
A.Askaruinisa et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 566-576

 Test Case Reduction Technique for

Semantic Based Web Services

A. Askaruinisa
Department of Computer Science and Engineering

Thiagarajar College of Engineering,
Affiliated to Anna University Tirunelveli

Madurai, India

A.M. Abirami
Department of Computer Science and Engineering

Raja College of Engineering,
Affiliated to Anna University Tirunelveli

Madurai, India

Abstract—Web Services (WS) are the basic building blocks for
every e-business applications. They provide efficient reusability
mechanism, thereby reducing the development time and cost.
Web services can be identified by Uniform Resource Identifier
(URI). The interfaces and bindings of Web Services can be
discovered, defined and described as XML artifacts according to
Web Service Description Language (WSDL). WSDL can be used
to describe web service operations including input, output and
exceptions. It cannot identify pre and post conditions of web
services. But Semantic WSDL (WSDL-S) identifies the pre and
post conditions of web services to generate optimal number of
test cases. This paper presents an approach for generating web
service test cases using WSDL-S and Object Constraint
Language (OCL), while the test case generation technique is
Orthogonal Array Testing (OAT). We have developed a
prototype namely Semantic Web Services Test Case Generator
(SWSTCG) which can be viewed in the web site
http://www.tcetesting.webs.com.We have generated WSDL of
web service to be tested using NetBeans IDE and converted into
WSDL-S by giving OCL references, where pre and post
conditions are defined. Test data, using OAT, with different
factors, levels and strengths are generated and documented in
XML based test files called Web Service Test Specifications
(WSTS) and executed. The proposed method is compared with
the Pair-Wise Testing (PWT) method. We have conducted testing
on various web service applications and the results have shown
that the proposed method is effective in generating minimal test
cases with maximum test case effectiveness.

Keywords- web services testing, semantics, test case generation,
Orthogonal Testing, Pair-Wise Testing, test case reduction, test case
effectiveness

I. INTRODUCTION

Web services are an enabling technique for Service
Oriented Computing (SOC) which provides W3C standard
based mechanism and open platform for integrating distributed
autonomous service components [25]. The quality of services is
a key issue for developing service-based software systems and
testing is necessary for evaluating the functional correctness,
performance and reliability of individual as well as composite
services. However, the development of web services is
particularly a difficult task due to the complexity of
environment in which they must function. One of the most
difficult aspects of web service development is the complexity
involved in conducting the effective system testing.

The semantic web is an evolving development of the World
Wide Web (WWW) in which the meaning (semantics) of
information and services on the web is defined, making it
possible for the web to understand and satisfy the requests of
people and machines to use the web content. The current
WSDL standard operates at the syntactic level and lacks the
semantic expressivity needed to represent the requirements and
capabilities of web services. Also WSDL cannot identify pre
and post conditions, logical sequence and constraints of web
services. Semantics can improve software reuse and discovery,
significantly facilitate composition of web services and enable
integration of legacy applications as part of business process
integration which can be added through WSDL-S. With respect
to web services testing, semantics enable us to reuse test data,
thereby reducing the number of test cases to be generated,
which in turn reduces test cost and execution time during
regression testing.

In order to perform complete testing, Factorial Design
Technique or All Combinations Testing (ACT) technique
requires more number of test cases. For example, if the
application takes 4 parameters and each parameter takes 3
different values, totally we need 34 = 81 test cases. Many
combinatorial testing techniques have been evolved to reduce
the number of tests. The benefits of combinatorial testing
include: dramatically increased test execution efficiency, better
quality, better phase containment, increased speed to market
and reduced cost of both testing and bug fixing.

Earlier work [1] done on this area considered the PWT
technique based on the theory that most software faults are
caused by a relatively few combinations of input parameters.
Combination strategies are test-case selection methods where
test cases are identified by combining values of the different
input parameters. An N-way testing technique is defined as a
set of tests for N parameters, so that every combination of their
valid values is covered by at least one test case.

In this paper, we have generated test cases for Web
Services using WSDL-S and OCL with OAT technique. We
have generated WSDL of Web Service to be tested using
NetBeans IDE and converted into WSDL-S by giving OCL
references, where pre and post conditions are defined. Test
data, using OAT, with different factors, levels and strengths are
generated and documented in XML based test files WSTS and
executed. The proposed method is compared with the PWT

A.Askaruinisa et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 566-576

technique [1]. We have conducted experimental testing on
various web service applications and the results have shown
that the proposed orthogonal method is effective in generating
minimal test cases.

