
R.Ashitha / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 656-663

Secure Web Service Using Call by Contract

R.Ashitha

Department of Computer Science Engineering

Anna University Tiruchirappalli, Tamilnadu, India

Abstract—A methodology for designing and composing
services in a secure manner. In particular, it’s
concerned with safety properties of service behavior.
Services can enforce security policies locally and can
invoke other services that respect given security
contracts. This call-by- contract mechanism offers
a significant set of opportunities, each driving secure
ways to compose services. In this paper its discuss
how we can correctly plan service compositions in
several relevant classes of services and security
properties. With this aim, we propose a graphical
modeling framework based on a foundational
calculus called formalism features the dynamic and
static semantics, thus allowing for formal reasoning
about systems. Static analysis and model checking
techniques provide the designer with useful
information to assess and fix possible vulnerabilities
Such as Web services, call-by-contract, language-
based security, static analysis, system verification.

Keywords—Call by contract, Hash table filtering,
Systolic Array, Transaction trimming filter

I.INTRODUCTION

The execution of a program may involve accessing
security-critical resources and these actions are
logged into histories. The security mechanism may
inspect these histories and forbid those executions
would violate the prescribed policies. Service
composition heavily depends on which information
about a service is made public, on

 how those service match than user’s requirements
can be chosen and on their actual runtime behavior.
Security makes service composition even harder.
Services may be offered by different providers which
only trust each other. On the other hand providers
have to guarantee that the delivered service respects a
given security policy in any interaction with the
operational environment, regardless of who actually

called the service. On the other hand, client may want
to protect their sensitive data from the

service invoked. Security is a major concern in
extensible software systems such as Java Virtual
Machine and common language runtime. These
system aim to enable simple, classic applets and
also, for example, distributed applications, web
services, and programmable networks, with
applications, web services and programmable
networks with appropriate security expectations.
Accordingly, they feature elaborate constructs and
mechanisms for associating rights with code,
including for determining the run-time rights of piece
of code as a function of the state of the execution
stack. These mechanisms prevent many security
holes, but they are inherently partial and they have
proved difficult to use reliably. Motivated and
described a new model for assigning right to code: in
short, the run time rights of a piece of code that have
run and any explicit request to augment rights. This
history base model addresses security concerns
avoiding pitfalls.

Analyzing the model in detail; in particular, discuss
its relation to the stack-based model and to the
policies and mechanisms of underlying operating
systems and consider implementation techniques. In
support of the model, also introduced and
implemented high level constructs for security, which
should be incorporated in libraries or in programming
languages.

The formalism features dynamic and static semantics,
thus allowing for formal reasoning about systems,
Static analysis and model checking technique provide
the designer with useful information to assess and fix
possible vulnerabilities, A service oriented
computing modeling framework supporting history
based security and call by contract. The

ISSN : 0975-3397 656

R.Ashitha / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 656-663

distinguishing feature of the modeling framework is
it provides high level constructs abstracting from the
underlying middleware for service programming and
deploying. The main result is a semantic-based
methodology for synthesizing the skeleton structure
of the orchestration engine, The orchestration plan
details which services the orchestration engine has to
choose in order to complete the original task while
obeying the security policies on demand. Here dealt
with security policies, but our methodology can be
applied to handle variety of nonfunctional safety
constraints.

II.TEQUNIQUE USED

 (a)Hash table filtering

To build a hardware hash table filter, we use a hash
value generator and hash table updating module. The
former generates all the k-itemset combinations of
the transactions and puts the k-itemsets into the hash
function to create the corresponding hash values. As
shown in Fig. 9, the hash value generator comprises a
transaction memory, a state machine, an index array,
and a hash function. The transaction memory stores
all the items of a transaction. The state machine is the
controller that generates control signals of different
lengths k = {2; 3 . . .} flexibly. Then, the control
signals are fed into the index

array. To generate a k-itemset, the first k entries in
the index array are utilized.

The values in the index array are the indices of the
transaction memory. The item selected by the ith

entry of the index array is the ith item in a k-itemset.
By changing the values in the index array, the state
machine can generate different combinations of k-
itemsets from the transaction. The procedure starts by
loading a transaction into the transaction memory.
Then, the values in the index array are reset, and the
state machine starts to generate control signals. The
values in the index array are changed by the different
states. Each item in the generated itemset is passed to
the hash function through the multiplexer. The hash
function takes some bits from the incoming k-
itemsets to calculate the hash values. Consider the
example in Fig. 9. We assume the current k is 3. The
first three index entries in the index array are used in
this case. The transaction fA;C;E; F;Gg is loaded into
the transaction memory. The values in the index array
are initiated to 0, 1, and 2, respectively, so that the
first itemset generated is < ACE > . Then, the state
machine changes the values in the index array. The
following numbers in the index array will be < 0; 1; 3
> , < 0; 1; 4 > , < 0; 2; 3 > , < 0; 2; 4 > , to name a
few. Therefore, the corresponding itemsets are <
ACF > , < ACG > , < AEF > , < AEG > , and so on.
The hash values generated by the hash value
generator are passed to the hash table updating
module.

