
B.Galeebathullah et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 614-618

A Novel Approach for Controlling a Size of a Test Suite
with Simple Technique

B.Galeebathullah C.P.Indumathi

 Student,Department of CSE, Lecturer,Department of CSE
Anna UniversityTiruchirappalli,India. Anna University,Tiruchirappalli,India
Email-kalifathullah@gmail.com Email:inducp@gmail.com

`Abstract-Software testing is an important activity in the
software development life cycle. and also expensive phase
when compared to all other phases of the software
development life cycle. Software testing purpose is to
detect,software failures so that defects may be recoverd and
corrected.Softwares are tested through test cases.A test case
is a set of condition or variables variables under which a
tester will determine whether an application or software
system is working correctly or not.For many application test
cases are generated automatically but the main problem is
selecting a effective test cases among all test cases.The
process of selecting a effective test cases from all test cases
is called Test case selection.This process is used for finding
a redundant test cases and removing the redundant test
cases in a test suite is called test suite minimization. In this
paper ,we propose a novel test suite reduction based on set
theory.To demonstarate the applicability of this approach
,we conduct an experimental study ,The result shows that
our technique is easy to implement and consumes less time

Categories and Subject Descriptors: [Software
Engineering]:
Testing and Debugging

Keywords : software testing, test case minimization,
test suite minimization, set theory,test suite
minimization

1 INTRODUCTION

 Software testing is the process of executing a
program or system with the intent of finding errors.
As a part of any software development process,
software testing represents an opportunity to deliver
quality software and to substantially reduce
development cost as much as 50% [1].
As software testing is an expensive software
development activity,the cost of testing to achieve
certain adequency according to given criterion is also
importance comparison of testing costs involves many
factors ,one of the simplified measure of test cost is
the size of an adequacy criterion.
 Generally softwares are tested through a test
case.A test case is defined in IEEE standard as [13]:”
A set of inputs, execution, and expected results
developed for a particular objective, such as to
exercise a particular program path or to verify
compliance with a specific requirement".The quality

of a test cases measured is based on the following
factors: 1) Code Coverage, 2) fault Coverage, 3) size,
4) the number of faults detected by the most effective
test contain [12]. A test case is usually a single step,
or occasionally a sequence of steps,to test the correct
bahaviour. Test cases are reffered to as test
scripts,when particularly written, written test cases are
usually collected into test suites.A test suite often
contains detailed instructions or goals for each
collection of test cases and information on the system
configuration to be used during testing. A group of
test cases may also contain prerequisite states or steps,
and descriptions of the tests. As one test case can
hardly satisfy all the requirements, it is usually
required to use a suite of test cases to satisfy as many
as possible requirements. Intuitively, the more test
cases are used, the more possible the requirements are
satisfied. Practically, a test suite usually undergoes a
process of expansion, as new test cases are inserted
into the test suite to ensure the requirements being
satisfied. As a result, a test suite may contain more
than enough test cases for satisfying the
requirements.Therefore ,controlling the size of a test
suite based on the requirements by keeping a
minimum test suite size is called test suite reduction
or test suite minimization.

2 RELATED WORK

 A classical greedy heuristics [2][3] solves the
problem by recursive action of the following
steps.select the test cases from a test suite and find
out wheather test cases satisfy the most requirements
and remove the requirements covered by the test
cases.This process will be stop until all the
requirements are coverd or satisfied by the test
case.Another heuristic developed by Harrold Soffa
and Gupta[4] (HGS):Selects a representative set of
test cases from a test suite until covered a
requitements by a test cases.This approach will take
additional computation for selecting a test
cases.However the above two approaches we can’t
exactly said that the which one gives better reduction
of the test cases.The main drawbacks in existing
approach is that they lack of fault detection
capability.Wong et al[5][6] reported that all uses

ISSN : 0975-3397 614

B.Galeebathullah et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 614-618

coverage was kept constant ,test suites could be
minimal at line or no cost in fault detection
effectiveness. Von Ronne [13] generalized the HGS
algorithm, such that every requirement could be
satisfied multiple times according to its hitting-factor
Rothermal[7][8] expressed that the fault detection
capabilities of test suites can be nearly equal to the
minimization of the test suites. Tallam and Gupta[14]
developed another heuristic called the delayed-greedy
strategy.Concept analysis is a hierarchical clustering
technique for objects and their corresponding
attributes. When viewing test cases as objects and
requirements as attributes, the framework can help
expose both the implications among test cases and the
implicationsamong those requirements satisfied by the
test cases. In their experiments, the delayed-greedy
strategy consistently obtained. the same or more
reduction in suite sizes than it did in prior heuristics,
such as in the HGS or in the classical greedy strategy.

 The remainder of this article is organized as
follows.In section 2 we review the test suite reduction
problem,the existing solutions.The implementation of
the proposed approach is described in section
3.Finally,the conclusion and future work are given in
section 4.