A. Related Work

One of the most difficult aspects of web service
development is the effective system testing, which is more
complex, as the source code is unavailable to the users of web
services. Therefore, much research has been done to improve
the web services testing. Many researchers have done their
work to generate test cases for web services from WSDL [2, 3,
5, 7, 9, 13] and from WSDL-S using OCL [1, 12]. Xiaoying
Bai et al [8] developed ontology based test model for web
services using partition testing technique. J Offutt [6] and his
team developed test cases for web services using data
perturbation. Yongyan Zheng et al and Mounir Lallali et al
developed test framework [10, 11] to generate test cases based
on finite automata using Business Process Execution Language
(BPEL). Timm et al specified [4] semantic web service
compositions using Unified Modeling Language (UML) and
OCL. In his paper [7], M. Hong considered various fault
injection methods for web services and measured the mutation
score based on his testing. In [1,12], Sirpol et.al have proposed
techniques for generating web service test cases whose work
focused on web service contracts based on specifications using
WSDL-S and PWT technique.

Reda siblini et al [14] specified testing of web service using
mutation analysis. Mutation operators are applied to WSDL
document and developed the mutated web service interfaces
which are used for testing. Yinong Chen et al [15] provided
feedback control model for adaptive testing. The feedback
control is used for improving the testing of web services by
reducing the cost. In his paper [16], Ashok Kumar dealt about
how to automate the web services testing. He proposed a
method to parse the WSDL file and generate SOAP requests
based upon the parameters (values) from different data base.
SOAP requests are then submitted to web server which gives
SOAP responses, which are then analyzed. Andre luiz Da Silva
Solino et al [17] dealt with mutation testing for web services
and compared the results with data perturbation method.

In most of the manufacturing applications, the
combinatorial testing technique like OAT has been widely
used, but up-to now most of the research work on web service
testing is theoretically based on model checking. In this paper
we apply OAT technique to minimize the number of test cases
for testing the semantic based Web Services. We have
generated WSDL of web service to be tested using NetBeans
IDE and converted into WSDL-S by giving OCL references,
where pre and post conditions are defined. Test data, using
OAT, with different factors, levels and strengths are generated
and documented in XML based test files WSTS and executed.
The proposed approach is compared with existing techniques.
We have conducted testing on various web service applications
and the results have shown that the proposed method is
effective in generating optimal/ minimal test cases.

The remainder of this paper is organized as follows: Section
2 covers the background material required for this proposal,
Section 3 describes the approach selected by this paper, Section
4 briefly highlights the implementation methodology used by
this proposal and Section 5 gives the conclusion and future
enhancements.

II. BACKGROUND

This section introduces the various background materials
like WSDL, WSDL-S, OCL and OAT technique.

A. Web Service Description Language (WSDL)

WSDL is an XML-based language to define web services
and how to access them. It specifies the location of the service,
the operations or methods, and the services exposes.

WSDL Document Structure:

A WSDL document defines a web service using four major
elements:

<portType> the operations performed by the web services

<message> the messages used by the service

<types> the data types used by the web service

<binding> the communication protocols used by the Web
service.

The main structure of a WSDL document looks like the
following:

<definition>

<types>

 Definition of types…….

<\types>

<message>

 Definition of message…….

<\message>

<portType>

 Definition of a port…..

<\portType>

<binding>

 Definition of binding…….

<\binding>

<\definition>

A WSDL document can also contain other elements like
extension elements and a service element that makes it possible
to group together the definitions of several web services in one
single WSDL document.

The <portType> element is the most important WSDL
element. It defines a web service, the operations that can be
performed, and the messages that are involved. The

A.Askaruinisa et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 566-576

<portType> element can be compared to a function library in a
traditional programming language.

The <message> element defines the data elements of an
operation. Each message consists of one or more parts. The
parts can be compared to the parameters of a function call in a
traditional programming language.

The <types> element defines the data type that is used by
the Web service. For maximum platform neutrality, WSDL
uses XML schema syntax to define data types. The <binding>
element defines the message format and protocol details for
each port.

In this paper, we have generated/retrieved WSDL for the
web service to be tested using NetBeans IDE and added
semantics to it.

B. Semantic WSDL (WSDL-S)

The web service semantics (WSDL-S) [18, 19] aims to add
semantic annotation to web service description by extending
WSDL. WSDL-S is an extension of the syntactical level of
WSDL and includes semantic capabilities for semantic web
services [18]. WSDL-S associates the semantic descriptions to
the Web Service in order to enable automatic search, discovery,
selection, composition and integration across heterogeneous
users and domains. WSDL-S includes three attributes and two
elements, in addition to that of WSDL. They are:

 The precondition element is a set of assertions that
must be met before Web Services can be invoked

 The effect element is an element that is a result of
invoking a Web Service operation

 The modelReference attribute is a specification of
association between WSDL entity and a concept

 The schemaMapping attribute is a handling structure
which differentiates between schema elements of Web
Services and their corresponding semantic model
concepts

 The category attribute is a service categorization of
information for publishing a service in a Web Services
registry.

