
of the product development and assured quality. Work
status will be analyzed by comparing actual status with
planned status of work. The information gathered will
help to take the right decisions and at the time of
planning for next projects [7]. For development
activities quantitative basis will be provided by the
software metrics. These metrics are useful in improving
productivity and quality of the software [1, 2].
For calculating the reusability of the software Poulin [5]
proposes two methods Qualitative Method and
Empirical Method. In Empirical method objective data

will be used. Simple analyses will calculate them easily
with no expenditure, and this is one of the most
important properties of a metric. Comparing the
reusable component attributes with the attributes of the
components that are not reused is common in empirical
study. The qualities of the reusable software will have
influence on the level of reusability of the software. In
Qualitative study, it defines the software reusable
qualities and analyzer subjectively evaluates how the
software to be analyzed with respect to these qualities.
Qualitative methods are expensive in comparison with
empirical methods due to the use of analysis.

NASA projects were studied by the Selby [6] and
software reuse was successful. He identified the factors
that made software reuse successful. Primary factor is,
reusable software module's interface is simple and it is
small in size. It is almost independent from other
components. It is supported with detailed
documentation. The reuse of utility functions of the
component along with low level system is more often
than reuse of human interface function. Selby used
statistical methods to validate the results.
Four reusability factors were given by the ESPRIT-2
project REBOOT [5] (reuse based on object oriented
technique). These are specified using a multiple number
of criteria. At least one metric will be with each
criterion. Reusability is a value varying in-between 0 to
1 and this is calculated by normalizing the metrics. The
four factors of reusability are understandability,
flexibility, probability and confidence of the reuses.
The comfort of using the component in other
environment is expressed in probability. Flexibility will
define the generality and modularity of the component.
Understandability comprises of complexity of the code,
documented information and self explanatory and
component complexity. Confidence is the knowledge of
the reuses about the component and its utility and
functionality.
It is recommended by IBM methods [5] that, along with
code, development project's documentation should be
accessible to the developer. Fonash [4] categorized the
software component reuse metrics into five types as
Cohesion, Parameterization, Coupling, General and
Quality. Cohesion kind will calculate the functional
cohesion along with data cohesion. Functional cohesion
metrics validates the each and every part with respect to
its requirement in performing a single function where as
the data cohesion metrics analyses the level to which
the module has a single data type associated with it.
Parameterization kind will calculate the number of
functional or data parameters in a module. Level of
independence will be calculated by coupling kind of
metrics. Size, type and understandability will be
calculated by the general type of metrics. Flexibility,

ISSN : 0975-3397 722

M.V.Vijaya Saradhi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 720-725

formation of the code, comments etc will be calculated
by the quality kind of metrics.

To calculate the reusability of the component Hironari
Washizaki et al [2] have proposed five metrics. The
proposed five metrics are

1) Existence of Meta Information
2) Half or one third of the component

characteristics should be readable,
3) One third of the components characteristics

must be writable.
4) Three fourth of the component's business

methods should not have return value
5) Irrespective of method parameters presence

components’' quality should be assured.
In every study the methods used to evaluate the quality
of the component are almost same. Understandability,
portability, flexibility, proper documentation,
independence, confidence of the consumer is some of
the characteristics a component should have to reuse it
effectively. These characteristics’ should be formalize
and quantify by applying empirical method.

The above hence concluding that the metrics that
discussed are measuring the reusability levels of a
component based on their characteristics, metadata and
the behavior of their business methods. There is lack of
a quality metric that measure the reusability of a
component based on their earlier usage. The following
section defines a new quality metric for COTs based
system.

V. FAULT CLEARANCE EFFECTIVENESS: A
QUALITY METRIC IN THE REUSE CONTEXT

 Fault clearance effectiveness is a metric proposed
to measure the effectiveness in fault clearance at each
life cycle of software that build by different cots
integration. FCE helps to find the desired improvements
to be done. Fault classification and measuring the
volume of the faults will show their impact on the
materialization of the root cause analysis efforts.

The log of faults can be used to find the total faults
inserted and detect on each COT integration. This
process will be at the early stages of project planning.
The log even helps to find the fault accumulation rate.

The FCE in COST based software development can be
formulated as

FCE=Fci/(Fci+Fci+1)

Fci represents faults count for ith component “ci”

Fci+1 represent fault count detect while integrating
components ci and ci+1

In this context FCE value 1 indicates efficacy of the
product in terms of quality and efficiency. This
concludes that fault detection rate at each component
level defines the FCE

Input for FCE computation process

 No of faults found in each component. This fault cont
will be taken in the sequence of component integration.

Set of components c1, c2, c3.........................., cn.

And Number of faults detected in each component is
Fc1, Fc2, Fc3, Fc4 …… , Fcn

Find FCE of ith component FCEi as fallow

FCEi=Fci/(Fci+Fci+1)

FCE=∑FCEi/n for i=1…n;

A. Planning a fault Profile

The steps involved in each stage of the component
based software development system are f0llowing

 Number of Faults ‘nf’ to be inserted should be
estimated.

