
Mazni Omar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 577-581

Educational Approach of Refactoring in Facilitating
Reverse Engineering

Mazni Omar1, Sharifah Lailee Syed-Abdullah2
Faculty of Computer Sciences and Mathematics

Universiti Teknologi MARA
02600, Arau, Perlis. Malaysia

Kamaruzaman Jusoff3
TropAIR, Faculty of Forestry

Universiti Putra Malaysia
43400, Serdang, Selangor. Malaysia

Azman Yasin4, Haslina Mohd5

UUM College of Arts and Sciences
Universiti Utara Malaysia

06100, UUM Sintok, Kedah. Malaysia
4yazman@uum.edu.my, 5haslina@uum.edu.my

Abstract—Refactoring improves software codes and design. This
activity often neglected by software developers because they need
time to decide tactically where and when to refactor codes.
Although the concepts theoretically instilled in the developer’s
mind, this activity is not easy to apply and visualize. This
situation became more problematic when deals with
inexperienced developers. Therefore, there is a need to develop
an educational approach to comprehend refactoring activity.
This activity was applied through reverse engineering tasks. The
software engineering (SE) teams were required to apply reverse
engineering activity in order to check the consistency between
codes and design. The teams were encouraged to apply Model-
View-Controller (MVC) pattern architecture in order to facilitate
the activities. Findings revealed that Extreme Programming (XP)
teams managed to complete reverse engineering tasks earlier
than Formal teams. This study found that the approach is
important to increase understanding of refactoring activities in
reverse engineering process. This approach will be furthered
applied for others SE teams to gain more insight and perceptions
towards improving SE course.

Keywords-refactoring; reverse engineering; software
engineering (SE); XP; MVC

I. INTRODUCTION

Refactoring is a process of changing and restructuring
software code without changing the system functionality
[1],[2],[3] . This practice can promote reusability and easier
understanding of the written code [4]. In addition, refactoring
can improve quality of code by reducing code complexity [5].
Fowler et al. [2] suggested that code refactoring is based on
human intuition because developers can refactor codes that
were found smelly in the program. Therefore, Tong [6] listed
several smelly code characteristics which includes duplicate
code, type code and too many comments. There are several
techniques to refactor code such as moving method and
extraction of class introduced by Fowler et al. [2]. However,

this practice is not easy to apply and visualize, even though,
the concepts theoretically instilled in developers’ mind.
 Mens and Tourwe [3] suggested several steps in
conducting refactoring practice because refactoring can assists
assists in maintaining consistency between software
documentation and refactored codes. Nonetheless, developers
still needed to decide tactically where and when to refactor
codes. Therefore, several techniques were introduced such as
semi-automated approach [7], object-oriented metrics [8], and
automated static analysis tools [9] to detect smelly codes.
However, using tools does not guarantee refactoring can be
applied effectively as reported by Murphy-Hill and Black [10]
that many developers failed to use refactoring tool. This is due
to limited capability of the tools to refactor codes frequently
and maintains healthy codes.
 Refactoring practice is one of the core XP practices.
Moser et al. [4] conducted a case study to analyze the impact
of refactoring on object-oriented (O-O) classes reusability and
found that refactoring was able to improve the code
reusability. However, Alshayeb [11] reported that refactoring
does not necessarily can improve software quality. In order to
improve understanding on refactoring, Carlson [12] introduced
a refactoring approach that requires writing test cases and
refactor these cases. This activity increased students’
understanding in keeping healthy codes without degrading the
structure. Based on the above research, technical skills through
formal effective training and monitoring are required to
comprehend this practice.
 Reverse engineering was introduced to software
engineering (SE) teams to assist consistency between codes
and design. Reverse engineering is a process of analyzing and
extracting source code program in order to understand system
functionality and representation [13, 14]. By doing this
activity, organization can maintain and document their
software more easily. Due to rapid and continuous feedback in
software industry, exploiting reverse engineering in software
development activities is crucial. However, continuous

ISSN : 0975-3397 577

Mazni Omar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 577-581

refactoring is required in reverse engineering in order to
ensure consistency of the software artifacts [15]. This
highlights the important of refactoring in facilitating reverse
engineering process.
 The objective of this paper is to develop an educational
approach of refactoring practice in reverse engineering tasks.

II. MATERIALS AND METHODS

A. Participants

The subjects in this study were third year undergraduate
Information Technology students majoring in software
engineering. Sixty-six students made up the sample, forming
16 teams. The experiment started in December 2008 and lasted
until the end of March 2009.
 The teams were randomly assigned to several different
projects and were also randomly assigned to experimental XP
and control Formal groups. The teams were required to
develop a one-year SE project based on clients’ needs. There
were a minimum of two groups for each project. Each group
was required to develop a web-based application using Java
Servlets Pages (JSP).

