
Surendra Rahamatkar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 536-541

Analysis and Comparative Study of Clock
Synchronization Schemes in Wireless Sensor

Networks

Surendra Rahamatkar
Associate Professor, Computer

Science
Venkateshwar Institute of

Technology
Indore, India

Dr. Ajay Agarwal
Professor, Computer Applications

Krishna Institute of Engg. & Technology
Ghaziabad, India

Narendra Kumar
Sr. Lecturer, Computer Science

Galgotia college of Engineering &
Technology

Greater Noida, India

Abstract— Time synchronization is an important issue in
wireless sensor networks. Many applications based on
these WSNs assume local clocks at each sensor node that
need to be synchronized to a common notion of time.
Some intrinsic properties of sensor networks such as
limited resources of energy, storage, computation, and
bandwidth, combined with potentially high density of
nodes make traditional synchronization methods
unsuitable for these networks. Hence there has been an
increasing research focus on designing synchronization
schemes. This paper contains a survey, relative study and
analysis of existing clock synchronization protocols for
wireless sensor networks, based on a various factors that
include precision, accuracy, cost, and complexity. The
design considerations presented in this paper will help the
designer in structuring a successful clock synchronization
system. Specifically, the comparisons presented based on
various factors will provide basic guidelines to the
designer in integrating various solution features to create
an efficient clock synchronization scheme for the
application.

Keywords- Wireless sensor networks, clock
synchronization, protocol, comparison

I. INTRODUCTION

As the advances in technology have enabled the
development of tiny, low power devices capable of
performing sensing and communication tasks, sensor
networks emerged and received high attention of many
researchers. Sensor networks are a special type of ad-
hoc networks, where wireless devices (usually referred
as nodes in the network) get together and spontaneously
form a network without the need for any infrastructure.

Wireless sensor networks can be applied to a wide
range of applications in domains as diverse as medical,
industrial, military, environmental, scientific, and home
networks [1]. Since the sensors in a wireless sensor
network operate independently, their local clocks may
not be synchronized with one another. This can cause

difficulties when trying to integrate and interpret
information sensed at different nodes. There are many
areas where cooperative sensing requires the nodes
involved to agree on a common time frame such as
configuring a beam-forming array and setting a TDMA
(Time Division Multiple Access) radio schedule [2].
These situations mandate the necessity of one common
notion of time in wireless sensor networks. Therefore,
currently there is a huge research interest towards
developing efficient clock synchronization protocols to
provide a common notion of time. To achieve this
Lamport [5] showed that, when the value of a clock
needs to be adjusted, it always has to be set forward and
never back. Setting the clock back could cause the
above condition to be violated. Hence, in an ideal
system, the slower clocks need to be adjusted to the
value of the fastest clock, for all clocks to be
synchronized. This restriction will also maintain the
partial ordering of the events.

It is useful to have a bound on the best accuracy
achievable in any system, such that no bound lower
than that is specified. Srikanth et al. [6] have shown that
for any synchronization algorithm, even in the absence
of faults, the bound on the rate of drift of logical clocks
from real time is greater than the bound on the rate of
drift of physical clocks. In the presence of faults such as
message losses and node failures, the accuracy of
logical clocks becomes even worse.

The clock synchronization problem has been studied
thoroughly in the areas of Internet and local area
networks (LANs) for the last several decades. Many
existing synchronization algorithms rely on the clock
information from GPS (Global Positioning System).
However, GPS-based clock acquisition schemes exhibit
some weaknesses: GPS is not ubiquitously available
and requires a relatively high-power receiver, which is
not possible in tiny and cheap sensor nodes. This is the
motivation for developing software-based approaches

ISSN : 0975-3397 536

Surendra Rahamatkar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 536-541

to achieve innetwork time synchronization. Among
many protocols that have been devised for maintaining
synchronization in Computer Networks, NTP (Network
Time Protocol) [3] is outstanding owing to its
ubiquitous deployment, scalability, robustness related
to failures, and self-configuration in large multihop
networks. Moreover, the combination of NTP and GPS
has shown that it is able to achieve high accuracy on the
order of a few microseconds [4]. However, NTP is not
suitable for a wireless sensor environment, since
wireless sensor networks pose numerous challenges of
their own; to name a few, limited energy and
bandwidth, limited hardware, latency, and unstable
network conditions caused by mobility of sensors,
dynamic topology, and multi-hopping. Hence, clock
synchronization protocols different from the
conventional protocols are needed in order to deal with
the challenges specific to WSNs.