This paper uses the modelReference attribute to refer the
OCL file. We have maintained WSDL-S and OCL files,
separately so that future modifications of one would not affect
another.

C. Object Constraint Language (OCL)

It is a formal language used to describe expressions on
UML models. These expressions typically specify invariant
conditions that must hold for the system being modeled or
queries over objects described in a model [19]. OCL can be
used for a number of different purposes:

• As a query language

• To specify invariants on classes and types in the class model

• To describe pre and post conditions on operations/methods

• To specify target (sets) for messages and actions

• To specify constraints on operations

This paper uses OCL to describe the pre and post
conditions of web operations.

D. Orthogonal Array Testing (OAT)

Orthogonal array testing is a systematic and statistical way
of testing. Orthogonal arrays could be applied in user interface
testing, system testing, regression testing, configuration testing
and performance testing. Orthogonal arrays are the extension of
Latin Squares [29]. For example, Latin Square of degree 3 is as
shown below:

1 2 3

2 3 1

3 1 2

Each value occurs once in each column. Taguchi extended
this idea to derive orthogonal array for different factors, levels
and strengths [21]. Factors can be mapped to parameters in the
application and levels can be mapped to values that each
parameter takes. For example, the orthogonal array for factor 3,
level 2 and strength 2 is as follows:

1 1 1

1 2 2

2 1 2

2 2 1

Statistical test designs, such as orthogonal arrays, may
reduce the number of test cases. Orthogonal arrays combine a
set of software parameters into two subsets. One subset may be
called the "combination parameters." The second subset may
be called the "ancillary parameters." The combination
parameters are exhaustively tested. The ancillary parameters
are not exhaustively tested [30]. As an example, suppose there
are four parameters generically named "A", "B", "C" and "D".
Suppose further that each parameter can take on one of 3
values: "1", "2" and "3." With orthogonal array designs,
parameters are typically grouped as pairs. In this example,
there will be four pairs, "A-B", "B-C", "C-D" and "D-A". Each
set of pairs are in turn considered combination parameters to
create a set of test cases. Consider the test cases for the "A-B"
pair. The combination parameters are "A" and "B," and the
ancillary parameters are "C" and "D". Exhaustive testing for
"A" and "B," both of which have three possible values, will
yield 32, or 9, test cases. L9 (3

4) is the suitable array for this
case. Values are assigned to the ancillary parameters, "C" and
"D", randomly or based on experience. The process is repeated
for the "B-C", "C-D" and "D-A" pairs. The orthogonal design
results in 4×9, or 36, test cases. Exhaustive testing would result
in 34, or 81 test cases.

Orthogonal arrays exhibit the following properties:

Identify applicable sponsor/s here. (sponsors)

A.Askaruinisa et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 566-576

 Each of the arrays conveys information different from
that of any other array in the sequence, i.e., each array
conveys unique information therefore avoiding
redundancy.

 Each of the arrays is statistically independent of the
others.

 Provides uniformly distributed coverage of the test
domain.

 Concise test set with fewer test cases is created.

 All pair-wise combinations of test set created.

 Arrives at complex combinations of all the variables.

 Simpler to generate and less error prone than test sets
created manually.

 Reduces testing cycle time.

OAT testing method makes sure that each combination is
tested the same number of times. It also determines which
combination break first. In this paper, we have used OAT
technique for generating and reducing the test cases.

III. METHODOLOGY

Before The focus of this paper is Web Service test case
generation and reduction using semantics and OAT technique.

Figure 1 Test Case Generation Framework

In our approach, we describe a Web Service contract using
WSDL-S and express pre and post conditions of Web Services
using OCL. We have developed a testing framework as in
Figure 1 which consists of various modules like (A) WSDL
Generation, (B) WSDL Parser, (C) OCL Rule Creation, (D)

Orthogonal Data Generation, (E) Test Case Generation and (F)
Test Case Execution and Report Generation. The functional
description of each module is explained below.

A. WSDL Generation

The thought process of application to be executed and
tested is represented as UML class diagram as shown in Fig 2
for “Geometry Shape” application. The “Shape” web service
consists of an operation createShape() which takes two
‘integer’ parameters and returns a ‘String’. Using the
development environment NetBeans IDE, the logic is
implemented as web service using AXIS2 [24] plug-in for the
interface.

