
Vikram Bali et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 700-705

A NEW HIERARCHICAL TRANSACTION MODEL FOR MOBILE
ADHOC NETWORK ENVIRONMENT

 Vikram Bali1 Rajkumar Singh Rathore2

1Asstt. Prof, Department of CSE, Galgotias College of Engg. & Tech., Greater Noida
2Sr. Lecturer, Department of CSE, Galgotias College of Engg. & Tech, Greater Noida

ABSTRACt-Mobile Computing Environment poses its unique
challenges to the existing Transaction models which are fail to
solve. The main challenges of mobile computing environment are
its heterogeneous environment, low bandwidth and power
resources. The transaction must be able to handle frequent
disconnection because mobile user can move anywhere.

In this paper, I presented a transaction model for mobile adhoc
network environment. In this hierarchical model transaction is
performed in distributed fashion by the nodes in a MANET.
Basically three types of nodes in this transaction model-Captain,
Player and Data Manager. Data manager is maintained into
hierarchy-Global, Zonal and Local. Players play the role under
the supervision of Captain. Mobile Nodes can access data
directly with Local data Manager. The data manager is
used maintaining the data and log for recovery.

In the previous model for transaction there is no criterion for
recovery, in this model I resolve this problem with hierarchical
structure of data manager.

Key Word: MANET, DSM-CTM, System Architecture.

INTRODUCTION
Mobile Adhoc Network is future technology; various
challenges are superimposed by this technology. MANET
inherited the challenges from cell architecture in addition
bandwidth and highly dynamic topology and battery back
up problem. MANET is used where no infrastructure is
available for communication such like disastrous area,
military application, sensor network.

A mobile Transaction is structured as a Distributed
transaction. In which the transaction is completed by the
help of mobile nodes and some fixed nodes. Fixed nodes
are used to hold the data and mobile nodes are to initiate
the transaction. The mobile environment produces the
significant challenges to transaction processing. The
wireless networks provide limited bandwidth so network
bandwidth is a scarce resource. Battery power drains with
data transmission and transaction processing.

RELATED WORK

A few models are proposed for capturing these challenges.
Dunham [3] suggests a model that is known as Kangaroo
Transaction Model, where mobile nodes are basic unit for

transaction initiation. This is further extended to handle
data source by data access agent. Data access Agent reside
on mobile support station (MSS) and work on the behalf
of mobile units which lie in the range of host MSS. The
Transaction normally hops from one MSS to another MSS
as mobile units move. However model does not discuss
about Recovery.

Crysanthis [1] considers the mobile transaction as a multi
database transaction and introduces the additional notion
of reporting and co-transactions. [1] Introduces a
transaction proxy concept. Here a proxy run at MSS
corresponding to each transaction and ensures the backup
at the mobile hosts. Pitoura and Bhargava [7,8] propose a
transaction wherein they consider mobile transaction as an
issue of consistency in a global multi database which is
divided into clusters. In [9] the model works on semantics
based transaction and consider mobile transaction as a
cache coherency problem and concurrency in a distributed
database.
Yeo and Zaslavksy [10] suggests for disconnected
transaction processing and allows the local management of
transaction via Compacts. There are many Transaction
model exist no single best approach emerged.

PROBLEM FORMULATION

In this paper we proposed a transaction model that will
provide high recovery and solve challenges of
disconnectivity. This will also support long lived
transactions. A cooperative transaction, in which mobile
nodes work in collaborative manner with a common
objective of processing the query initiated by one node.
This Cooperative Transaction (CTM) works like an Army
Command, where commander (captain) coordinates the
soldiers (Players) and data about each soldier and
Commander is stored at own command, this data is send at
the Brigade and the data from all Brigade is collected at a
Central office. Here in my Transaction Model Data
Manager is divided into three levels as discussed in above
Army data Management.

The Development of new Transaction model is posed by
challenges of Ad-hoc Network. In this paper, solution for
the previous problem is formulated.

ISSN : 0975-3397 700

Vikram Bali et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 700-705

1. The transaction should support distributive and
collaborative processing.

2. Transaction will be long-lived.
3. The Transaction model should support Recovery

of data.

WORKING OF PROPOSED DSM-CTM MODEL
The primary entities of Cooperative Transaction Model
are:
Captain: A Transaction that supervises and coordinates
the work among other nodes in a cluster of the MANET.
Player: A sub-transaction that is allocated by captain to a
node in a cluster. The Player works on its allocated sub-
transaction.
Data Manager: It is more robust node with low mobility.
It also keeps logging information for recovery when
Captain crashed. Captain accesses data from data
manager. Data manager always keep track of Captain.
Basically there are three level of data manager.