II. EXISTING APPROACHES TO TIME

SYNCHRONIZATION

Time synchronization in sensor networks has
attracted attention in last few years. Post-facto
synchronization was a pioneering work by Elson and
Estrin [13]. They proposed that unlike in traditional
synchronization schemes such as NTP, local clocks of
the sensor nodes should normally run unsynchronized
in their own pace, but should synchronize whenever
necessary. This way local timestamps of two nodes at
the occurrence time of an event are synchronized later
by extrapolating backwards to estimate the offset
between clocks at a previous time (at the time of the
event). In this section, building blocks and fundamental
mechanisms of existing time synchronization
algorithms are presented.

A. REFERENCE BROADCAST SYNCHRONIZATION (RBS)

RBS [7] provides synchronization for a whole
network. The basic synchronization primitive is a
reference broadcast to a set of client nodes in the one-
hop neighborhood of a beacon node. The beacon node
broadcasts manage synchronization pulses. The clients
then exchange their respective reception times and use
linear regression to compute relative offsets and rate
differences to each other. Using offset and rate
difference, each client can transform a local clock
reading to the local timescale of any other client. To
extend this scheme to multi-hop networks, the network
is clustered such that a single beacon can synchronize
all nodes in its cluster. Gateway nodes that participate
in two or more clusters independently take part in the
reference-broadcast procedure of all their clusters. By
knowing offsets and rate differences to nodes in all
adjacent clusters, gateway nodes can transform time
stamps from one cluster to another. Time
synchronization across multiple hops is then provided

as follows. Nodes send their time-stamp data using their
local clocks. Whenever time stamps are exchanged
among nodes, the time stamps are transformed to the
receiver’s local time using offset and rate difference. In
experiments it has been shown that adjacent Berkeley
Motes can be synchronized with an average error of
11μs by using 30 broadcasts. Over multiple hops, the
average error grows with O(√n), where n is the number
of hops.

 B. TIMING SYNCHRONIZATION PROTOCOL FOR SENSOR

NETWORKS (TPSN)

TPSN [8] provides synchronization for a whole
network. First, a node is elected as a synchronization
master and a spanning tree with the master at the root is
constructed by flooding the network. In a second phase,
nodes synchronize to their parent in the tree by means
of round-trip synchronization.
Synchronization is performed in rounds and initiated by
the root and broadcasting a synchronization-request
message to its children. Each child then performs a
round-trip measurement to synchronize with the root.
Nodes further down in the tree overhear the messages
of their parents and start synchronization when their
parents have synchronized. To eliminate message-delay
uncertainties, time-stamping for the round-trip
synchronization is done in the MAC layer. In case of
node failures and topology changes, master election and
tree construction must be repeated.

Measurements showed that two adjacent Berkeley
Motes can be synchronized with an average error of
16.9μs, which is a worse figure than the 11μs given for
RBS in [8]. However, the authors of [10] claim that a
re-implementation of RBS on their hardware resulted in
an average error of 29.1μs between adjacent nodes,
effectively claiming that TPSN is about twice as precise
as RBS.

C. TINYSYNC AND MINISYNC (TS/MS)

Tiny-Sync and Mini-Sync [9] are methods for pair
wise synchronization of sensor nodes. Both Tiny-Sync
and Mini-Sync use multiple round-trip measurements
and a line-fitting technique to obtain the offset and rate
difference of the two nodes. For this, a constant-rate
model (see clock model) is assumed. To obtain data
points for line fitting, multiple round-trip
synchronizations are performed

Note that each of the two lines is unambiguously
defined by two (a priori unknown) data points. The
same results would be obtained if the remaining data
points could be eliminated. Since the computational and
memory overhead depends on the number of data
points, it is a good idea to remove as many data points
as possible before the line fitting. Tiny-Sync and Mini-
Sync only differ in this elimination step. Essentially,
Tiny-Sync uses a heuristic to keep only two data points

ISSN : 0975-3397 537

Surendra Rahamatkar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 536-541

for each of the two lines. However, the selected points
may not be the optimal ones. Mini-Sync uses a more
complex approach to eliminate exactly those points that
do not change the solution. Hence, Tiny-Sync achieves
a slightly suboptimal solution with minimal overhead,
Mini-Sync gives an optimal solution with increased
overhead.

Measurements on a 802.11b network with 5000 data
points resulted in an offset bound of 945μs (3230μs)
and a rate bound of 0.27ppm (1.1ppm) for adjacent
nodes (nodes five hops away).

