
Nabil Arman et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 607-613

A Systematic Approach for Constructing Static Class

Diagrams from Software Requirements

Nabil Arman
Department of Mathematics and Computer Science

Palestine Polytechnic University
Hebron, Palestine

Khalid Daghameen
Department of Computer and Electrical Engineering

Palestine Polytechnic University
Hebron, Palestine

Abstract—The trend towards the use of object-oriented methods
for software systems development has made it necessary for the
use of object-oriented approaches in object-oriented software
systems development. Class diagrams represent an essential
component in any object-oriented system design. The
development of such class diagrams in a systematic way is very
crucial in an object-oriented development methodology. The
main principles used in obtaining these class diagrams in a
systematic way are described since class diagrams are very
essential in object-oriented development practice.

Keywords- Class diagrams, software requirements, object-
oriented methods

I. INTRODUCTION

Many object-oriented development methodologies have
been developed in the past two decades. These methodologies
include Object Modeling Technique (OMT), OOSE and OPEN
[1-3]. Commercial methodologies that can be purchased are
available today, including Rational Rose and Rational Unified
process[4,5]. A System Development Methodology (SDM) has
been defined as "…a systematic approach to conducting at least
one complete phase (e.g., requirements analysis, design) of
system development, consisting of a set of guidelines,
activities, techniques and tools, based on a particular
philosophy of system development and the target system [6].
From this definition, it is generally recognized that there is a
great emphasis on "being systematic" for any phase of system
development methodology.
 The requirements engineering practice using object-
oriented development methodologies has been well-
documented in the literature [7-9]. In [7], a number of case
studies were presented. In these case studies, the use of a
systematic approach for obtaining static class diagrams was
absent. In [8], the role of object-oriented process modeling in
requirements engineering phase of information systems
development is presented. In [9], object-oriented requirements
engineering and management is explained. These approaches
are categorized into two main categories according to Edward
Yourdon. The two categories are evolutionary to Object-
Oriented analysis and Design and revolutionary to Object-
Oriented analysis and Design. Rambuagh and Martin-Odell are

two approaches of evolutionary approach. Booch and Wrifs-
Brock are two approaches of revolutionary approach [10-12].
 Some approaches to Object-Oriented analysis and design
were based on use cases after the introduction of UML. Dough
Rosenberg and Matt Stephen proposed an approach for Object
modeling based on use cases [13]. Their approach includes the
static and dynamic models of Object-Oriented. While our
approach in this paper is concerned with static models, their
approach depends mainly on software engineers/practitioners.
Our new approach is less dependent on humans.
 This paper presents a systematic approach consisting of a
set of guidelines and techniques for obtaining static class
diagrams from software requirements. The guidelines are
explained in detail and two case studies are presented to
illustrate the approach. Research into a systematic approach for
obtaining class diagrams practices is therefore needed to
improve understanding of object-oriented system development
methodologies in general and class diagrams in particular.

II. STATIC CLASS DIAGRAMS CONSTRUCTION

A static class diagram is constructed from software
requirements and problem statements by following the steps
below [14]:

1. Identify the list of all nouns and noun phrases from
the problem statement. These nouns and noun phrases
represent classes and adjectives represent attributes.
A software engineer/practitioner obtains such a list
from the problem statement, use cases, actor-goal list
or application narrative description.

2. Identify the list of verbs which represent actions in
the software requirements. These actions represent
methods in the static class diagram.

3. Make a refinement for the nouns determined in step
1. Such nouns represent values for attributes, or
nouns that are identical to other nouns. This step is
important to ease the process of having the static
diagram, but it is not necessary; nouns that are not
related to the problem statement are isolated classes
in the static diagram. This means that they are not

ISSN: 0975-3397 607

Nabil Arman et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 607-613

part of the system. Nouns that are identical according
to the problem statement appear in the static diagram
with the same attributes and associations as other
nouns. From that, one also needs to pick one of such
classes. For example, in a problem statement
concerning a university, a teacher may be called a
teacher, a professor or an instructor. Such nouns
mean the same thing in this problem statement .