1. Local Data Manager: Local Data Manager are
assigned to Captains. Captains can access the
data from Local Data Manager. Local Data
Manager also maintains log for recovery purpose
when Captain crashes. Mobility is no constraint
here.

2. Zonal Data Manager: Zonal Data Manager
coordinates the Local Data manager, Many Local
Data Manager can be assigned to a single Zonal
Data Manager. It also maintains the log for
recovery when Local Data Manager crashes. So
within the zone Local Data Manager can move

A cooperative transaction springs up to handle a query.
The node looks for the players that are eager to volunteer
for completing the job. Each of the player reports the
captain after completing the job the captain being the first.
The captain looks for the Local Data manager before
allocating the sub-transaction to the players. A node that
play vital role in case of crashes for recovery.

A player node reports the update to Captain. The player
node can not commit the update in database. But only
delegates the commits to Captain. It is up to Captain
whether it commit updates to the database. Thus this is the
responsibility of Captain to update the Database.

This model can be further subdivided, if A player hold a
transaction that big enough to handle. It can also work as a
Captain and subdivide this transaction to other players and
so on. This is shown in below Figure 2.

CLUSTER, CAPTAIN AND PLAYER
TRANSACTION

A coordinated Transaction can be collection of sub-
transaction called Cluster. Where each Cluster contains
only one Captain Transaction and one or more Player
Transactions. In fact it is possible that a cluster contains
only one transaction that is a Captain transaction for lower
level cluster.

GDM

ZDM2
(1,2)

without any problem.
3. Global Data Manager: Global Data Manager

coordinates all the zonal data manager. The
Zonal Data Manager can move anywhere in the
work but with this effect communication
increases.

ZDM2
(1,2)

A
Cluster 2

B
C

LDM1
(A.C)

GDM

ZDM

LDM

LDM

LDM3

(B.D.E.G)

D

Cluster 2
E

F

J

Cluster 3
K

L

LDM

Captain

Player 1

Player n

Player 2

G
Cluster 4

H
I

M

Cluster 5

N O

LDM2
(J.K.M)

Fig. 1. A Hierarchical data model

A coordinated transaction is initiated by nodes that issue a
database query which is big enough for the node to
execute handedly, as well as distributive in nature.

Fig.2 Generalized DSM-CTM

The Captain’s Transaction can only interact with LDM,
Player transaction interact with captain only. The Captain
transaction can change data in LDM. Captain transaction
itself maintain a log for recovery and a log is also
maintained at LDM for recovery purpose when captain
crashes. The LDMs interact with ZDM, one more than one

ISSN : 0975-3397 701

Vikram Bali et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 700-705

LDMs can interact with ZDM. Though a log is also
maintained at ZDM for recovery purpose because LDM
can also crashes. LDM is fully mobile and ZDM is semi-
mobile, They can move within the network. GDM is a
type of semi-mobile node, The ZDMs can interact with

MIM LM

MIM LM

GDM we can also maintain log at GDM for much
recovery.

SIGNIFICANT EVENTS

Many events can occur for transaction management. These

TM RM

CM

ZDM
LOG

CM

ZDM

RM LDM
LOG

TM

events can occur many times at the time of transaction
completion. Various such events are accept, begin,
commit, abort, spawn, Assign, split, kill.

MIM

MIM LM

ASSIGN EVENT AND ASSIGN SET

Assign event is the Captain event that is used to assign the
work to players. The set of operations that take part in
Assign events are known as Assign Set.

TM CM

LM

MIM

MIM

CM RM

TM
LDM

COOP
ATIVE
LOG

REPORT EVENT AND REPORT SET

Report Event is player event by which player report to its
Captain delegating the work done by it. The set of
operations performed by player on completing the work is

PLAYERS

TM CM

LM

PLAYERS

CM LM

TM

called as Report Set.

SPLIT EVENT

This event occurs when a node delegates its unfinished
work to some new node and move out of the cooperative
transaction. A Captain as well as player can split at any
point of time.

ACCEPT EVENT AND ACCEPTED EVENT SET

This is the event of Captain Transaction; this is performed
after the report event by the player transaction for
accepting the work done by player. The Captain
transaction can accept whole or some part of the report set,
it can also reject. This accepted set becomes the Accepted
Report set.

SYSTEM ARCHITECTURE

The Architecture proposed for underlying system is
described in this section. The system has to generic
enough to reflect the generic feature of all the three
entities namely, The Captain, Player and Data Manager.
As shown in Figure 3, a node meets the system
requirement through a number of component modules.
Depending upon the role of the node the system
requirement can be of two types. A node which

Fig. 3 System Architecture for cooperative transaction
model

Data Manager is responsible for recovery of crashes
nodes. Any other node can be called as simple mobile
node. A simple mobile node can start transaction, help
other node in processing small part of transaction as a
player node or generate a query.