D. TIME DIFFUSION SYNCHRONIZATION (TDP)

TDP [10] supports the synchronization of a whole
network. Initially, a set of master nodes is elected. For
external synchronization, these nodes must have access
to a global time. This is not required for internal
synchronization, where masters are initially
unsynchronized.

Master nodes then broadcast a request message
containing their current time, and all receivers send
back a reply message. Using these round-trip
measurements, a master node calculates and broadcasts
the average message delay and standard deviation.

Receiving nodes record these data for all leaders.
Then, they turn themselves into so-called “diffused
leaders” and repeat the procedure. The average delays
and standard deviations are summed up along the path
from the masters. The diffusion procedure stops at a
given number of hops from the masters. In a simulation
with 200 static nodes with 802.11 radios and a delay of
5 seconds between consecutive synchronization rounds,
the deviation of time across the network dropped to 0.6
seconds after about 200 seconds.

E. ASYNCHRONOUS DIFFUSION (AD)

AD [11] supports the internal synchronization of a
whole network. The algorithm is very simple: each
node periodically sends a broadcast message to its
neighbors, which reply with a message containing their
current time. The receiver averages the received time
stamps and broadcasts the average to the neighbors,
which adopt this value as their new time. It is assumed
that this sequence of operations is atomic, that is the
averaging operations of the nodes must be properly
sequenced. In a simulation with a random network of
200 static nodes showed that the synchronization error
decreases exponentially with the number of rounds.

III. EVALUATION AND COMPARISON OF

PROTOCOLS

In this section we compare and evaluate the various
synchronization protocols. Before evaluating the
various protocols, we define the criterion in detail first,
which is used in comparisons. For this, we have
evaluated the presented protocols in two ways (1)

quantitative criteria and (2) qualitative criteria. This
contains synchronization accuracy, computational
complexity, and convergence time. A qualitative
criterion includes scalability, energy efficiency, and
fault-tolerance. By combining together, these factors
provide a good characterization of the applicability and
performance of each protocol.

A. QUANTITATIVE EVALUATION

Here, the protocols differ broadly in their
computational requirements, energy consumption,
precision of synchronization results, and
communication requirements is presented. In addition,
no protocol clearly outperforms the others in all
possible applications of wireless networks. Rather, it is
quite likely that the choice of a protocol will be driven
by the characteristics and requirements of each
application. For instance, a low-cost, low-precision
protocol could be appropriate for many environmental
monitoring applications. However, many safety-critical
applications, such as aircraft navigation or intrusion
detection in military systems, will demand high-
precision protocols in order for nodes to correctly
identify events occurring in the net and for an
application to respond to those events.
Synchronization precision: Each network node has a
physical clock consisting of hardware oscillator
circuits. Unfortunately, the frequency of hardware
clocks varies from one node to another within a
specified range. Thus, clocks on different nodes in
wireless networks operate at different rates.
Consequently, the clock values used for
synchronization in wireless networks are not physical
clock readings. Instead, network nodes generally use a
logical notion of clocks and time. Logical clocks can be
modified both by software (e.g., during
synchronization) and hardware (e.g., by the physical
clocks). Consequently, synchronization precision can
be defined in two ways.
1. Absolute precision: The maximum error (i.e., skew
and offset) of a node’s logical clock with respect to an
external standard such as UTC.
2. Relative precision: The maximum deviation (i.e.,
skew and offset) among logical clock readings of the
nodes belonging to a wireless network.

In general, high synchronization precision is clearly a
desirable feature of a synchronization protocol.
However, in the protocols that we studied, higher
synchronization precision comes at the expense of
increased computational cost measured in terms of
algorithmic complexity, the number of messages
exchanged among nodes, and the storage requirements
of the protocol. The quantitative precision of the
various protocols appears in Table 1.
Piggybacking: Piggybacking is the process of
combining the acknowledgement messages during

ISSN : 0975-3397 538

Surendra Rahamatkar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 536-541

synchronization with messages that carry
synchronization data among nodes. Instead of sending
independent acknowledgement messages, these
messages are piggybacked on the data messages that
have to be sent to the node, in order to reduce message
traffic in the network. Piggybacking is clearly
advantageous because wireless networks are often
subject to severe bandwidth constraints and
piggybacking alleviates communication demands on the
network. In addition, piggybacking can also reduce the
storage requirements on network nodes because storage
space is also saved by clubbing acknowledgements
with data messages. TPSN time synchronization [8]
use piggybacking.
Computational complexity: As wireless networks
often have limited hardware capabilities and severe
energy constraints, the complexity of a
synchronization protocol can make a protocol
impractical for many applications. Here we
distinguish between the computational complexity of
a protocol (i.e., its run-time and memory
requirements) from the message complexity (i.e., the
number of messages exchanged during
synchronization). (See also discussion on convergence
time below.)