4. Arrange the nouns from step 2 into a matrix keeping
the order of such nouns the same in the rows and
columns. The nouns that appear in the left column is
called “left cell” in the paper and the ones that appear
in the top row is called “top row” In this early step,
one keeps the nouns and noun phrases at the top of
the list and the adjectives at the bottom of the list.

5. Fill up the table with the letters (I, H, P, U or keep it
empty) by answering YES/NO questions. The four
questions are: Is the “left cell” a “top row”?, Has a
“left cell” a “top row”?, Is a “left cell” a “top row”?
and Does the “left cell” use the “top row”?
consecutively. It is important to realize that once a
cell is occupied by a letter, one doesn’t need to do the
rest of the questions for that particular cell.

6. The answers of the four questions must be according
to the problem statement, use cases, actor-goals or
application narrative description. In a university
problem statement, the answer for a question such as
“Is the graduate-student a student?” is yes. The
answer for “Has student information a date?” is yes.
On the other hand, an answer for the question such as
“Is a student a graduate-student?” is no, since there is
a student who is not a graduate student for that
problem domain.

7. Identify those nouns which are classes and those
which are attributes. Any row that has an “H” letter is
a class, as for those rows which don’t have an “H”
letter is left to the software practitioner to identify.
Rows that have more than one “I” is a class. The row
which has a single “I” is also a class. As for the
adjectives, all of them are attributes.

8. Rearrange the nouns again in the table taking into
account that all candidate classes must be sorted
according to the number of “H” letters in each row
and the others are kept to the end of the list for the
classes, while the attributes and methods should
occupy the tail of the list. Fill up the lower half of the
matrix with letters by asking the simple four
questions again. In other words, the arrangement
takes into account that the diagonal contains "I's" and
all the cells that are above the diagonal should have
the "H" and the lower part has the "P's".

9. Each identified class in the table should have a
corresponding class in the class diagram. If one is
using UML models, a standalone class is drawn by
the name of the class.

10. For those rows that contain the same letter,
distinguish between cells if they mean different
things, even if the difference is less significant. You
can use any identification symbol such as the prime
“'”.

11. Identify the hierarchy by connecting classes using the
cells containing “I” letters. An L-shape is formed
between two candidate classes. For the hierarchy stair
shape like is obtained by forming more than one L-
shape from those “I” cells.

12. An UML static diagram is obtained from the
information obtained from the previous steps.

13. For the “P” cells, arrange them into groups according
to the groups of “I’s”. For example, a stand alone “P”
in a row means that this is an attribute; “left cell”
which is an attribute in the class “top row”. For two
“P” cells in a row, find the equivalent of “I’s” that
form the lower part of L-shape from a row in the top.
Those are part of the lower L-shape and this attribute
is part of the class which is in the higher L-shape of
“I’s”. A group of three P’s is the same and you need
to find the Upper L-shaped class upon identifying the
Attribute position of an attribute.

14. For those “P” cells, which are classes, or those
classes that have “has-a” associations with another
class. The first step is to locate the position of the
class which should be connected to another class.
This is done using the same as step 11.

III. CASE STUDIES

Two case studies are presented here to explain the main
guidelines of our approach:

Case study I: Assume that the following text/problem
statement is taken from a software requirements document:

Vessels are one kind of containers that contain
liquids, vessels are different in shapes and sizes. Each
vessel has a capacity which is the maximum quantity
of the substance that is contained using a vessel. The
amount of substance in a vessels wobbles between
zero to the maximum of the capacity of a vessel. All
types of vessels have a capacity computed differently.
When someone fills up a vessel, he/she is going to
add some substance to the existing substance in the
vessel.
A lot of shapes of vessels are exist, but we are
concerned with few of them, some of them which are
rectangular tanks, this type has a rectangular base and
a height, the rectangular base is identified by its
length and width. A cubic tank which is the same as a
rectangular one except that the base is a square base
and both length and width have the same value. A
cylindrical tanks has a circular base and height. A
circular base is identified by its radius.

ISSN: 0975-3397 608

Nabil Arman et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 607-613

 To construct a static class diagram form the above
problem statement, the steps are applied as follows:

 The first step in analyzing the problem statement is to

identify a list of nouns and noun phrases, such as vessel,
container, size, capacity, tank, rectangle, square, height,
length and width.

