
Narendra kumar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 641-644

Approximate string matching Algorithm

 Narendra Kumar Vimal Bibhu Mohammad Islam Shashank Bhardwaj
 Sr. Lecturer Sr. Lecturer Sr. Lecturer Lecturer,
 Computer Science & Engg., Computer Science & Engg., Computer Science & Engg., Master in Computer Application,
 Galgotia College of Engg. & Tech. Galgotia College of Engg. & Tech. . Galgotia College of Engg. & Tech Krishna Institute of Engg. & Tech.,
 Greater Noida, U.P, India Greater Noida, U.P, India Greater Noida, U.P, India Ghaziabad, U.P, India

Abstract - Approximate string matching is used when a
query string is similar to but not identical with desired
matches many patterns can be symbolically encoded as
strings. Approximate string matching is the process of
searching for optimal alignment of two finite-length
strings in which comparable patterns may not be
obvious; long strings subject to natural variations or
random noise, for example, may share subtle,
characteristic, underlying patterns of symbols. Use of the
term approximate merely emphasizes the fact that a
perfect match may not be achievable and that
imperfections such as missing and extraneous symbols
have to be considered. In many applications, one of the
two strings is a prototype string that represents a
pattern class and the other is a test string that we wish to
analyze and/or classify.

Keywords: DNA - Deoxyribonucleic acid, Lexicon – A
method of analysis, Substitution – A method to substitute
something in place of other.

I. INTRODUCTION

The problem of string matching is very simply stated. Given
a body of text T [1…n] we try to find a pattern P [1…m]
where m ≤ = n. This can be used to search bodies of text for
specific patterns, or in biology, can be used to search strands
of DNA for specific sequences of genes. The problem of
exact string matching has been extensively researched.
However, approximate string matching is a much more
complicated problem to solve and has many more real world
applications. Unfortunately, in real world

applications the problem is not so cut and dry. This is where
approximate string matching comes in. Instead of searching
for the string exactly, approximate string matching searches
for patterns that are close to P. In other words approximate
string matching allows for a certain amount of error between
the two strings being compared.
One of the earliest applications of approximate string
matching was in text searching. Another application of
approximate string matching is in biology in DNA
searching. One of the newest applications of string matching
is to signal

II. OVERVIEW OF THE PROBLEM

Approximate string matching problem is to find
approximate similar match for query string from the given
database. Database may be organized in different ways.
Mathematically the problem can be defined as consider two
strings of text T [1...n] and P [1...m], and a distance
function D (x [i...j], y [a...b]) where x [i...j] and y [a...b]
denotes substrings of x and y. D (x [i...j], y [a...b]) computes
the minimal cost of converting x [i...j] in to y [a…b]. There
are three operations we can perform to convert x into y, each
with a cost of 1.

A. SUBSTITUTION

To perform a substitution we simply take one character in x
and change it to match a character in y.

B. INSERTION
An insertion is when a character is simply inserted into x to
match the character in y at the same position.

C. DELETION

This is the opposite of insertion. As the name suggests, it is
the act of removing a character in x.

The final input to the approximate string matching problem
is k, the maximum allowable error. Then the problem is to
calculate the set of P [i…j] such that D (T[x…y], P [i…j]) ≤
k.

III. APPROXIMATE MATCHING TECHNIQUE

There are two broad classes of schemes for approximate
string matching that could be used for fine searches:

1. String similarity measures and
2. Phonetic coding

String similarity measures compute a numerical estimate of
the similarity between two strings; such computation might
be based on the number of characters they have in common,
or the number of steps required transforming one into
another. These measures are often referred to as edit
distances. These measures can be used to rank a set of
strings—that is, a lexicon—with respect to a query string.
Such schemes are generally regarded as appropriate to