MIM - Module Interfacing Manager
TM - Transaction Manager
CM - Communication Manager
LM - Log Manager
RM - Recovery Manager

A Brief description of all entities inside a node follows.

Module Interfacing Manager (MIM)

The MIM provides an interface among all other
components of the node. The MIM is responsible to keep
the track of all transactions running on the node with their
role in the transaction. It may happen that a coordinator
sub-transaction of one node running on the node with
player sub-transaction of another node on the same node.

LDM is responsible for maintaining the log of operations
performed by Captain. MIM at LDM has to keep the track
of all the Captains for whom the LDM is providing
service, detect the crash of Captains and assigning the
work of crashed Captain to other node which is willing.
MIM at ZDM has to keep the track of all the ZDM for
whom the GDM is providing service, detect the crash of

ISSN : 0975-3397 702

Vikram Bali et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 700-705

ZDM and assigning the work of crashed ZDM to other
ZDM which is willing.

Transaction Manager (TM)

The TM provides a set of operations that are required to
performed by a transaction or sub-transaction. It provides
basic primitives that are used by transaction such as spawn
and report to execute the application. It ensures the
logging of operations by using significant events in
relation with LM and CM.

Communication Manager

This module facilitates communication among all the
nodes. The packets arriving towards the node are inserted
into a queue in FIFO manner. It also responsible for
pushing the packets onto the net.

Begin

Case REQ_LDM;
Create Log for the requesting Captain;
Reply back in affirmation;
Set Alive Timer that detects a node crash;

Case LOG_FLUSH:
Reset Alive Timer;
Append the Log;

Case COMMIT:
Remove the Log entry of the sender node;
Remove Alive Timer;

Case CANCEL_LDM:
Remove Log entry of the sender node;
Remove Alive Timer;

Case REP_REC_CAPTION: Cancel Alive Timer;
Send Acknowledgment if chosen for
recovery; End;

MIM
End;

ZDM:

OUT QUEUE

OUT QUEUE

Begin (ZDM)

Read packets from IN_QUEUE;
Switch (LDM_Packet_Type)

OUTGOING PACKETS

Log Manager

INCOMING PACKETS

CM

OUTSIDE WORLD

Begin
Case REQ_ZDM:

Create Log for the requesting LDM;
Reply back in affirmation;
Set Alive Timer that detects a node crash;

Case LOG_FLUSH:
Reset Alive Timer;
Append the Log;

Case COMMIT:
The operations that are executed by the player transaction
are logged by local at that node. This log information is
flushed into the Captain transaction for maintaining the
log of coordinated nodes. The log information from the
Captains log is flushed into a LDM which manage the log
information for those captains which are getting service
from that particular LDM. The log information from the
LDMs log is flushed into a ZDM which manage the log
information for those LDMs which are getting service
from that particular ZDM. The log information from
ZDMs is sent at GDM which maintains log for ZDMs.

Recovery manager (RM)

The RM work at the DM. It is used fro recovery of the
transactions. It is used at DM because the database is
maintained at the DMs.

Proposed CTM algorithm:

LDM:
Begin (LDM)

Read packets from IN_Queue;
Switch (Packet_Type)

Remove the Log entry of the sender node
Remove Alive Timer;

Case CANCEL_LDM:
Remove Log entry of the sender node;
Remove Alive Timer;

Case REP_REC_LDM:
Cancel Alive Timer;
Send Acknowledgment if chosen for recovery;

End;

End;

GDM:

Begin (GDM)

Read packets from IN_QUEUE;
Switch (ZDM_Packet_Type)
Begin

Case REQ_GDM:

Create Log for the requesting ZDM;
Reply back in affirmation;
Set Alive Timer that detects a node crash;

ISSN : 0975-3397 703

Vikram Bali et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 700-705

Case LOG_FLUSH:
Reset Alive Timer;
Append the Log;

Case COMMIT:
Remove the Log entry of the sender node;
Remove Alive Timer;

Case CANCEL_LDM:
Remove Log entry of the sender node;
Remove Alive Timer;

Case REP_REC_ZDM:
Cancel Alive Timer;
Send Acknowledgement if chosen for recovery;
End ;

End;

CAPTAIN
Begin [Captain]

If (new application stared)
Begin

Read the JOB and DB files;
Create new application;
Assign CTID to it;
Create new Log entry;
Send request for LDM;
Send request for Players;

End;
Read packets from IN_QUEUE;
Switch (Packet Type)

Begin
Case REP_PLAYER:

If(distributed environment available)
Begin

Assign a unique PTID;
Add it into list of pending JOBS;
Set Player response Timer;
Send work;

Case REP_LDM:
Set application’s LDM;
Initialize Log;
Set Log Flush Timer;