 The next step is to take some of those nouns out of the
list. Such nouns are those which are identical or they refer
to the same thing. In the problem statement, tank, vessel
and container are synonyms to the same thing, so vessel is
picked. Some nouns are not part of the problem although
they are mentioned in the problem statement. A software
engineer/practitioner must take them out of the list such as
substance and liquid. In this problem, liquid is not part of
the problem. Even if the software engineer/practitioner
choose not to take them out. Such classes will be an
isolated classes in the static class diagram.

 All names that are generated from the previous step are
arranged in an adjacent matrix as in Figure 1.

 Fill up the table (below the diagonal) with letters (I, H, P).
To have the letter "I", The answer for the following
question must be yes, Is “Left cell” a “top row”? For
example “Is a rectangular tank a vessel? “. The answer is
yes. Therefore, the cell that corresponds to rectangular
tank with vessel should have an “I”.

 If the answer for a question is no, the cell remains empty.
Like “Is a capacity a vessel?” The answer is no, therefore,
the cell remains empty.

 A question is generated to have an answer either yes or
no. The question is “Has (left row) a (top cell)?” or “Is the
(left row) part of a (top cell)?” If the answer to any of
them is yes, then the corresponding cell is marked with a
“P”.

 The next question to fill up the table is “Has (left row) a
(top row)?” If the answer to this is yes, write an “H” in
the cell corresponding to the “left row” and “top cell”. In
the example, some cells are changed to “H”.

 The matrix becomes like Figure 1. Any row that has a P
letter means that this is an attribute. A row which has an
one “I” is a class. Others would be classes if the row is an
adjective, that means it is an attribute. If it is a verb, then
it is a method.

 Group each of the "P" cells together using the prime
notation; for example, the capacity of the rectangular
vessel and cubic vessel is computed by the same way,
while the capacity of the cylindrical vessel is different,
thus, the "P" cells of the rectangular and the cubic should
have one prime, while the cylindrical "P" cell has a
double prime.

 With a pencil, form the English letter L by connecting I-
cells together. You need to form a stair-shape so you can
have the hierarchy form of the class diagram. The first
path is (VesselRectangular Tank, Rectangular
TankCubic Tank) and the next path is
(Vesselcylindrical Tank) as shown in Figure 2.

Figure 1. Building Object-Oriented information for case study I

Figure 2. Class relation for case study I

 Draw UML shapes of the hierarchy. This is shown in

Figure 3 for this case study.
 In another table, rearrange the table so that the classes are

at the top and the attributes are at the bottom and apply
the same for all of them as shown in Figure 2. The
rearrangement should take into consideration the number
of “I’s” within each row, and they should be sorted in
ascending order.

 For the "P" cells, form a region of one cell, two cells,
three cells, four cells and so on.

 The two attributes capacity and amount can be in the top
of the class hierarchy as you form a rectangular region of
four cells and that region intersects with the top hierarchy
which is vessel. This region covers the lower part of all L-
shape. Such attribute must be at the top of the hierarchy

 Length has two boxes and should be in the Rectangular
tank class as in Figure 2.

 Height has two regions, one with two boxes and the other
with one as we can’t form a region with three boxes that
forms a lower part of L-shape that are related in the
hierarchy. From this, one can notice that one is in the
rectangular tank class and the other in the cylindrical tank
class.

ISSN: 0975-3397 609

Nabil Arman et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 607-613

 For the capacity, which is an attribute (method) because

we are talking about a process of computing the capacity,
the number of the prime notation determines the number
of the groups one can form in the "P" cells. In the
example there are three. The double primes are together,
which means that the computation of the capacity should
be in the rectangular tank class, while the other two
should be in the cylindrical and the abstract class (vessel).