ISSN : 0975-3397 641

Narendra kumar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 641-644

spelling correction, where around 80% of human errors are a
single insertion, omission, or exchange. Phonetic coding, on
the other hand, assign a phonetic code to each string; two
strings are judged to be similar if they have the same code,
and dissimilar otherwise. Phonetic schemes have been
regarded as appropriate to personal name matching because
it is possible for names that sound similar to have very
different written forms. There are also several candidate
coarse search schemes. One scheme would be to bucket the
lexicon strings according to their phonetic code, and retrieve
the bucket with the same code as the query string.
Another scheme is the use of n-grams, that is, indexing each
string in a lexicon according to the character substrings it
contains. Yet another scheme, which to our knowledge has
not previously been applied to approximate matching, is to
“permute” a lexicon by adding to it every rotation of every
word, and find answers by binary search in the lexicon that
result.

IV. NEW SIMILARITY MEASURE

During development of an algorithm for approximate
matching by using N-gram technique fallowing assumptions
are made,
1. For a given input string of length N only strings of length

of (N-N/2) to (N+N/2) are selected from the database
2. There is no need to compare all N-gram (for N=1, 2, 3 …)

of input string with the N-gram of strings stored in
database.

a). Only those strings are considered for 2-gram comparison
for which more than 50% of 1-grams are matched with 1-
gram of input string form strings selected in assumption
1.

b). only those strings are considered for 3-gram comparison
for which more than 40% of 2-gram are matched with 2-
gram of input string form strings selected in step a.

c). only those strings are considered for 4-gram comparison
for which more than 30% of 3-gram are matched with 3-
gram of input string form strings selected in step b

All the string displayed as approximate matched strings for
which 25% of 4-gram are matched with 4-gram of input
string from strings selected in step c.
Similarly further comparisons provide accurate result with
less time complexity.
This similarity measurer gives good results after
implementing it into the algorithm,Still it required further
refinement that we have made in modified similarity
measurer.
We have seen that the % of N-gram that required being
satisfied at different level of approximation is First
approximation: 50% of 1-gram and Second approximation:
40% of 2-gram and Third approximation: 30% of 3-gram
and Fourth approximation: 25% of 4-gram
Now we consider the case of string of length N=27, for
which
Number of 1-gram =27

Number of 2-gram =26
Number of 3-gram =25
Number of 4-gram =24

Then 25% of 4-gram will return 6 that is 6, 4-gram of query
string must be matched with target strings from database
which are displayed as final results. By the definition of N-
gram six 4-gram formed by at least 9(lower bound), 1-grams
(when all 4-grams are exists in continuity) or at max
24(upper bound), 1-grams (when all 4-grams are exists
separately). But our first approximation criteria require 50%
of 1-gram should be matched that is 13, 1-gram should be
matched, which does not satisfied lower bound on fourth
approximation. Thus we get variation in results, so to
remove this variation we change % of N-gram matched in
different approximation. Following table show variation in
approximation criteria through which we draw important
results for designing an efficient similarity measurer.

Table 1: Variation in approximation criteria

N-gram
Variation-

1
Variation-2 Variation-3

1-gram 75% 50% 25%
2-gram 60% 40% 20%
3-gram 50% 30% 15%
4-gram 40% 25% 10%

On the basis of results of these variations shown in table 1
approximation criteria, we are able to draw important
conclusion that is the approximation criteria should vary
with length of query string.

V. MODIFIED SIMILARITY MEASURE

1. For a given input string of length N only strings of

length of (N-N/2) to (N+N/2) are selected from the
database.

2. There is no need to compare all N-gram (for N=1, 2, 3

…) of input string with the N-gram of strings stored in
database.

3. If length of the query string is less than and equal to six

than
i.Only those strings are considered for 2-gram

comparison for which more than 75% of 1-grams are
matched with 1-gram of input string form strings
selected in assumption 1.

ii.All the string displayed as approximate matched strings
for which 50 of 2-gram are matched with 2-gram of
input string from strings selected in step (i).