B. The Approach

During the experiment, the XP teams need to produce only
Entity Relationship (ER) Diagram and use case mapping with
interface design as design documents. Even though XP
advocates less design documents, it does not mean designless
approach. In contrast, the Formal teams need to generate
massive software design documentation (SDD), which
consists of Unified Modeling Language (UML) models as
their main artifacts in software development phases.
 Realizing the importance of reverse engineering in SE, all
teams were required to reverse engineer their software codes
to check design consistency. This was done when the teams
have completed their design phase. The reverse engineering
process was conducted using Netbeans Integrated
Development Editor (IDE) tool, which is an open source tool.

Smelly codes were detected when several teams were
unable to reverse engineer their codes due to poor design.
These happened because the teams failed to structure the
codes into appropriate design layer, thus mixing up the
interfaces, domain logics and database layer into one file. Fig.
1 shows a login.jsp file containing interface coding and SQL
database statement. Failure to structure design layer lead to
difficulty in understanding and maintaining the codes.

Although some teams successfully reversed the codes using
the tool, the teams realized that their codes still contained
unused classes, variables and methods. Therefore, to assist
further the reverse engineering process, Model-View-
Controller (MVC) was recommended. MVC is a pattern
architecture that has three different layers, which are the
model, the view and the controller [16]. All the teams were
required to structure their codes according to the design layer.
By using MVC, codes can be separated into different layers;

Business (Fig. 2), Data (Fig. 3) and Controller (Fig. 4). In
MVC pattern, interface layer consists of HTML and JSP
codes. This layer will interact with controller layer, which
consist of servlet file. By using Netbeans IDE, all the codes
were reversed to UML class diagrams as shown in Fig. 5, and
in general, the architecture of software using MVC pattern is
shown in Fig. 6.

Fig. 1 Example of mixed codes (Login.jsp)

Fig. 2 Example of codes in business layer

(UserLogin.java)

 …….
<%
//connect to database
Statement statement;
Connection connection;

String userName = "root";
String password = "123456";
String url = "jdbc:mysql://localhost:3306/crs";

Class.forName("com.mysql.jdbc.Driver");
System.out.println("Driver loaded");
connection = DriverManager.getConnection(url, userName,
password);
System.out.println("Database connected");

statement = connection.createStatement();

//get input from user
String txtuserName = request.getParameter("userName");
String txtpassword = request.getParameter("password");

//SQL statement
String query = "INSERT INTO logindb VALUES ('" +
txtuserName + "','" + txtpassword + "')";
statement.executeUpdate(query);
%>
 ……

…..
package CRS.Business;

public class UserLogin {
 private String userName;
 private String password;

 // constructor
 public UserLogin() {
 }

 //constructor with arguments
 public UserLogin(String newUsr, String newPwd)
 {
 userName = newUsr;
 password= newPwd;
 }

 public String getUserName()
 {
 return userName;
 } …..

@purpose to set and
get user login
information

ISSN : 0975-3397 578

Mazni Omar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 577-581

Controller

Model

 Fig. 3 Example of codes in data layer (LoginDb.java)

Fig. 4 Example of codes in controller layer

 (LoginServlet.java)

Fig. 5 UML class diagrams based on the three layers

(business, data, and controller)

Fig. 6 MVC pattern (adapted from [16])

By insisting that the teams refactored according to these
packages, consistency between codes and design document
was uphold. This decision promoted higher cohesion and
lower coupling codes resulting in improved code design. A
general approach of reverse engineering through refactoring is
shown in Fig. 7.

Fig. 7 A general approach of reverse engineering through

refactoring

…..
package CRS.Data;

import CRS.Business.*;
import java.sql.*;
import java.io.*;

public class LoginDb {
 /* Method to match user name and pasword entered by user
with database */
 public static synchronized boolean isMatch(Connection
conn, UserLogin lo)throws SQLException
 {
 boolean status=false;

 String query = "select * from logindb";
 Statement stat = conn.createStatement();
 ResultSet res = stat.executeQuery(query);

 while (res.next())
 {
 if
(res.getString(1).equalsIgnoreCase(lo.getUserName()))&&
(res.getString(2).equalsIgnoreCase(lo.getPassword()))))
 status = true;
 }
 stat.close();
 return status;
 }
}…..

…..
package CRS.Controller;

import CRS.Data.LoginDb;
import CRS.Business.UserLogin;
import java.sql.*;
import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class LoginServlet extends HttpServlet
{
 // declare connection
 private Connection conn;
…..
// get information
public void doGet(HttpServletRequest request,
HttpServletResponse response) throws IOException,
ServletException
 {
 String usr = request.getParameter("userName");
 String pwd = request.getParameter("password");
 UserLogin lo = new UserLogin(usr, pwd);

 HttpSession session = request.getSession();
 session.setAttribute("lo", lo);
}…..