Figure 2 Class Diagram of Shape Service

The IDE generates the appropriate WSDL as in Appendix
A. The WSDL thus obtained is given as input to the WSDL
parser module.

B. WSDL Parser

Since the WSDL generated contains information
recursively and quite lengthy, it is parsed using Java XML
Processing (JAXP) APIs to retrieve the method signature
which will be useful for test case generation. The parameters
and their corresponding data types for each operation are
determined and stored in the XML format as shown in Fig 3.
For example, the operations “createShape” and
“complexShape”, their parameters and the corresponding data
types are parsed and documented in XML format.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>

<opList>

 <opName name="complexShape">

 <parameters name="iSides" type="int" />

 <parameters name="iLength" type="int" />

 </opName>

<opName name="createShape">

<parameters name="iSides" type="int" />

<parameters name="iLength" type="int" />

</opName>

</opList>

Figure 3 XML format for Parser output

C. OCL Rule Creation

A.Askaruinisa et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 566-576

In order to add semantics to WSDL created, we have
developed a “Constraint Builder GUI” using NetBeans IDE
which feeds constraint or conditions for each parameter of each
operation present in the WSDL. All the constraints are built
using OCL format and used further for test data selection. The
conditions are mentioned by the user/tester. We have kept
WSDL-S and OCL files separately, so that any change in the
parameter in future may not affect the WSDL file, only the
OCL file can be changed. The algorithm to create the OCL file
is as follows:

• A service rule name using context is defined.

• Variables name and their data types are defined.

• Each service rule is defined as pre and post conditions using
“pre” and “post“ tags respectively

• Variables are defined according to data type definitions

The screenshot of the Constraint Builder GUI is shown in
Fig 4.

Figure 4 Screenshot of Constraint Builder GUI

The sample OCL file created by the Constraint Builder GUI for
the operation createShape() is shown in Fig 5, which describes
the pre and post conditions. For example, the parameter
“iSides” should be greater than 0 and less than 7 but not equal
to 2.

context createShape (iSides:int, iLength:int) : string

pre: iSides > 0 and iSides <7 and iSides != 2 and

iLength > 0 and iLength < 20

post: if (iSides == 1) then result = “Line”

else if (iSides == 3) then result = “Triangle”

else if (iSides == 4) then result = “Quadrilateral”

else if (iSides == 5) then result = “5 sided Ploygon”

else if (iSides == 6) then result = “6 sided Ploygon”

Figure 5 Sample OCL file

The modelReference attribute is added to WSDL to refer the
OCL file as shown below:

<wsdl:modelReference=”createShape” />

to generate WSDL-S.

The constraints specified in the WSDL-S file are formatted
into XML format, as shown in Fig 6, so that the test data can be
verified and selected easily for each parameter.

Figure 6 Constraints in XML Format

D. Orthogonal Data Generation

OAT technique is simple and straightforward and can
be customized based on available time and cost. The steps to be
followed in constructing the orthogonal array are as follows:

 Number of independent variables to be tested is
decided, known as the “Factors” of the array.

 Number of values that each independent variable
takes is decided, known as the “Levels” of the
array.

 A suitable orthogonal array with the smallest
number of Runs is selected. Suitable array is one
that has atleast as many Factors as needed and has
atleast as many levels for each of those factors as
decided in.

 Factors and values are mapped onto the array.

 Runs are transcribed into test cases, adding any
particularly suspicious combinations that are not
generated.

Strength of orthogonal array is the number of columns it
takes to see each of the Levels Strength possibilities occur equally
often. Orthogonal arrays are often named using the pattern L
Runs (Levels Factors). In general, strength determines the number
of variables to be considered to detect faults i.e the suitable
orthogonal array with strength 3 needs to be selected if triple
mode fault needs to be detected [27].

If no suitable array is found, then nearly equivalent array
has to be selected and discard the unnecessary values or
randomly substitute the values [26]. This is explained as
follows: Factors {P1, P2, P3, P4} takes values {1,2,3}, {1,2,3},
{1,2,3} and {1,2}. The highest possible level is 3, so the
suitable array is L 9(3

4). This is shown below:

Runs P1 P2 P3 P4

1 1 1 1 1

2 1 2 2 2

3 1 3 3 3

4 2 1 2 3

A.Askaruinisa et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 566-576

5 2 2 3 1

6 2 3 1 2

7 3 1 3 2

8 3 2 1 3

9 3 3 2 1

But the parameter P4 takes only two values {1, 2}. Hence
for the runs #3, #4, #5, the value of the parameter P4 needs to
be substituted in a balanced way. In another case, if the array
selected based on the number of parameters and levels includes
more parameters than are used in the experimental design,
ignore the additional parameter columns. For example, if an
application has 8 parameters with 2 levels each, the L12 array
should be selected according to the array selector [26]. The
rightmost 3 columns can then be ignored.