4. If length of the query string is less than and equal to
Nine than

ISSN : 0975-3397 642

Narendra kumar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 641-644

i.Only those strings are considered for 2-gram
comparison for which more than 50% of 1-grams are
matched with 1-gram of input string form strings
selected in assumption 1.

ii.Only those strings are considered for 3-gram
comparison for which more than 40% of 2-gram are
matched with 2-gram of input string form strings
selected in step (i).

iii.Only those strings are considered for 4-gram
comparison for which more than 30% of 3-gram are
matched with 3-gram of input string form strings
selected in step (ii)

iv.All the string displayed as approximate matched strings
for which 25% of 4-gram are matched with 4-gram of
input string from strings selected in step (iii).

5. If length of the query string greater than Nine then

i.Only those strings are considered for 2-gram
comparison for which more than 25% of 1-grams are
matched with 1-gram of input string form strings
selected in assumption 1. Also keep the track of total
number of 1-gram matched (C1).

ii.Only those strings are considered for 3-gram
comparison for which more than 20% of 2-gram are
matched with 2-gram of input string form strings
selected in step (i). Also keep the track of total number
of 2-gram matched (C2).

iii.Only those strings are considered for 4-gram
comparison for which more than 15% of 3-gram are
matched with 3-gram of input string form strings
selected in step (ii). Also keep the track of total number
of 3-gram matched (C3).

iv. Only those strings are considered for Next comparison
for which more than 10% of 4-gram are matched with
4-gram of input string form strings selected in step (iii).
Also keep the track of total number of 4-gram matched
(C4).

v. All the string displayed as approximate matched strings
for which the condition ((C1/C4) < 3.5 OR (C2/C4) <
2.5 OR (C3/C4) < 1.5) is satisfied.

VI. PPROPOSED ALGORITHM

Database:

Trademarkinformation(TextId,Trademarkname,
Textlength),

Input string: S,
Length of input string: N,
Average text length: L,

1. For input string call a procedure to evaluate N-gram

(N=1, 2….)

2. For strings from database call a procedure to evaluate
N-gram (N=1, 2….)

3. Select strings from database for which L>= (N-N/2)

and L<=(N+N/2)

4. call modified similarity measurer procedure

5. Display the results.

VII. PERFORMANCE MATCHING GRAPH

Performance of Approximate String Matching Algorithm

0

100

200

300

400

500

600

700

800

0 2000 4000 6000 8000 10000 12000

Database Size

T
im

e
(m

.s
.)

For L=2 For L=3 For L=5 For L=7 For L=9 For L=10 For L=15 For L=20

For L=25 For L=30 For L=40 For L=50

CONCLUSION:

We have shown that the n-gram technique with some
modification provides excellent search results and we get
linear time relationship for finding the approximate match
from the database of different sizes. We have shown that n-
gram indexing provides an excellent coarse search
mechanism for identifying approximate matches in a large
lexicon. By varying n, the index can be kept small or query
evaluation can be fast, with small n giving better
effectiveness. We have also variation in time for accessing
the approximate match from the database during the
operation of algorithm. Basically the factor depend on the
no matched find by the program from the database and
further this variation depend on the number of strings in the

ISSN : 0975-3397 643

Narendra kumar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 641-644

database of the particular length Thus this time variation is
depend on the length of query string, L and number of
strings in the database of the length U where (L-L/2) <=U
<= (L+L/2).

REFERENCES:

[1] 1. C.L. Borgman and S.L. Siegfried, ‘Getty’s Synoname and its

cousins: A survey of applications of personal name-matching
algorithms’, Journal of the American Society for Information Science,
43, (7), 459–476,(1992).

[2] P.A.V. Hall and G.R. Dowling, ‘Approximate string matching’,
Computing Surveys, 12, (4), 381–402, (1980).

[3] K. Kukich, ‘Techniques for automatically correcting words in text’,
Computing Surveys, 24, (4), 377–440, (1992).

[4] National Institute of Standards and Technology. Proc. Text Retrieval
Conference (TREC), Washington, November 1992. Special
Publication 500-207.