To speed up the process of hash table building, we
utilize Nparallel hash value generators so that the
hash values can be generated simultaneously. In
addition, the hash table is divided into several parts to
increase the throughput of hash table building. Each
part of the hash table contains a range of hash values,
and the controller passes the incoming hash values to
the buffer they belong to. These hash values are taken
as indexes of the hash table to accumulate the values

ISSN : 0975-3397 657

R.Ashitha / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 656-663

in the table, as shown in Fig. 10. There are four
parallel hash value generators. The size of the whole
hash table is 65,536, and it is divided into four parts.
Thus, the range of each part is 16,384. If the
incoming hash value is 5, it belongs to the first part
of the hash table. The controller would pass the value
to buffer 1. If there are parallel accesses to the hash
table at the same time, only one access can be
executed. The others will be delayed and be handled
as soon as possible. The delayed itemsets are stored
in the buffer temporally. Whenever the access port of
hash table is free, the delayed itemsets are put into
the hash table. After all the candidate k-itemsets have
been generated, they are pruned by the hash table
filter. Each candidate itemset is hashed by the hash
function. By querying the number of itemsets in the
bucket with the corresponding hash value, the
candidate itemset is pruned if the number of itemsets
in the bucket does not meet the minimum support
criteria. Therefore, the number of the candidate
itemsets can be reduced effectively with the help of
the hash table filter

 (b)Systolic Array

A systolic array is an arrangement of processors in an
array where data flows synchronously across the
array between neighbors usually with different data
flowing in different directions.

Each processor at each step takes in data from one or
more neighbors (e.g. North and West), processes it
and, in the next step, outputs results in the opposite
direction (South and East). H. T. Kung and Charles
Leiserson were the first to publish a paper on systolic
arrays in 1978, and coined the name.

Systolic array is specialized form of parallel
computing with multiple processors connected by
short wires, unlike many forms of parallelism which
lose speed through their connection.
Cells(processors), compute data and store it
independently of each other

Systolic unit is an independent processor in which
every processor has some registers and an ALU. The
cells share information with their neighbors, after
performing the needed operations on the data.

Some simple examples of systolic array models.

ISSN : 0975-3397 658

R.Ashitha / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 656-663

Systolic is extremely fast, easily scalable architecture
and can do many tasks single processor machines

ISSN : 0975-3397 659

R.Ashitha / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 656-663

cannot attain Turns some exponential problems into
linear or polynomial time.

(c)

 The theoretical backgrounds of the pruning
scheme are based on the following two theorems
which were presented.

Theorem 1. A transaction can only be used to support
the set of frequent (k+1)-itemsets if it consists of at
least (k+1) candidate k-itemsets.

Theorem 2. An item in a transaction can be trimmed
if it does not appear in at least k of the candidate k-
itemsets contained in the transaction While the
support counting procedure is being executed, the
whole database is streamed into the systolic array.
However, not all the

reduced.

 In the HAPPI architecture, the trimming information
records the frequency of each item in a transaction
that appears in the candidate itemsets. The support
counting and trimming information collecting
operations are similar since they all need to compare
candidate itemsets with transactions. Therefore, in
addition to transactions in the database, their
corresponding trimming information is also fed into
the systolic array in another pipe, while the support
counting process is being executed. As shown in Fig.
7, a trimming vector is embedded in each hardware
cell of the systolic array to record items that are
matched with candidate itemsets

Fig. 7. An example of streaming a transaction and the
corresponding trimming information into the cell. (a)
Stream a transaction into the cell.(b) Stream
trimming information into the cell.

The ith flag in the trimming vector is set to true if the
ith item in the transaction matches the candidate
itemset. After comparing the candidate itemset with
all the items in a transaction, if the candidate itemset
is a subset of the transaction, the incoming
corresponding trimming information will be
accumulated according to the trimming vector. Since
transactions and trimming information are input in
different pipes, support counters and trimming
information can be updated simultaneously in a
hardware cell. In Fig. 7a, the candidate itemset < BC
> is stored in the candidate memory, and a
transaction {A;B;C;D;E} is about to be fed into the
cell. The resultant trimming vector after comparing <
BC > with all the items in the transaction is shown in
Fig. 7b. Because items B and C are matched with the
candidate itemset, the trimming vector becomes < 0;
1; 1; 0; 0 > . Meanwhile, the corresponding trimming
information is fed into the trimming register, and the
trimming information is updated from < 0; 1; 1; 0; 1
> to < 0; 2; 2; 0; 1 > . After passing through the
systolic array, transactions and their corresponding
trimming information are passed to the trimming
filter. The filter trims off items whose frequencies are
less than k. As the example in Fig. 8 shows, the
trimming information of the transaction
{A;B;C;D;E}is < 2; 2; 2; 1; 2 > and the current k is 2.
Therefore, the item D should be trimmed. The new
transaction becomes {A;B;C;D}. In this way, the size
of the database can be reduced. The trimmed
transactions are sent to the hash table filter module
for hash table building.