Orthogonal combinations of data are obtained as defined by
Taguchi [21] by selecting the appropriate factors and levels as
shown in Fig 7 and feeding the required input values. In the
screenshot shown below, the first parameter takes 6 different
values and the second one takes two different values.

Figure 7 Orthogonal Array Selections

The orthogonal array values are usually kept as the comma
separated values in separate flat files. Based on the factors and
levels chosen from the above selection GUI, the input values
are mapped and the test data is generated in XML format as
shown in Fig 8.

Figure 8 Orthogonal Data Combinations in XML Format

E. Test Case Generation

Based on the test data selection, the test cases are generated
in XML format and stored as “testcases.xml” and maintained

as WSTS file as shown in Fig 9. Here the tag <case> represents
each test case, the attribute “id” represents the test case
number, “method” represents get or post method, “url”
represents the location of the method, “verifyPositive”
represents the expected result value.

<testcases>

<case description="Test case for createShape" id="1"
method="get"
url="http://localhost:8084/axis2/services/GeoShape/createShap
e?iSides=1&iLength=5" verifypositive="Line" />

<case description="Test case for createShape" id="2"
method="get"
url="http://localhost:8084/axis2/services/GeoShape/createShap
e?iSides=1&iLength=12" verifypositive="Line" />

<case description="Test case for createShape" id="3"
method="get"
url="http://localhost:8084/axis2/services/GeoShape/createShap
e?iSides=3&iLength=5" verifypositive="Triangle" />

<case description="Test case for createShape" id="4"
method="get"
url="http://localhost:8084/axis2/services/GeoShape/createShap
e?iSides=3&iLength=12" verifypositive="Triangle" />

</testcases>

Figure 9 Sample WSTS

F. Test Case Execution and Report Generation

We have considered the WebInject Testing tool [20]
for executing the test cases generated. WebInject is the open
source testing tool for testing the Web Services, which can be
easily installed and used. This tool generates the report both in
HTML/XML format. It requires the test cases in the XML
format as shown in Fig 9. The WSTS file is given to the
WebInject testing tool. Test reports are generated for all
combinations of input data. Fig 10 shows the screen shot of test
report from the WebInject testing tool [20].

Figure 10 Screen Shot from WebInject Tool

IV. IMPLEMENTATION

We have developed the prototype for generating test cases
using JAXP APIs in NetBeans IDE and tested using WebInject

A.Askaruinisa et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 566-576

testing tool. We have evaluated the effectiveness of Web
Service test cases using OAT method and compared the results
with PWT [1] and All Combinations Testing (ACT)/Factorial
Design techniques.

A. Subject Applications

We have considered four web service applications namely
Shape, ComplexShape, ConvertTemp and ComputerConvert.
The first two applications are based on the class diagram of Fig
2 and the other two web services are taken from the web site
[23]. The details of these applications are shown in Table 1.
For example, the operation “convertTemp()” in the service
ConvertTemp takes one “double”, two “string” parameters as
input and returns “double”. Constraints identified for this
service are that temperature should be greater than -10, less
than 220 and the string values should be from the enumerated
values.

B. Data Analysis

For each application, we have parsed the WSDL and
created the XML file as shown in Fig 3. We have added
constraints to each parameter of web operation as shown in
Table 1 using Constraint Builder GUI, thereby converting
WSDL into WSDL-S. Then we have obtained the appropriate
orthogonal combinations of data and mapped the input values
as shown in Fig 7. We have developed the test cases as shown
in Fig 9, with the test data matching the constraints specified.
The number of test runs required for each application, is as
shown in Table 2.

In Table 2, the application Temperature has three
parameters where two parameters take two different values
{F,C} and one parameter takes 6 different values {-10, 0, 36.9,
98.4, 100, 212}. The different possible combinations(C) for
methods PWT [22] and OAT [21] for Factor 3 are tabulated in
Table 3.