Case study II: Assume that the following text/problem
statement is taken from a software requirements document:
 Simple electrical software is used to draw the basic
components of the electrical network such as resistor,
capacitor, inductor as well as the voltage source. Each
component is drawn on a specific location of the drawing
sheet. It occupies a rectangular area of the drawing sheet. The
drawing sheet has a width and a height. The software will not
draw any component outside the drawing sheet. The location
is determined through the x and y coordinates.
 Each and every component has a caption. It is used to
name that component, which means that the caption is a text
property. The caption is drawn on the drawing sheet, so, it
requires a location and it occupies and area as well as the
component itself. The component is placed on the drawing
sheet either vertically or horizontally; this is called the
orientation of a component. The orientation is applied on the
caption as well as the value. The value of the component is
shown also on the drawing sheet. Therefore, it needs a location
it occupies an area. The unit of the value determined through
the type of the object which is associated with; it means the
component is a resister, the value unit is Ohms and the same
applies for the others.
 The drawing program allows the user to move the
component from one place of the drawing sheet to another.
When it moves the component, it moves with the value and
caption of that component. While if the move is for the
caption, only the caption is moved.
 Each electrical component has two connection points.
They are named nodes. Each node has its own voltage value.
Each node has its own caption and a value for the voltage. The
electrical network consists of a list of components mentioned
above.
To construct a static class diagram form the above problem
statement, the steps are performed as follows:
 The first step is to construct a list of all nouns and noun-

phrases. The verbs which represent methods are also
determined. For this case study, the nouns are electrical
software, component, electrical network, resistor,
capacitor, inductor, voltage source, draw, location,
drawing sheet, occupy, rectangular area, width, height,
caption, vertical, horizontal, value, unit, move, connection
point, node, x-coordinate and y-coordinate.

 The next step is to refine the nouns, noun phrases, verbs,
values and others. For this case study, it is clear that
horizontal and vertical are values for an attribute called
orientation. Connection point and node refer to the same
thing. The verb “occupy” means that it occupies a
rectangular area on the drawing sheet; which means we

should keep only one. The rectangular area is identified
by a width and height, which is also in the list. From this,
a number of items of the list should be taken out.

 Fill up the table using the four questions mentioned in
step 5. The result of this process is shown in Figure 4.

 Identify all the entities in the software requirements and
classify them into classes, attributes or methods. The draw
is a method, so, it is identified as a method (M). Drawing

+

-
-

+cap ac it y ()

- amo u nt

Vess e l

+ ca pac it y()

-l eng th
-wi d th
-h e ig ht

Recta n gu l ar _T an k

Cu b i c _T a n k

capac i ty ()

rad iu s
h e ig ht

C yli n d r ic al _T an k

Figure 3. Static class diagram for case study I

Sheet is a class since it has "H" cells. Component is a
class since it has "H" cells as well as a "P" cell.

 All entities in the table are sorted and the sorting should
be applied to the rows and columns.

 Find the identical attributes and methods. Most of the
properties are identical except the draw method. In the
draw method the process of drawing a resister is different
from the process of drawing a capacitor. And the same
applies for the other entities.

 Rearrange the columns and rows in order to keep the
diagonal with "I" cells in the table. This rearrangement is
performed in such a way to keep the upper half above the
diagonal with "H" cells and the lower half below the
diagonal with the "P" cells.

 Form L-Shape from the "I" cells. There are a number of
L-shapes in the table. Those L-shapes represent the
inheritance. Figure 5 shows that resistor, capacitor,
inductor and voltage inherit from component class.

 Group the "P" cells into groups of one, two, three and so
on. The grouping process should match the lower part of
the L-shape or should match the union of the lower part of
some of the L-shapes. Figure 5 shows that location and
node have 5 "P" cells that can be grouped together and