ISSN : 0975-3397 660

R.Ashitha / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 656-663

III PHASES

(a) Semantics of Services

That the services that initiate a computation are
furnished with an arbitrary plan. In the next section,
we shall discuss static machinery that will enable us
to construct these plans to guarantee that
computations will never go wrong, that is, they
satisfy all of the contracts and the security policies on
demand. We shall also show some strategies to adopt
when services disappear unexpectedly. The graph-
rewriting semantics for the case of dependent threads
is split into two parts: basic activities, events, security
blocks, requests, and returns .Details the rules that
involve planning and recovering strategies, that is,
planning blocks, requests to unavailable services,
unresolved requests, services going down and up, and
publication of new services. We shall briefly discuss
the case of independent threads later in this section.
All of the remaining axes in the taxonomy are
covered by our semantics. When irrelevant, we omit
the label in services. Note that the actual values for
some labels in rules REQ and RET are defined later
on, since they depend on the choice made on the
security aspects discussed. This gives rise to different
behaviors of requests and returns according to the
possible choices in the taxonomy

 (b)Network composed

A network composed of two services at locations,
both stateful and sharing a global history. The
service at starts with an action (the omitted target
object is immaterial in this example) and then issues
a request, resolved by the provided plan. The service
at performs within a security block, where the policy
prevents from being fired twice. A computation of
the network is depicted, where we assume that the
execution monitor is on. Note that the plan is not
viable because it drives a computation that fails
because of an attempted security violation right
before the second is fired.

 (c)Independent Threads

To model independent threads, each service must
keep a separate history for each thread. Equivalently,
we keep a history for each thread initiator. With this
aim, instead of a single history, services now carry a

function mapping the label of each initiator to its
corresponding history. Moreover, we keep track of
the initiator name: Each service invoked on behalf of
the initiator is tagged as such. The semantics of
services can now be easily adapted, making play the
role of in the semantics for dependent threads. The
rule REQ for independent threads.

 (d)Security policies

Security policies are regular properties of histories
and they are defined through template security
automata. A template security automaton gives rise to
a finite-state automaton when the parameter x is
instantiated to an actual object o. These automata will
be exploited to recognize those histories obeying.

IV.EXPERIMENTAL RESULTS

In this paper consider the example of such
transactions, pay-pal-system in purchasing items,
form an increasingly important sector within the
retail economy and are usually conducted by
customers entering relevant details, such as credit
card number, name etc, on a form-page of a vendor\'s
website. Alternatively it is possible to rely on the
vendor having stored those details from a previous
transaction, so as to simplify subsequent purchases
from that customer.

A stateless service does not preserve its history
across distinct invocations (yet it checks the history
within each invocation). Instead, a stateful service
keeps track of the histories of all the past invocations.
Stateless services can enforce policies that inspect the
history of the current invocation only, for example,
resource usage control. Stateful services allow for
more expressive security policies. For instance, a
stateful service can bound the number of invocations
on a per-client basis, whereas a stateless service
cannot. More generally, stateful services can exploit
their histories to record security-relevant information
about the state of client sessions. Consider, for
instance, a service that requires password
authentication and that gives only three chances per
hour to authenticate. This can be modeled as a
stateful service. In this case, the history keeps track
of the number of failed authentication attempts. The
security policy prevents the service from being used
by a caller for which the history has recorded three
failed authentication attempts in the last hour.

ISSN : 0975-3397 661

R.Ashitha / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 656-663

Although stateless services admit security policies
that are less expressive than those of stateful services,
static analysis can usually infer enough information
to ensure secure composition.

Security is of paramount importance in conducting
such transactions, since access to the account details
of a legitimate customer can be exploited for
fraudulent purposes such as the manufacture of fake
cards etc. If account details are transmitted over
internet connections in an unencrypted form, an
eavesdropper with access to an intermediate router
can access these sensitive details. Alternatively, fake
“look-a-like” websites can lure innocent customers
into providing their account details in the belief that
they are communicating with a reputable vendor.
Finally, it is not usual for the web-servers of
legitimate traders to become the subject of attacks, as
a result of which databases of previously stored
account details can be compromised.