Applications

(.wsdl)

Tested Web
Operations

Parameters
and

Data Types

Constraints

Shape createShape (int, int):String

iSides > 0

iSides< 7

iSides != 2

iLength > 0

iLength< 20

ComplexShape createTriangle
(int, int,
int):String

Inherited from
Shape

ConvertTemp convertTemp
(double,
String,
String):double

1.Temp > -10
and < 220

2.Input string
should be from
enumerated
value

3.FromUnit
should not be
equal to
ToUnit

ComputerConvert convertValue
(double,
String,
String):double

1.Input should
be powers of 2

2. Input string
should be from
enumerated
value

3.FromUnit
should not be
equal to
ToUnit

TABLE I DETAILS OF TESTED APPLICATIONS
TABLE 2 #Test Runs Required for different applications

Application Operations Factors Levels Strength
Test Cases

ACT Technique PWT Technique OAT Technique
Shape createShape 2 (1,1) 2,6 - 12 12 12

ComplexShape

createTriangle

3 2 2 8 4 4
3 (2,1) 2,6 2 24 12 12
3 (2,1) 2,10 2 40 20 20
3 (2,1) 2,14 2 56 28 28
3 (2,1) 2,22 2 88 44 44

createQuad
4 3 2 81 12 9
4 10 2 10000 142 100

Create5sidedPolygon
5 3 3 243 40 54
5 4 2 1024 16 16

Create6sidedPolygon
6 4 3 4096 28 64
6 5 2 15625 38 25

Temperature convertTemp 3(2,1) 2,6 2 24 12 12

ComputerBytes convertValue 3(2,1) 2,6 22 24 12 12

A.Askaruinisa et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 566-576

The combinations 3 and 4 are the only valid
combinations for PWT technique based on constraints
whereas for OAT technique the combinations 4, 5, 6, 10, 11
and 12 are valid. Thus OAT considers more combinations
than PWT technique based on the constraints given for the
application.

TABLE 3 Input Combinations for Factor 3
C PWT OAT C PWT OAT
1 f,f,-10 F,F,-10 7 f,f,98.4 C,C,-10

2 c,c,-10 F,F,0 8 c,c,98.4 C,C,0

3 f,c,0 F,F,36.9 9 f,f,100 C,C,36.9

4 c,f,0 F,C,98.4 10 c,c,100 C,F,98.4

5 f,f,36.9 F,C,100 11 f,f,212 C,F,100

6 c,c,36.9 F,C,212 12 c,c,212 C,F,212

As another example, the five different parameters
{A, B, C, D, E} of the operation “create5sidedPolygon”
takes different values as follows: the parameters A and B
takes {1, 2}, C and D takes {1, 2, 3} and E takes
{1,2,3,4,5,6}. The factorial design technique or ACT
method needs 2x2x3x3x6=216 test runs. But OAT method
needs 49 runs if L49 (78) array is chosen from the OA
catalogue. This can be further reduced to 18 runs if mixed
OA 3661 is selected [28]. Mixed Orthogonal Array (mixed
OA) is an array which has multiple levels used for different
factors. Thus the number of test cases is reduced as the
number of parameters increases, when OAT technique is
used.

C. Result Analysis

In this paper, we have compared and analyzed our work
based on the following criteria.

1. WS Testing with WSDL vs WS Testing with
WSDL-S (WSDL vs WSDL-S)

2. Comparison of various test case reduction
techniques using WSDL-S

WSDL vs WSDL-S

In this paper, we have compared the number of test
runs required for different web services using both WSDL
and WSDL-S. For example, in Table 4, for the operation
ConvertValue(), nearly 36 test runs are required to test the
operation completely. But if the constraints specified are
considered for testing, then we need only 12 test runs for the
given inputs.

TABLE 4 Comparison of #Test Runs Required for WSDL vs WSDL-S

Operations Constraints
Input
Values

Using
WSDL
only

Using
WSDL-
S

createShape

iSides > 0
iSides< 7
iSides != 2
iLength > 0
iLength< 20

iSides =
{1,2,3,4,5,6}
iLength =
{5,12}

12 10

iSides =
{1,2,3,4,5,6}
iLength =
{5,21}

12 5

createTriangle
Sides > 0,
Sides < 20

Sides = { 3,
4}

8 8

Sides = { -3,
4}

8 0

SideA =
{3,4}
SideB =
{3,4}
SideC = { -
3, 4}

8 4

SideA =
{3,4}
SideB =
{3,4}
SideC =
{2,4,-
5,6,7,8}

24 20

SideA = {-
3,4}
SideB = {-
3,4}
SideC =
{2,4,5,6,7,8}

24 6

createQuad
Sides > 0,
Sides < 20

Sides =
{4,5}

16 16

Sides = {-4,
5}

16 1

convertTemp

(i) Temp > =
-10 and < 220
(ii) FromUnit
should not be
equal to
ToUnit

Temp =
{0,100, 98.4,
-10}
FromUnit=
{F,C}
ToUnit =
{F,C}

16 8

convertValue

(i) Input
should be
powers of 2
(ii)FromUnit
should not
be equal to
ToUnit

Value = {
64, 1024,
1000, 2000}
FromUnit =
{Bits, Bytes,
Kbytes}
ToUnit =
{Bits, Bytes,
Kbytes}

36 12

Thus from the Table 4, it is clear that if semantics are added
to WSDL, the number of test cases are reduced saving
testing time and effort.