In our evaluations, we consider both the asymptotic
behavior of a protocol’s computation time and its
memory requirements, relative to the number of nodes
being synchronized. Even though a protocol’s
computational requirements might be linear in the
number of nodes synchronizing with each other, the
protocol may still be impractical if these requirements
exceed physical node resources. RBS [7], asynchronous
diffusion [11], and TDP[10] have higher computational
and storage complexity compared to TPSN [8], and the
Tiny Sync and Mini Sync[9].
Convergence time: Convergence time is the total time
required to synchronize a network. A protocol that
requires a large number of message exchanges per
synchronization will result in a longer convergence
time. RBS [7] does not emphasize low convergence
time because they are based on reactive routing. In
these protocols, synchronization is performed relatively
infrequently, when an event of interest occurs in the
net. Thus, convergence time and message complexity
are of less critical importance in protocols that use
reactive routing. The protocols Tiny Sync and Mini
Sync [9]can tolerate high convergence times for multi-
hop networks.
Network size: Some authors have conducted empirical
evaluations of synchronization protocols on actual
sensor networks. Although this information is not
available for most of the protocols that we studied, the
TPSN time synchronization protocol of Ganeriwal et al.
[8] is noteworthy in this regard. This protocol was
found to handle neighborhoods with up to 300 nodes.

Compatibility with sleep mode: The ability of a node to
be in low-power (sleep) mode can be critical to meeting
the node’s energy requirements. The key idea
underlying sleep mode is that nodes must be
synchronized and active only when the application
demands it. RBS [7] highlights this feature by way of
post-facto synchronization and other protocols TPSN
[8], Tiny[9] support this feature as well.

TABLE I. QUANTITATIVE PERFORMANCE COMPARISON OF

SYNCHRONIZATION PROTOCOLS

TPSN time synchronization [8] is an excellent

compromise among synchronization accuracy,
computational complexity, and convergence time.
While the accuracy results are in the order of tens of
microseconds, low computational complexity and fast
convergence time make this protocol quite attractive
when higher accuracy is not required. An additional
strength of this protocol is that the protocol has been
tested on an actual sensor network containing 300
nodes. The delay-measurement time synchronization
protocol has comparable accuracy results as network-
wide time synchronization [8]. However, this result is
obtained at the expense of a longer convergence time.
Improvements to TPSN synchronization were defined
by Dai and Han [12]. Their method has yielded
excellent accuracy results with lower message
complexity than RBS. Finally, a protocol by Sichitiu
and Veerarittiphan [9] achieves good accuracy results
(less than one millisecond). This is quite impressive
considering that the protocol also has low
computational complexity. However, the convergence
time of this protocol is quite high. The asynchronous
diffusion protocol of Li and Rus [11] and the time
diffusion protocol of Su and Akyildiz [10] use an
averaging method to adjust node clocks. These
protocols are reasonably robust; however, the issue of
clocks running backward must be suitably addressed
before these protocols are implemented in practice.

B. QUALITATIVE EVALUATION

In this section we evaluate the protocols based on
overall quality criteria. In contrast to Section 3.1 above,

Protocols Precision Piggy
backing

Complexity Conver
-gence
time

Network
size

Sleep
mode

RBS [7]

1.85 ±
1.28 μs

N/A High N/A 2-20
Nodes

Yes

TPSN [8]

16.9 μs No Low Unkno
wn

150-300
Nodes

Yes

TS/MS[9]

945 μs No Low High
(Multi-

hop)

N/A Yes

TDP [10]

100 μs No High High
(Multi-

hop)

200
Nodes

Yes

AD [11]

Unkno
wn

No High High
(Multi-

hop)