2 TEST SUITE MINIMIZATION

 In this section, we review the definition of the test
suite reduction problems ,the existing algorithms

2 .1 BACKGROUND AND DEFINITION

 According to Rothermal [9],a Software contains
20,000 LOC (Lines of Codes) requires seven weeks to
run all the test cases.to eliminate a redundant test
cases in a test suite,test suite minimization approach
is necessary.The test suite minimization definition as
follows .A test suite consists T test cases
{t1,t2,t3………..tn} satisfy the requitements
{r1,r2,r3,………..rn} that must be coverage exists
among the requirements and test cases of a progam.to
finding a minimum subset of t that will covers a
maximum coverage requirement.

Problem:To find a subset of Test case T that will
capable to cover the maximum requirements by test
suite T from an unminimized test suite.

2.2 EXISTING SOLUTION

 Table 1 is an example that shows the coverage
information between the test cases in a test suite
{t1,t2,t3,t4,t5}andrequirements{r1,r2,r3,r4,r5,r6},here
the requirements denoted any one of the coverage

criterion such as statement,Branch so on .The symbol
X denotes the coverage between the test cases and

requirements.

Table -1

 The Classical Greedy heuristic provides a solution
for set-covering problem [2][3] for finding a
minimization of test cases from unminimized test
suite .The Algorithms woks as follows:select the test
cases that meets the maximum uncovered
requirements until all the requirements are
covered.from the test case.the reduction of the test
suite is T1.T3,T4.The HGS heuristic as Follows First
find out the association beteeen the test cases and
requirements and find representative set that covers all
the requirements .It consider a Tiof the single element
(Cardinality one) then places in a test suite .Next
select the cardinality two are considered until all the
requirements are satisfied by the test case.the reduced
test suite for HGS is T0,T3

3.PROPOSED TEST CASE REDUCTION
TECHNIQUE

 In this section first we describe about set theory and
its operation, next we will describe how the set theory
is applying in the test suite reduction.The concept of
set theory is fundamental to mathematics and
computer science. Everything mathematical starts
with sets.for example, relationships between two
objects are represented as a set of ordered pairs of
objects.

Definition 1:Equiality of Sets: Two sets are equal if
and only if they have the same elements. For any sets
A and B ,A=B if and only if V x [x € A ↔ x € B]

Definition 2: Subset :A set A is a subset of a set B if
and only if everything in A is also in B. More
formally, for any sets A and B, A is a subset of B,
and denoted by A C B if and only if V x [x € A ↔
x € B]

Test
case/Requ
irements

T0 T1 T2 T3 T4 T5

Ro X X X X
r1 X X X
r2 X
r3 X X
r4 X X X
r5 X X X X
r6 X X X

ISSN : 0975-3397 615

B.Galeebathullah et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 614-618

 In our approach we used the set theory from that we
find the intersection between the one requirements to
another reruiremets of branch coverage criteria for the
set of test cases.the working procedure of a test case
reduction algorithm is as follows:

Input:
Set of requitements (R):{r1,r2,r3,………rk}
Set of Test cases (TC):{t1,t2,t3…………tn}
Output: Selected:minimized test suites

Step1:
Find the intersection of the one requitrements to
another requirements

Step2:
If any intersection elements occur then added to the
reduced suite

Step3:
Repeat the process until all the requirements are
satisfied by the test cases .

Algorithm Test suite reduction

Input:
Set of requirements (R) : {r1,r2,r3,………rk}
Set of Test cases (TC) : {t1,t2,t3…………tn}
Ti : set of test cases satisfying requirements ri

,i=1,2,…..k
Ri : Set of requirements satisfying test cases ti,

i=1,2,……..n

Output: Selected test cases :S
Declare
 ri= 0;

 rk =n;

 list =0;

Begin

 S ← { }//initially selected test case is empty
 foreach(ri= 0; TO rk =n)

 step 2: if (ri ∩i rk)

 {

 S ← { ti } // added to the selected test
cases

 }
 else
 goto step 2:
 forend
list ← Ụ i ti // reduced test suites

 3.1 MEASURE

 In this paper, we use the formula finding a size of
a reduced test suite

 The percentage of test suite size reduction
(SSR)[10] is defined as

 SSR = T - Tmin / T ------------------ (1)

Where T is the number of test cases in a orginal test
suite.Tmin is the number of test cases in the reduced
suite/minimized suite. A higher SSR means a better
reduction .