[5] H.J. Rogers and P. Willett, ‘Searching for historical word forms in
text databases using spelling correction methods: reverse error and
phonetic coding methods’, Journal of Documentation, 47, (4), 333–
353, (1991).

[6] G. Salton, Automatic Text Processing: The Transformation, Analysis,
and Retrieval of Information by Computer, Addison-Wesley,
Reading, MA, 1989.

[7] S. Wu and U. Manber, ‘Fast text searching allowing errors’,
Communications of the ACM, 35, (10), 83–91, (1992).

[8] E. Ukkonen, ‘Approximate string-matching with n-grams and
maximal matches’, Theoretical Computer Science, 92, 191–211,
(1992).

[9] T.N. Gadd, “Fisching fore werds’: Phonetic retrieval of written text in
information systems’, Program: automated library and information
systems, 22, (3), 222–237, (1988).

[10] T.N. Gadd, ‘PHONIX: The algorithm’, Program: automated library
and information systems, 24, (4), 363– 366, (1990).

[11] T.C. Bell, A. Moffat, C.G. Nevill-Manning, I.H.Witten, and J. Zobel,
‘Data compression in full-text retrieval systems’, Journal of the
American Society for Information Science, 44, (9), 508–531, (October
1993).

[12] J. Zobel, A. Moffat, and R. Sacks-Davis, ‘An efficient indexing
technique for full-text database systems’, Proc. International
Conference on Very Large Databases, Vancouver, Canada, August
1992, pp. 352–362.

AUTHORS PROFILE

Narendra Kumar has received his Bachelor of Technology
and Master in Technology in Computer Science &
Engineering from UP Technical University, Lucknow,
India. He is working as Senior Lecturer in the Department
of Computer Science & Engineering at Galgotia College of
Science & Technology, Greater Noida, India. He is a
member of various Technical Societies viz. Computer
Society of India (CSI), Indian Society of Technical
Education (ISTE). He published many research papers in
various Conferences. His main research interests include:
Wireless Sensor Network, Distributed & Mobile Computing
and Middleware.

Vimal Bibhu has received his Bachelor of Science in
Chemistry(Hons.) from Magadh University, Bodh Gaya,
Bihar, India, Post Graduate Diploma in Information

Technology from IGNOU, New Delhi, India, Master in
Computer Application from IGNOU, New Delhi, India and
Master in Technology in Computer Science & Engineering
from CDAC Noida, Affiliated to Guru Gobind Singh
Indraprastha University, New Delhi, India. He is working as
Sr. Lecturer in the Department of Computer Science &
Engineering at Galgotia’s College of Engineering &
Technology, Greater Noida, Uttar Pradesh India. He is a
member of various Technical Societies viz. International
Association of Computer Science & Information
Technology (IACSIT), International Association of
Engineers (IEANG). He published many research papers in
various International Journals and Conferences.

Mohammad Islam has received his Bachelor of
Technology and he is also perusing Master of Technology in
Computer Science & Engineering from Uttar Pradesh
Technical University, Lucknow. He is working as Senior
Lecturer in the Department of Computer Science &
Engineering at Galgotia College of Engineering &
Technology, Greater Noida, India. He is a member of
various Technical Societies viz. Computer Society of India
(CSI), Indian Society of Technical Education (ISTE). He
published many research papers in various Conferences. His
main research interests include: Wireless Sensor Network,
Distributed & Mobile Computing and Middleware.

Shashank Bhardwaj has received his Bachelor of
Technology in information Technology and he is also
perusing Master of Technology in Computer Science &
Engineering from Uttar Pradesh Technical University,
Lucknow. He is currently working on the post of Lecturer in
department of Master of Computer Application at Krishna
Institute of Engineering & Technology, Ghaziabad, India.
He is a member of various Technical Societies viz.
Computer Society of India (CSI), Indian Society of
Technical Education (ISTE). He published many research
papers in various Conferences. His main research interests
include: Wireless Sensor Network, Distributed & Mobile
Computing and Middleware.

ISSN : 0975-3397 644