200–400
Nodes

Yes

ISSN : 0975-3397 539

Surendra Rahamatkar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 536-541

here the goals of each protocol are discussed and the
extent to which we consider that the protocol succeeds
in achieving those goals. While a quantitative study
deals with parameters that help the reader fine-tune a
synchronization protocol by providing a telescopic
view, a qualitative study provides a broader and more
general perspective. Table 2 compares the various
protocols in terms of the following qualitative criteria.
Energy efficiency: Energy efficiency is an implicit
requirement in most wireless networks. The extent to
which this requirement must be enforced will vary
depending on an application. For instance, in the case
of sensor networks the requirement is quite strict,
forcing nodes to sleep as frequently as possible and
severely limiting the energy available for
synchronization and other network tasks. The main
reason behind this energy constraint is the small size of
batteries in sensor nodes, which greatly limits the
amount of energy that can be stored and produced (e.g.,
with solar cells). An important tradeoff for wireless
networks is between using the available energy for
computing or for communicating.
Accuracy: Accuracy is a measure of how well the
time maintained within the network is true to the
standard time. In other words, it is a measure of the
precision of synchronization. A protocol with high
accuracy thereby guarantees high precision. In the
case of absolute precision, this means that the
synchronized time in the network does not deviate
much from an external standard (e.g., UTC or GPS).
In the case of relative precision, this means that,
when a set of synchronized nodes is considered, the
maximum deviation of the clock of any node within the
set is reasonably small.
Scalability: Scalability is the scope of a network that is
the geographic span of nodes that are synchronized and
the completeness of coverage within that region. In
general, the scope of a network can be expanded by
increasing the number of nodes in the network. As the
sensors are becoming cheaper, wireless sensor networks
are becoming increasingly large, up to tens of
thousands of nodes. Thus, synchronization protocols
must be sufficiently scalable with respect to network
size. Most protocols that handle sensor networks place
scalability on top of their list of priorities.

Although most authors have not measured scalability
in their experiments, Ganeriwal et al. [8] have used a
network of 150-300 nodes to test scalability. In
addition, Su and Akyildiz used a net with 200 nodes to
test the scalability of TDP [10]. RBS [7] typically
synchronizes 3-20 nodes in a neighborhood; however,
this protocol works well even in much larger networks
using gateways between neighborhoods.
Overall complexity: The quantitative evaluation in the
previous subsection distinguishes various complexity
measures, including CPU load, storage requirements,

and message complexity (i.e., convergence time). In
this section, overall complexity is viewed as a
combination of algorithmic complexity, overhead
caused due to fault tolerance provisions, and
communication overhead.
Fault tolerance: Fault tolerance plays an important role
because a wireless medium is rather error-prone. The
poor reliability of message delivery in a wireless
medium can have devastating effects on
synchronization protocols because synchronization
requires message exchanges.

Some fault-tolerant protocols [8, 10] address message
loss to some extent, but others have not addressed this
issue. Consequently, it is unclear how sensitive their
protocols are to message loss. This is somewhat
troublesome because handling message loss can result
in significant overheads and performance degradation
during synchronization.

TABLE II: QUALITATIVE PERFORMANCE COMPARISONS OF

SYNCHRONIZATION PROTOCOLS.

IV. CONCLUSIONS

Wireless sensor networks have tremendous
advantages for monitoring object movement and
environmental properties but require some degree of
synchronization to achieve the best results. With
increasing frequency, attention has been focused on
wireless sensor networks because of their wide range of
application areas. Among the many difficulties in
designing and building such sensor networks, a
essential challenge is providing clock synchronization
among the sensor nodes.
In wireless sensor network traditional clock
synchronization protocols for wired networks cannot be
used because the sensor protocols deals with dynamical
behavior, the ability to handle sensor mobility, and
scalability. Due to limited energy resources the sensors
themselves are heavily resource-constrained. Therefore,
they need to operate in highly unreliable environments.
In this paper we presented a survey, relative study and
analysis of existing clock synchronization protocols for
wireless sensor networks, based on a range of factors
that includes precision, accuracy, cost, and complexity.

Protocols Accuracy Energy
Efficiency

Overall
Complexity

Scalability Fault
Tolerance

RBS [7] High High High Good No

TPSN [8]

High

Average

Low

Good

Yes

TS/MS [9]

High

High

Low

N/A

Yes

TDP [10]

High

Average

High

Good

Yes

AD [11]

Unknown

Low

High

N/A

Yes

ISSN : 0975-3397 540

Surendra Rahamatkar et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 536-541

The design considerations presented in this paper will
help the designer in structuring a successful clock
synchronization system.

Specifically, the comparisons presented based on
various factors will provide basic guidelines to the
designer in integrating various solution features to
create a successful clock synchronization scheme for
the application.

REFERENCES
[1] I.-K Rhee, J Lee, J. Kim, E. Serpedin, Wu, Y.-C. “Clock

Synchronization in Wireless Sensor Networks: An Overview”.
Sensors, 2009: pp 56-85.