To guard against many of these attacks, web-traders
commonly employ Secure Sockets Layer (SSL)-
protected servers. These address some, but not all, of
the security threats by encrypting communications
between the customer and the web-server, and also
serve to ensure that the web-server must present a
digital certificate which associates its identity with a
cryptographic public key.

It is also noted that many customers find the process
of entering details on web-forms confusing and error
prone, and the invention serves to ease these
difficulties also.

That is, currently, when a customer uses its web
browser to access a “sales” website presented by an
e-commerce server, the customer and device are
anonymous to the server. An SSL connection is set-
up between the browser in the PC or other terminal
device used by the customer. The customers can, by
using the SSL protocol, verify the authenticity of the
server because it is part of a Public Key Infrastructure
(PKI) and the server then presents a certificate which
chains-back to a root certificate stored in the
customer (client) browser. The customer\'s device can
then choose a random value, send it to the server
encrypted under its certified public key, and use it as
a basis for the computation of symmetric keys used to
provide confidentiality and integrity of the

information that the customer wishes to send to the
server.

As far as the e-commerce server is concerned, this
information has come from an anonymous source,
and the vendor then seeks authorization from the
credit card company based on creditworthiness, card
validity, security checks on supplied billing address
etc. However no steps have been taken to
authenticate the source of the information by either
user authentication or device authentication. The
authorization process is arranged simply to check that
it looks like a valid order.

V.RELATED WORK

Several approaches have been developed to support
the verification of service-oriented systems. For
example, dynamic bisimulation-based techniques
have been adopted to analyze the consistency
between orchestration and choreography of services
[21], [22], whereas state-space analysis has been
exploited to check the correctness of service
orchestration [31]. Our approach allows for
synthesizing and checking the correctness of the
orchestration statically.
Process calculus techniques have been used to
formalize Web Services standards (for example, see
[28], [18], [35], [37], [23]). A different approach is
[38], an abstract programming model for structured
orchestration of services. Web service authentication
has been recently modeled and analyzed in [14], [15]
through a process calculus enriched with
cryptographic primitives. From a software
engineering perspective, the advent of service-
oriented applications has led to the development of
service interfaces and orchestration (business) logic
and abstract from the underlying programming
middleware. A well-known example is provided by
the Service Component Architecture (SCA) [24].
This framework aims at simplifying implementations
by allowing designers to focus only on the business
logic while complying with existing standards. Our
approach complements the SCA view, providing a
full-fledged mathematical framework for designing
and verifying properties of service assemblies. It
would be interesting to develop a (model-
transformation) mapping from our formal framework
to SCA. In addition, related to our approach is the
work on SRML [29], a high-level core language,
independent of the underlying programming
middleware. SRML has a mathematical semantics,
providing and offers both syntactic and

ISSN : 0975-3397 662

R.Ashitha / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 656-663

behavioral service interfaces. The logic for the
specification of behavioral properties of services is
still under development. The interconnections
between services are specified in a declarative style,
but they are not driven by the properties of a contract,
as is proposal.

REFERENCES

[1] Massimo Bartoletti, Pierpaolo Degano, Gian Luigi Ferrari,

and Roberto Zunino “Semantic based design on secure web
service”2008

[2] M. Abadi and C. Fournet, “Access Control Based on
Execution History,” Proc. 10th Ann. Network and
Distributed System Security Symp., 2003.

[3] S. Anderson et al., “Web Services Trust Language (WS-
Trust),”technical report, 2005.

[4] B. Atkinson et al., “Web Services Security (WS-
Security),”technical report, 2002.

[5] A. Banerjee and D.A. Naumann, “History-Based Access
Control and Secure Information Flow,” Proc. Workshop
Construction and Analysis of Safe, Secure, and Interoperable
Smart Cards, 2004.

[6] H.P. Barendregt et al., “Term Graph Rewriting,” Parallel
Languages on PARLE: Parallel Architectures and Languages
Europe, 1987.

[7] M. Bartoletti, P. Degano, and G.L. Ferrari, “History Based
Access Control with Local Policies,” Proc. Eight Int’l Conf.
Foundations of Software Science and Computation
Structures, 2005.

[8] M. Bartoletti, P. Degano, and G.L. Ferrari, “Planning and
Verifying Service Composition,” Technical Report TR-07-
02, Dept. of Informatics, Univ. of Pisa, 2007, J. Computer
Security, to appear.

[9] M. Bartoletti, P. Degano, G.L. Ferrari, and R. Zunino,
“Types and Effects for Resource Usage Analysis,” Proc. 10th
Int’l Conf. Foundations of Software Science and
Computation Structures, 2007.

[10] M. Bartoletti, P. Degano, and G.L. Ferrari, “Enforcing Secure
Service Composition,” Proc. 18th Computer Security
Foundations Workshop, 2005.

ISSN : 0975-3397 663