4.EXPERIMENTAL STUDY

 In section 3 ,we described a proposed approach
based on the set theory concepts.for the purpose of
understanding In this section we do experimental on a
small program based on the branch coverage
criterion.we choose a small program taken from[16] .

int foo (int a,int b,int c)
{
 B1: if(a>0) x=x+1;
 else x=x-1;
 B2: if(b>0) y= -2;
 else y=x+1;
 B3: if(c>0)
 {
 B4: if(y<0) return 10;
 }
 else
 return 20;

 Fig-2 A Simple Program based on Branch
Coverage

Test
case

A B C

T1 1 -1 1
T2 -1 1 1
 T3 1 1 -1
T4 -1 1 -1
T5 -1 -1 -1

 Table -2 Test cases

Table 2 shows the developed test cases inputs for the
sample program mention in the fig 2 and Table 3
displays the corresponding branch coverage matrix

ISSN : 0975-3397 616

B.Galeebathullah et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 614-618

between the test cases and the requirements covered
by the sample program

Branch/
Test
case

Cardi
nality

T1 T2 T3 T4 T5

B1 2 X X
B2 3 X X X
B3 3 X X X
B4 2 X X
B5 2 X X
B6 3 X X X
B7 1 X
B8 1 X

Table-3 Test Case Coverage Matrix

 In our experiment we use a coverage criterion as
branch coverage ,by applying this coverage matrix in
to our algorithm we find out the intersection between
the requirements of ri to rk until all the requirements
are satisfied.intially the selected test suite are
empty.the resulted selected test cases for our approach
is t1, t2, t4

4.1 EXPERIMENTAL RESULTS

 In this section we describe the average sizes of the
reduced suites based on the Greedy,HGS,Set theory
for the above program.The table 4 shows the
percentage of test suite size reduction (SSR) for the
above program.

Algori
thm

Orgina
l
Test
case

Reduce
d Test
case

% of Reduced
Test suite

Greedy 5 3 57.14
HGS 5 3 57.14
Set
theory

5 3 57.14

Table 4-Percentage of a reduced test suite

5.CONCLUSION AND FUTURE WORK

 In this paper we presented a new algorithm to
controlling a size of a test suite that covers all the
requirements covered by a test suites.our techniques is
simple among all other techniques.In future we would
like to runs similar experiments on programs from a
broader range of programming languages,sizes and
problem domains ,in order to capture how large
programs can quickly lead to test suite reduction

REFERENCES
[1] Boris Beizer,”Software Testing Technique”, Second Edition

International Thomson Computer 1990 ISBN 1-85032-
880-3

[2] T.H.Cormen, C.E.Leiserson, R.L.Rivest, “Introduction to

Algorithms,MIT Press,Cambridge,MA 2001.”

[3] V.Chivtal, A Greedy Heuristic for the set covering Problem,
Mathematics of Operation Research 4 (3) (1979) 233-235

[4] M.J.Harrold, R.Gupta, M.L.Sofa,”A Methodology for

controlling the size of a test suite,ACM Transcations on
Software Engineering and Methodology 2(3)(1993) 270-285

[5] W.E.Wong,J.R.Horgan, S.London, A.P.Mathur,”Effect of

test set minimization on fault detection
effectiveness,Software-Practice and Experience 28 (4)
(1998) 347-369.

[6] W.E.Wong,J.R.Horgan, S.London, A.P.Mathur,”Effect of

test set minimization on fault detection effectiveness,in
“:Proceddings in Seventeeth international conference on
Software Engineering ,Seattle,Washington,USA,1995,pp 41-
50

[7] G.Rothermal,M.J.Harrold,J.Von Ronne,C.Hong,”Em-perical

studies of Test suite reduction”,Software testing verification
and relaiblity 12 (4) (2002)219-249

[8] G.Rothermal,M.J.Harrold,J.Ostrin,C.Hong,”An Empeerical

study of the effects of minimization on the fault detection
capabilities of test suites “,Proceedings of The fourteenth
international conference on software maintainance
,Betheseda,MD,USA,1998 ,pp 34-43

[9] G.Rothermal,R.H.Untch,C.Chu,M.J.Harrold,”Prioritizing

test cases for regression testing”,IEEE Transcations on
software Engineering ,27 (10)(2001) 929-948

[10] Dennis Jeffrey and Neelam Gupta “Improving Fault

Detection Capability by Selectively Retaining Test Cases
during test suite reduction “,2007,pp 1108-123

[11] H.Agrawal,“Efficient Coverage Testing Using Dominotor

Graphs,” Workshop on Program Analysis For Software
Tools and Engineering ,1999,pp 11-20

[12] http://www.cs.odu.edu/~toida/nerzic/content/set/basics.html

[13] I. Pomeranz, S.M. Reddy, "On the Compaction of Test Sets

produced by Genetic optimization “,In proceedings of IEEE
5th Asian Test Symposium (ATS’97), Akita, Japan,
November,1997

[14] J.V. Ronne, "Test Suite Minimization: An Empirical
Investigation “,Bachelor Thesis, June 1999, Retrived From
url http://www. http://www.ics.uci.edu

[15] S.Tallam, N.Gupta, A Concept Analysis inspired greedy

algorithm for test suite minimization,in:Proceedings of the
Sixth Workshop Program Analysis for software Tools and
Engineering, Lisbon, Portugal,2005

[16] Jun-wei Lin , Chin-Yu Hang,” Analysis of test suite

reduction with enhanced tie-breaking”,in:information and
software technology 51 (2009) 679-690

ISSN : 0975-3397 617

B.Galeebathullah et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 614-618

ISSN : 0975-3397 618