ISSN: 0975-3397 610

Nabil Arman et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 607-613

Figure 4. Building object-oriented information for case study II

E
le
ct
ric

al
_S

of
tw

ar
e

el
ec

tr
ic
al
 N

et
w
or

k

dr
aw

in
g
sh

ee
t

co
m
po

ne
nt

re
si
st
or

ca
pa

ci
to
r

in
du

ct
or

vo
lta

ge
 s
ou

rc
e

lo
ca

tio
n

no
de

ca
pt
io
n

va
lu
e

m
ov

e

dr
aw

w
id
th

he
ig
ht

x-
co

or
di
na

te

x-
co

or
di
na

te

O
rie

nt
at
io
n

Electrical_Softw are I

electrical Netw ork I H H C

draw ing sheet I H H C

component P I H H H H H H H H C

resistor I I H H H H H H H H H C

capacitor I I H H H H H H H H H C

inductor I I H H H H H H H H H C

voltage source I I H H H H H H H H H C

location P P P P P I H H C

node P P P P P I H H C

caption P P P P P P I H H H C

value P P P P P P I H H H C

move P P P P P I M

draw P P' P'' P''' P'''' P I M

w idth P P P P P P P P I A

height P P P P P P P P I A

x-coordinate P I A

x-coordinate P I A

Orientation P P P P P P P I A

Figure 5. Class relation for case study II

el

ec
tr

ic
al

 s
of

tw
ar

e

co
m

po
ne

nt

el
ec

tr
ic

al
 N

et
w

or
k

re
si

st
or

ca
pa

ci
to

r

in
du

ct
or

vo
lta

ge
 s

ou
rc

e

dr
aw

lo
ca

tio
n

dr
aw

in
g

sh
ee

t

w
id

th

he
ig

ht

ca
pt

io
n

va
lu

e

m
ov

e

no
de

x-
co

or
di

na
te

y-
co

or
di

na
te

O
rie

n
ta

tio
n

electrical software I

component I H H H H H H H H

electrical Network I

resistor I I H H H H H H H H H

capacitor I I H H H H H H H H H

inductor I I H H H H H H H H H

voltage source I I H H H H H H H H H

draw P P P P P I P

location P P P P P I H H

drawing sheet I H H

width P P P P P P I P P

height P P P P P P I P P

caption P P P P P H H I P H

value P P P P P H H I P H

move P P P P P I

node P P P P P H H I

x-coordinate P I

y-coordinate P I

Orientation P P P P P P I

ISSN: 0975-3397 611

Nabil Arman et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 607-613

match a lower L-shape of a group of L-shapes. Even they
are classes, the relation between them is a "has-a" relation.
This means that the Component class is the class that
makes a relation with the location and node. Caption and
Value are classes and they have 6 "P" cells, which can be
grouped together and they can match the lower part of a
group of L-shape. This means that this class must have a
"has-a" relation with the component class. The other "P"
can't be grouped with any "P" cell, which means the class
has a "has-a" relation with Caption and value classes.

 Draw the static class diagram using UML notation. In this
case study, there are eleven classes named according to the
names in the table in Figure 5.

 Draw the inheritance relation among the classes. In this
case study, resistor, capacitor, inductor and voltage source
are subclasses from the component class.

 The attributes and methods are identified in previous steps.
Their location is determined using the grouping of P-Cells.
In this case study, the orientation attribute exists in three
classes: component, caption and value classes.

 The electrical software class is a standalone class and it
doesn't contain any attribute. Therefore, it can be deleted
from the class diagram. Figure 6 shows the static class
diagram of the software requirements in this case study.

Figure 6. Static class diagram for case study II

IV. RESULTS AND CONCLUSIONS

The proposed approach of developing static class diagrams
in a systematic way is very essential in the practice of object-
oriented software engineering. This approach can be
implemented and incorporated in any Integrated CASE
(Computer Aided Software Engineering) Tool to aid in the
process of obtaining the class diagrams from the software
requirements. The approach has the main advantage of being
systematic, which is very helpful in software systems
development. The development of static class diagrams is very
essential in the practice of object-oriented software

engineering. For a long time, software engineers have suffered
from the lack of a systematic approach for constructing these
class diagrams. This paper presents such an approach which
will enable the software engineers to develop these static class
diagrams without going through the software requirement
many times to construct such class diagrams. Our approach
might seem a lengthy process. However, the approach can be
implemented as a CASE Tool, which is the next step in this
research.

REFERENCES

[1] Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W. Lorensen,

1991. Object-Oriented Modeling and Design. 3rd Edn., Prentice-Hall,
Egnlewood Cliffs, New Jersey, ISBN: 0136298419, pp: 500.