HTTP request

Browser

View

LoginForm.jsp

HTTP response

Database

Source codes

Reverse engineering
(source codes UML class diagrams

using Netbeans tool)

Are source codes can be
reversed OR class

design is consistent with
codes?

Refactor codes using
MVC pattern

UML class diagrams

Yes

No

ISSN : 0975-3397 579

Mazni Omar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 577-581

III. RESULTS AND DISCUSSION

In the early part of the experiment, both XP and Formal teams
complained that the reverse engineering tasks were
troublesome. But, finally all the teams managed to do reverse
engineering when the teams refactored the codes using MVC
architecture as advised. It was observed that XP teams
managed to complete the reverse engineer task earlier than
Formal teams. This is because there were fewer documents to
refer to when reversing the procedure. Although the design
documents act as a blueprint for code development, in XP,
design is considered only as an early manifestation of ideas,
whereas the coding process allows the developers to realize
their idea in a more concrete way [17]. The simple design
documents in XP allow the teams to be more flexible when
conducting reverse engineering tasks because the existence of
only ER diagram and use case mapping with interface design
allowed the teams to identify immediately the essential codes.
In addition, knowledge sharing between team members
through pair programming practice also add up to the
simplicity of doing reverse engineering activity. Coding
standard, which was fostered by both XP and Formal teams
help the team to understand the code easily. This has build up
the teams’ confidence to refactor these codes.
 In comparison, the Formal teams were tied up with the
design documentations that they have developed. Table 1
shows a comparison of design documents between XP and
Formal teams. Too many design documents must be mapped
out during the reverse engineering activities. The teams must
prepare a comprehensive documentation consisted of system
packages diagrams, class diagrams and interaction diagrams.
Furthermore, each classes, methods and attributes identified
must describe their purposes and responsibilities. The teams
also have to think up-front the algorithms used in the system.
Although describing the purposes and responsibilities tasks is
good and useful in order to facilitate future documentation
references, it dragged the teams towards ineffective solution
due to the limited time and budget.
 As a result, the Formal teams reverse engineered by only
updating to class diagram and describing each class, methods
and attributes, but disregarded other design documents. In
addition, the teams also failed to update complex algorithm in
the interaction diagrams because they discovered this
document is unnecessary as reference in reverse engineering
activities. This demonstrated that not all documents are
necessary to relate code to design activities.
 These empirical findings proved that heavy documentation
slow down the reverse engineering activities and often SE
teams failed to maintain the software documentation. The
evidences support earlier studies by Lethbridge et al. [18].
 Based on the experiment conducted, the teams realized and
appreciated the important of reverse engineering and
refactoring activities, because:

 The code is easier to maintain when dealing with
requirements uncertainty from clients.

 More codes can be reused and therefore speed up the
development process.

 Segregation of programming tasks can easily be
achieved among the teams. This allows the effective
testing and integrating of codes.

 A design pattern such as MVC is very useful when
dealing with web design architecture.

TABLE I

A COMPARISON OF DESIGN DOCUMENTS BETWEEN

XP AND FORMAL TEAMS

XP Formal
1. ER Diagram 1. System architectures

a) System packages
diagrams

b) Class diagrams
c) Interaction

diagrams (sequence
and collaboration
diagram)

2. Use cases
mapping with
interface design

2. Description of each
classes, methods, and
attributes

3. Algorithm for each
 methods

IV. CONCLUSION

This study provides an approach to facilitate refactoring
practice amongst inexperienced SE teams. Reverse
engineering is enhanced through the use of refactoring and by
understanding design pattern architecture such as MVC offers
the teams a tool to appreciate refactoring activities better. This
tool assisted the teams to envisage the structure of the codes.
During the experiment, XP teams managed to complete
reverse engineering tasks earlier compared to Formal teams.
This revealed that XP practices such as refactoring, simple
design, pair programming and coding standards are vital in
speeding up the reverse engineering activities. Therefore, this
study found that this approach is important to increase
understanding of refactoring in improving reverse engineering
activities. This approach will be furthered applied for others
SE teams to gain more insight and perceptions towards
improving the SE course.

ACKNOWLEDGMENT

The authors would like to express our appreciation to Mr
Zhamri Che Ani and Mr Mohd Zabidin Husin, lecturers, from
Universiti Utara Malaysia, who has given their support
towards the completion of this research. In addition, we would
like to thanks to all clients, supervisors and students in this
study.

ISSN : 0975-3397 580

Mazni Omar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 577-581

REFERENCES

[1] K. Beck, Extreme Programming Explained: Embrace Change. USA:
Addison-Wesley, 2000.

[2] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code. USA: Addison-
Wesley, 1999.