Comparison of various test case reduction techniques

In this paper we have compared and analyzed various
test case reduction techniques using WSDL-S as mentioned
below considering different criteria like number of test runs
generated and various strengths.

1. WS Testing using ACT/Factorial Design
Technique and OAT technique

2. WS Testing using ACT/Factorial Design
Technique and PWT technique

3. WS Testing using PWT technique vs OAT
technique

Comparison of ACT vs OAT
Figure 11 shows the comparison on test runs required
between ACT/Factorial Design and OAT techniques. For
example, for Factor 4 and Level 10, the ACT method

A.Askaruinisa et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 566-576

requires 10000 (10 4) runs but the OAT method requires
only 100 runs.

Figure11 ACT vs OAT Test Runs for
Various Factors & Levels

Comparison of ACT vs PWT

Figure 12 shows the comparison on test runs
required between ACT and PWT techniques. For example,
for Factor 4 and Level 10, the ACT method requires 10000
runs but the PWT method requires only 142 runs.

Figure 12 ACT vs PWT Test Runs for Various Factors and Levels

Comparison of PWT vs OAT

Figure 13 shows the test runs required for PWT

and OAT techniques for various factors, levels and strength
2. With the increase in parameters and levels, OAT method
requires less number of test cases than the PWT. This figure
shows that OAT is better technique as the number of
parameters increases.

Figure 13 PWT vs OAT Test Runs

But there are cases where OAT generates more number of
test runs than PWT technique. For example, in the Figure
13, when the Factor is 5 and Level is 4, OAT generates 18
test cases but PWT generates only 16 test runs.

Comparison on Strengths

Figure 14 shows that if the strength increases, the

runs required for OAT increases. Since the OAT method

TABLE 5 #Test Case Effectiveness of PWT and OAT Techniques

Operations Factors Levels
Test Cases (TCs)

Test Case
Effectiveness
(in %)

ACT PWT OAT PWT OAT

createShape 2 5 10 10 10 0 0

createTriangle 3 2 8 4 4 50 50

createQuad 4 3 81 12 9 85.18 88.89

create5sidedPolygon 5 4 1024 16 16 98.43 98.43

create5sidedPolygon 5 2 32 8 8 75 75

create6sidedPolygon 6 5 15625 38 25 99.75 99.84

maintains the uniqueness for all parameters using its
orthogonal property, the test combinations required are more
and it increases with its strength. For OAT method, if the
strength considered is 3, then for PWT technique “3-way” is
considered. For example, for factor 5, level 3 and strength 3,
OAT technique requires 54 test runs, whereas 3-WAY
technique requires 40 test runs only as shown in Fig 14.
 From these graphs (Figures 11-14), we have proved
that, to generate optimal and valid test cases

 Combinatorial testing techniques are more
effective than factorial design technique.

A.Askaruinisa et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 566-576

Figure 14 N-Way vs OAT Test Runs for Various Strengths

 As the number of parameters increases, the

results show that OAT technique is better than
PWT technique.

 As the strength increases, the results show that
PWT technique is better than OAT technique.

D. Metrics for Test Case Minimization

The effectiveness of test case minimization is defined using
the formula

Table 5 calculates the effectiveness of test case
minimization for the methods PWT and OAT. The test case
effectiveness increases with the number of parameters.
 As the factors and levels increases, the
effectiveness of test case minimization using OAT increases
compared to PWT technique. For example, when the Factor
is 4 and Level is 3, the effectiveness of test case
minimization using OAT technique is 88.89% compared to
85.18% for PWT technique. As the factor increases to 6, the
effectiveness of test case minimization using OAT
technique increases to 99.84% compared to 99.75% for
PWT technique. Thus the reduction technique OAT shows
an improvement in testing effort for web services.

V. CONCLUSION AND FUTURE ENHANCEMENTS

This paper compares the different test case generation
and reduction techniques and determines a better technique
for testing the web services based on WSDL-S. When there
are few parameters, PWT is suitable. When there are more
number of parameters (factors) taking different values
(levels), OAT is a better technique and also provides
reduced number of valid test cases thereby reducing the
effort and time.