Flush Log to LDM Periodically;
Case LOG_FLUSH:

Reset Player response Timer;
Append Log;

Case ABORT:
Reset Player response Timer of the sender Player;
Modify its states in the list of pending jobs;
Reassign the work to Player Transaction;

Case ROLLBACK:
Modify its states in list of pending jobs;
Reply the work to Player nodes;

Case DELEGATE:
Remove player response time;
Modify its states in list of pending jobs;
Accept report;

Case NODE_CRASHED:
Cancel Player response time of concerned player

Case REQ_REC_CAPTAIN:

If (not engaged in the same transaction)
Reply in affirmation ;

Case ACK_REC_CAPTAIN:
Add CTID into list of selected CTIDs;

Case REC_WORK:
Construct a new application;
Proceed to execute;
End;

End;

Player:

Begin [Player]

Read packet from IN_QUEUE;

Switch (packet_type)
Begin
Case REQ_PLAYER:

If (not engaged with the same CTID)
Reply back information;

CASE WORK:
Set log flush timer:
If (work can be distributed)

Cal Player;
Execute operations;

Case KILL:
Remove the application for the PTID;
Case REPLY:
Restart application;

Case REQ_REC_CAPTAIN:
If (not engaged in the same transaction)
Reply in affirmation;

Case ACK_REC_CAPTAIN:
Add CTID into list of selected CTIDs;

Case REC_WORK:
Construct a new application;
Proceed to execute;
End;

End;
Recovery Mechanism:

Begin [Recovery mechanism]

Broadcast node crash information;
Broadcast a request for new captain;
Get the log of crashed node;
Get the database items;
Get the instruction set of node;

Analyze log to create a table of all involved (Sub)
transaction;

Redo updates;
Begin
Remove entries of non-committed sub-transaction from
log;
Modify the data base items with the last updated value;

End;

Using the state ID’s of the database items,
compose the instruction set;

Get ID of new captain;

ISSN : 0975-3397 704

Vikram Bali et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 700-705

Send the updated database items and modify
instruction set to the new captain;

Set active Timer for new Captain;
End;
CONCLUSION

In this paper we propose a CTM for transaction
management in mobile adhoc network environment.
Result of this paper improves the recovery of data related
to transaction and very good for long lived transaction for
distributed transaction processing in comparison to
previous works, CTM is very useful where no
compromises in data loss. Further work can include the
security operations on transaction in MANET.

REFERENCES

1. CHRYSANTHIS, P. Transaction Processing in

Mobile Computing Environments in IEEE
workshop on Advances in Parallel and
Distributed Systems (1993).

2. MOHAN,C., HANDERLE,D., LINDSAT, B.,
PIRAHESH, H., SCHWARZ, P. Aries: A
transaction Recovery Method supporting fine
granularity locking and partial rollback using
write ahead logging. In ACM Transactions on
Database Systems, VOL. 17 NO. 1 (March
1992). Pp 94 162.

3. DUNHAM, M.H., HELAL, A., AND
BALAKRISHNAN, S.A Mobile transaction that
captures both data and movement behavior. In
ACM-Baltzer Journal on Mobile Networks and
Application, VOL. 2 (1997). Pp 149 162.

4. Gruenwald, L., Javed, M., and Gu, M. Energy-
Efficient Data Broadcasting in Mobile Ad-Hoc

Networks. In Proc. International Database
Engineering and Applications Symposium
(IDEAS’02), July, 2002.

5. G. Pei, M. Gerla, X. Hong, and C. Chiang. A
wireless hierarchical routing protocol with group
mobility. In Proceedings of the IEEE Wireless
Communications and Networking Conference
(WCNC), pages 1538-1542, 1999.

6. W. Navidi and T.Camp. Stationary distributions
for the random waypoint mobility model. IEEE
Transactions on Mobile Computing, pages 99-
108, 2004.

7. PITOURA, E., AND BHARGAVA, B., Revising
Transaction concept for mobile computing. In
first IEEE workshop on mobile computing
systems and applications (June 1995). Pp 164
168.

8. Pitoura E., and Bhargava B., maintaining
consistency of data in mobile distributed
environments. 15th International conference of
distributed computing system (1996), pp 404-
413.

9. Walborn G., and Chrysanthis P., supporting
semantics based transaction processing in mobile
data base application 14th IEEE symposium
on reliable distributed system (1995), PP 31-40.

10. Yeo L. and Zaslavksy A. submission of
transaction from workstation in a cooperative
multi database processing environment, 14th

ICDCS-1994.
11. Laslie D. Fife, Le Gruenwald, Research Issues

for Data Communication in Mobile Ad-hoc
Network Database System, SIGMOD Record,
Vol.32,NO. 2, June 2009

ISSN : 0975-3397 705