[3] T. Mens and T. Tourwe, "A Survey of Software Refactoring," IEEE
Transactions on Software Engineering, vol. 30, pp. 126-139, 2004.

[4] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi, "Does
Refactoring Improves Reusability?," in Lecture Notes in Computer
Science(LNCS), M. Morisio, Ed. Berlin Heidelberg: Springer-Verlag,
2006, pp. 287-297.

[5] K. Stroggylos and D. Spinellis, "Refactoring-Does it improve
software quality?," presented at 5th International Workshop on
Software Quality, Minneapolis, 2007.

[6] K. L. Tong, "Essential Skills for Agile Development," Macau
Productivity & Tech, 2004.

[7] T. Mens and T. Tourwe, "Identifying Refactoring Opportunities
Using Logic Meta Programming," presented at 7th European
Conference on Software Maintenance and Reengineering, Benevento,
2003.

[8] F. Simon, F. Steinbruckner, and C. Lewerentz, "Metrics Based
Refactoring," presented at 5th European Conference on Software
Maintenance and Reengineering, Lisbon, 2001.

[9] F. Wedyan, D. Alrmuny, and J. M. Bieman, "The Effectiveness of
Automated Analysis Tools for Fault Detection and Refactoring
Prediction," presented at 2nd International Conference on Software
Testing Verification and Validation, Denver, 2009.

[10] E. Murphy-Hill and A. P. Black, "Refactoring Tools: Fitness for
Purpose," IEEE Software, vol. 25, pp. 38-44, 2008.

[11] M. Alshayeb, "Empirical investigation of refactoring effect on
software quality," Information and Software Technology, vol. 51, pp.
1319-1326, 2009.

[12] B. Carlson, "An Agile Classroom Experience: Teaching TDD and
Refactoring," presented at Agile Conference 2008, Toronto, 2008.

[13] V. C. Garcia, D. Lucredio, and A. F. d. Prado, "Towards an effective
approach for Reverse Engineering," presented at 11th Working
Conference on Reverse Engineering (WCRE'04), Netherlands, 2004.

[14] I. Sommerville, Software Engineering 8th Edition. USA: Addison-
Wesley, 2007.

[15] G. Canfora and M. D. Penta, "New Frontiers of Reverse
Engineering," presented at Future of Software Engineering
(FOSE'07), Minneapolis, 2007.

[16] J. Murach and A. Steelman, Murach's Java Servlets and JSP. USA:
Mike Murach & Associates, Inc, 2008.

[17] S.-A. Sharifah-Lailee and O. Mazni, "Extreme Programming and Its
Positive Affect on Software Engineering Teams" presented at
International Conference on Computing and Informatics (ICOCI09),
Kuala Lumpur, 2009.

[18] T. C. Lethbridge, J. Singer, and A. Forward, "How Software
Engineers Use Documentation: The State of the Practices," IEEE
Software, pp. 35-39, 2003.

AUTHORS PROFILE

Mazni Omar (Corresponding author) is a lecturer at the
College of Arts and Sciences, Universiti Utara Malaysia.
Currently, she is pursuing her PhD at the Faculty of
Computer Science and Mathematics, Universiti Teknologi
MARA, 02600, Arau, Perlis. Malaysia (e-mail:
mazni@isiswa.uitm.edu.my). Her main research focuses are
agile methods in software engineering, empirical software
engineering and pattern recognition.

Sharifah Lailee Syed-Abdullah is an Associate Professor
at the Faculty of Computer Science and Mathematics,
Universiti Teknologi MARA, 02600, Arau, Perlis. Malaysia
(e-mail: shlailee@perlis.uitm.edu.my). Her main research
interests are agile methods in software engineering,
empirical software engineering and pattern recognition.

Kamaruzaman Jusoff is a senior Professor at the Faculty
of Forestry, Universiti Putra Malaysia, 43400 UPM,
Serdang, Selangor, Malaysia. (e-mail:
kamaruz@putra.upm.edu.my). He is a prolific academician,
specialised in remote sensing field. He has contributing
numerous writings in interdisciplinary fields in high impact
and citation index (CI) journals.

Azman Yasin is a senior lecturer at the College of Arts and
Sciences, Applied Science Division, Universiti Utara
Malaysia, 06010 UUM Sintok, Kedah. Malaysia (e-mail:
yazman@uum.edu.my). His research interest includes
software engineering education, information retrieval
specifically scheduling and timetabling using artificial
intelligence techniques.

Haslina Mohd is a senior lecturer at the College of Arts and
Sciences, Applied Science Division, Universiti Utara
Malaysia, 06010 UUM Sintok, Kedah. Malaysia (e-mail:
haslina@uum.edu.my). Her research areas are within
software engineering education and health informatics.

ISSN : 0975-3397 581