 Clearance effectiveness cy should be measured
in percentage

 Approximate count of faults (nf*cy) that can be
cleared

 Count the faults that are not cleared nf-nf*cy
 Calculate number remaining (nf-cy*nf)
 Add to estimate of the number likely to be

added in next stage of component integration
 Find cumulative clearance effectiveness in

percentage

ISSN : 0975-3397 723

M.V.Vijaya Saradhi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 720-725

 Se
arc
h

tra
ce

Bui
ld

Tes
t

Inte
grat
e

1stpha
se

Fault
Insertion
rate

30 11 60 5 2

Fault
Clearance
Effectiven
ess

70
%

65
%

60
%

57
%

47
%

Cumulati
ve FCE

70
%

83
%

76
%

88
%

93
%

2nd

Phase

Fault
Insertion
rate

20 11 60 2 1

Fault
Clearance
Effectiven
ess

70
%

65
%

65
%

60
%

50
%

Cumulati
ve FCE

70
%

80
%

78
%

91
%

95
%

3rd

Phase

Fault
Insertion
rate

10 11 60 2 1

Fault
Clearance
Effectiven
ess

70
%

65
%

68
%

63
%

52
%

Cumulati
ve FEC

70
%

76
%

80
%

94
%

97
%

Table 1 fault insertion rate and Clearance Effectiveness

The Table 1 shows the fault insertion rate, Clearance
Effectiveness and cumulative effectiveness of FCE in
stages like search, trace, build, test and integrate of the
COTs based software development. The table 1 is
sampling the details only for three phases of COTs
integration. In production level model the collection of
fault insertion rate, Clearance Effectiveness and
cumulative effectiveness of FCE continues for all
phases. By utilizing these details a fault reporting
process occurs. This fault reporting process performed
in the following steps.

B. FAULT LOGGING

 Log of the faults (Where found, date found, type,
stage injected, stage removed, consequences of
removal, time to repair, etc) Fault report forms
(Location, severity, inspection rates, yields, etc.)

VI. CONCLUSION

If an organization is considering existing software to
reuse, it should analyze several issues before it decides
that the existing software is qualified for reuse. Quality
of the software is the foremost issue to be checked
before considering software for reuse. Therefore quality
of the components should be evaluated by the software
developing organizations. The software development
organization that are developing software that can be
reused should evaluate whether these software cater the
reusability criteria or not. Further the criteria of
selecting a COT for reuse leads to success in cots based
development, maintenance and extension of the
systems.. In the COTs reuse orientation, the component
quality will be considered more. The reusability
frequency of a component is proportional to complexity
of the component development process. Hence to
ensure the quality of the developed COTs based
product, more support required.

REFERENCES

[1] Software process and product improvement: an empirical
assessment, J. P. Kuilboer and N. Ashrafi, University of
Massachusetts, Management Science/Information
Systems, 100 Morrissey Blvd., Boston, MA 02125, USA

[2] “A Metrics suite for measuring Reusability of software

Components” - Hironari Washizaki et al, 9
th IEEE

International Symposium on Software Metrics, 2003.

[3] “Component Software: Beyond Object-Oriented
Programming” - C. Szyperski, Addison Wesley, 1999.

[4] “Characteristics of reusable software code components” -
Fonash P, Ph.D. Dissertation, George Mason University,
1993.

[5] “Measuring software reuse, principles, Practices and
Economic Models” - Poulin J. S, Addison Wesley
Publishing, 1997.

[6] “Quantitative studies of software reuse”, Software
reusability - Selby, R.W, vol 2, ed. Biggerstaff, T.J and
Perlis, A.J., Addison Wesley, 1989

[7] “Measuring and Improving Component Based software
Development” - Pentti Virtanen, Ph. D. thesis , department
of Computer Science, university of Turku , Finland.

ISSN : 0975-3397 724

M.V.Vijaya Saradhi et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 720-725

AUTHORS PROFILE

M.V.Vijaya Saradhi is Currently Associated Professor
in the Department of Computer Science and
Engineering (CSE) at Aurora's Scientific,
Technological and Research Academy, (ASTRA),
Bandlaguda, Hyderabad, India, where he teaches
Several Courses in the area of Computer Science. He
is Currently Pursuing the PhD degree in Computer
Science at Osmania University, Faculty of Engineering,
Hyderabad, India.. He is a life member of various
professional bodies like MIETE, MCSI, MIE, MISTE.

Dr. B. R. Sastry is currently working as Director,
Astra, Hyderabad, India. He earlier worked for 12 years
in Industry that developed indigenous computer
systems in India. His areas of research includes
Computer Architecture, Network Security, Software
Engineering, Data Mining and Natural Language
Processing, He is currently concentrating on improving
academic standards and imparting quality engineering

ISSN : 0975-3397 725