[2] Jacobson, I., M. Christerson, P. Jonsson and G. Overgaard, 1992.
Object-Oriented Software Engineering: A Use Case Driven Approach.
Addison-Wesley ACM., New York, ISBN: 0201544350, pp: 524.

[3] Henderson-Sellers, B. and A. Simons, 2000. The Open software
engineering process architecture: From activities to techniques. J. Res.
Pract. Inform. Technol., 32: 47-68.
http://www.acs.org.au/jrpit/abstracts/32_47.pdf

[4] Quatrani, T., 1998. Visual Modeling with Rational Rose and UML.
Addison-Wesley, Reading, MA., ISBN: 0201310163, pp: 222.

[5] Jacobson, I., G. Booch and J. Rambaugh, 1999. The Unified Software
Development Process. Addison-Wesley Longman, Reading, MA., ISBN:
0201571692, pp: 463.

[6] Wynekoop, J. and N. Russo, 1997. Studying system development
methodologies: An examination of research methods. Inform. Syst. J., 7:
47-65. DOI: 10.1046/j.1365-2575.1997.00004.x

[7] Dawson, L. and P. Darke, 2002. The adoption and adaptation of object-
oriented methodologies in requirements engineering practice.
Proceeding of the ECIS 2002, June 6-8, Gdansk, Poland, pp: 406-
414. http://is2.lse.ac.uk/asp/aspecis/20020083.pdf

[8] Kasser, J., 2003. Object-oriented requirements engineering and
management. Proceeding of the Systems Engineering Test and
Evaluation (SETE) Conference, Oct. 2003, Canberra, pp: 1-15.
http://www.seecforum.unisa.edu.au/PETS/Object%20oriente
d%20requirements%20engineering%204.pdf

[9] Knott, R., V. Merunka and J. Polak, 2003. The role of object-oriented
process modeling in requirements engineering phase of information
systems development. Proceeding of the EFITA 2003 Conference, July
5-9, Debrecen, Hungary, pp: 300-306.

[10] Pressman, R.S., 2000. Software Engineering: A Practitioner’s Approach.
5th Edn., Mcgraw Hill, ISBN: 0073655783, pp: 860.

[11] Pfleeger, S. and J. Atlee, 2006. Software Engineering: Theory and
Practice. 3rd Edn., Pearson Prentice Hill, ISBN: 0131469134, pp: 716.

[12] Bennett, S., S. McRobb and R. Framer, 2006. Object-Oriented Systems
Analysis and Design Using UML. 3rd Edn., McGraw Hill, ISBN:
0077110005, pp: 698.

[13] Rosenberg, D. and M. Stephens, 2007. Use Case Driven in Object
Modeling with UML: Theory and Practice. Apress, ISBN: 1590597745,
pp: 438.

[14] Arman, N. and Daghameen, K., 2007. “A Systematic Approach for
Constructing Static Class Diagrams from Software Requirements,”
Proceedings of the 8th International Arab Conference on Information
Technology (ACIT’2007), November 26-28, Academy for Science &
Technology and Maritime Transports, Syria.

AUTHORS PROFILE

Nabil Arman received his BS in Computer Science with high honors from
Yarmouk University, Jordan in 1990, an MS in Computer Science from The
American University of Washington, DC USA in 1997, and a Ph.D. from the
School of Information Technology and Engineering, George Mason

ISSN: 0975-3397 612

Nabil Arman et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 607-613

University, Virginia, USA in 2000. He is an Associate Professor of Computer
Science at Palestine Polytechnic University, Hebron, Palestine. Dr. Arman is
interested in Database and Knowledge-Base Systems, and Algorithms.

Khalid Daghameen received his BS in Computer Systems Engineering in
1996 from Palestine Polytechnic University/Palestine. He worked for two
years as a teaching assistant at Palestine Polytechnic University. In 2001, he
completed his master’s degree in Computer Engineering from University of
Detroit Mercy/USA. Then he worked for two years in Caterpillar Inc as a
computer engineer. Currently, he is working at Palestine Polytechnic
University/College of Engineering and Technology as an instructor. His main
interests are algorithms, image processing and software Engineering.

ISSN: 0975-3397 613