Our future work will consider the test case prioritization
technique for web services based on certain criteria like

coverage, cost, quota etc. and to determine a better testing
technique by considering the testing efficiency of each test
suite.

REFERENCES
[1]Siripol Noikajana, Taratip Suwannasart, “An Improved Test Case
Generation Method for Web Service Testing from WSDL-S and OCL with
Pair-wise Testing Technique”, in Proceedings of IEEE International
Computer Software and Applications Conference, 2009.
[2] Xiaoying Bai, Wenli Dong, W.-T. Tsai, and Y. Chen, “ WSDL-based
automatic test case generation for Web services testing”, in Proceedings of
IEEE International Workshop on Service-Oriented System Engineering,
2005, pp.207-212.
[3] Chunyan Ma, Chenglie Du, Tao Zhang1, Fei Hu, “WSDL-Based
Automated Test Data Generation for Web Service”, 2008,
[4] John T. E. Timm, Gerald C. Gannod, “Specifying Semantic Web
Service Compositions using UML and OCL”, in Proceedings of the IEEE
International Conference on Web Services, 2007., 2007, pp. 521-528.
[5] Sebastien Salva, Isaam Rabhi, “Automatic Web Services Roubustness
Testing from WSDL Descriptions”, 2009,
[6] J Offutt, W.Xu, “Generating Test Cases for Web Services using Data
Perturbation”, ACM SIGSOFT, Software Eng. Notes, Vol. 29(5), Sep.
2004, pp. 1-10.
[7] M. Hong and Z. Lu, "A framework for testing Web services and its
supporting tool," in Proceedings of the IEEE International Workshop
Service-Oriented System Engineering, 2005, pp. 199-206.
[8] Xiaoying Bai and Shufang Lee Wei-Tek Tsai and Yinong Chen,
“Ontology-Based Test Modeling and Partition Testing of Web Services”.
[9] Evan Martin, Suranjana Basu, Tao Xie, “Automated Robustness Testing
of Web Services”, 2008.
[10] Yongyan Zheng, Jiong Zhou, Paul Krause, “An Automatic Test Case
Generation Framework for Web Services”, 2007.
[11] Mounir Lallali, Faitha Zaidi, Ana Cavalli, Iksoon Hwang, “Automatic
Timed Test Case Generation for Web Services Composition”, 2007.
[12] Siripol Noikajana and Taratip Suwannasart, “Web Service Test Case
Generation Based on Decision Table”, 2008.
[13] Hanna Samer, Munro Malcolm, “An Approach for Specification-based
Test Case Generation for Web Services”, 2007.
[14] Reda siblini, Mashat mansour, “Testing web services”, 2005
[15] Xiaoying bai, Yinong Chen, Zhongkui shao, “Adaptive web services
testing”, 31st international computer software and applications conference,
2007
[16] Ashok kumar, “Automated regression suite for testing web services”,
2009 international conference on advances in recent technologies in
communication and computing
[17] Andre luiz Da Silva Solino, Sivvia Regina Vergillio, “Mutation based
testing of web services”, 2009
[18] “Semantic Web Services Tutorial”, by Michael Stollberg and Armin
Haller
[19] “UML 2.0 OCL Specification”, by Object Management Group
[20] http://www.webinject.org
[21] http://www2.research.att.com/~njas/oadir/index.html
[22] www.testerdesk.com
[23] www.webservicex.net
[24] http://netbeans.org/kb/61/websvc/gs-axis.html
[25]www.w3.org/TR/wsdl
[26]http://controls.engin.umich.edu/wiki/index.php/Design_of_experiments
_via_taguchi_methods:_orthogonal_arrays
[27] http://www.developsense.com/pairwiseTesting.shtml
[28] http://www.51testing.com/ddimg/uploadsoft/20090113/OATSEN.pdf
[29] http://priorartdatabase.com/IPCOM/000012770/
[30] http://www.faqs.org/patents/app/20090077538

AUTHORS PROFILE

Ms. A. Askarunisa is working in Thiagarajar college of
Engineering, Madurai. At present she is pursuing her PhD in
Software Testing. She has published papers in National and

 # Minimized Test Cases
1 - --------------------------- * 100
 # Total Test Cases

A.Askaruinisa et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 566-576

International Conferences. Her research interests include
Software Engineering, Compilers and Architectures.

Ms. A.M.Abirami is persuing her PG in Computer Science
and Engineering. Her area of interests includes testing java
applications, web services and web applications.