[2] F. Zhao, L.Guibas, “Wireless Sensor Networks: An
Information Processing Approach. Morgan Kaufmann:” San
Francisco, CA, USA: 2004, pp 107-117.

[3] D. L. Mills, “Internet time synchronization: the network time
protocol.” IEEE Trans. Commun. , 1991, 10: pp 1482-1493.

[4] N. Bulusu,; S. Jha, “Wireless Sensor Networks: A Systems
Perspective”, Artech House: Norwood MA, USA, 2005.

[5] L. Lamport, “Time, Clocks, and the Ordering of Events in a
Distributed System”, Communications of the ACM 21, 1978, pp
558-565

[6] T.K. Srikanth, , S. Toueg, “Optimal Clock Synchronization”
Journal of the ACM 34, 1987, pp 626-645.

[7] Elson Jeremy, Girod Lewis, and Estrin Deborah, “Fine-grained
network time synchronization using reference broadcasts” In
Fifth Symposium on Operating Systems Design and
Implementation OSDI, 2002.

[8] Saurabh Ganeriwal, Kumar Ram, and Mani B. Srivastava
“Timing-sync protocol for sensor networks”. In First ACM
Conference on Embedded Networked SensorSystems (SenSys,
2003.

[9] L. Sichitiu Mihail, Chanchai Veerarittiphan, “Simple, accurate
time synchronization for wireless sensor networks”, In IEEE
Wireless Communications and Networking Conference
(WCNC), 2003.

[10] I. W. Su Akyildiz, “Time-Diffusion Synchronization Protocols
for Sensor Networks”, IEEE/ACM Transactions on Networking,
2005.

[11] Li Qun and Rus Daniela, “ Global clock synchronization in
 sensor networks”’ In IEEE InfoCom, 2004.

[12] H. Dai and R. Han, “TSync A Lightweight Bidirectional Time
Synchronization Service for Wireless Sensor Networks”, ACM
SIGMOBILE Mobile Computing and Communications Review,
8(1) 2004 , pp 125-139.

[13] J. Elson and D. Estrin, “Time Synchronization for Wireless
Sensor Networks", International Parallel and Distributed
Processing Symposium, San Francisco, USA, 2001.

AUTHORS PROFILE

Surendra Rahamatkar has received his Bachelor of Engineering in
Computer Science & Engineering from Barkatullah University,
Bhopal, India, Post Graduate Diploma in Advanced Computing from
CDAC, Pune and Master in Technology in Computer Science &
Engineering from VMRF Deemed University, India. He is working as
Associate Professor in the Department of Computer Science &
Engineering at Venketeshwar Institute of Technology, Indore, India.
He is a member of various Technical Societies viz. Computer Society
of India (CSI), International Association of Engineers (IEA), Indian
Society of Technical Education (ISTE). He published many research
papers in various International/ National Journals and Conferences.
He is presently working on Time Synchronization in Wireless Sensor
Networks towards his Ph.D. degree. His main research interests
include: Wireless Sensor Network, Distributed & Mobile Computing
and Middleware.

Dr. Ajay Agarwal has done B.Tech. Degree in Computer Science &
Engineering from Institute of Engineering & Technology, Lucknow
(India), M.Tech.(honors) Degree in Computer Science & Engineering
from Motilal Nehru Regional Engineering College, Allahabad and
Ph.D. in Computer Science from Indian Institute of Technology,
Delhi (India). Presently he is working as a Professor and Head in
Computer Application Department at Krishna Institute of Engineering
& Technology, Ghaziabad, India. He is a member of various
Technical Societies viz. Institute of Electrical and Electronics
Engineers (IEEE), Computer Society of India (CSI), Indian Society
for Technical Education (ISTE), Institution of Engineers India,
Institute of Chartered Computer Professional of India and Indian
Association of Physics Teachers. He published many papers in
various International/ National Journals and Conferences. His main
research interests include: Wireless Sensor Network, Mobile
Computing and Middleware.

Narendra Kumar has received his Bachelor of Technology and Master
in Technology in Computer Science & Engineering from UP
Technical University, Lucknow, India. He is working as Senior
Lecturer in the Department of Computer Science & Engineering at
Galgotia College of Science & Technology, Greater Noida, India. He
is a member of various Technical Societies viz. Computer Society of
India (CSI), Indian Society of Technical Education (ISTE). He
published many research papers in various Conferences. His main
research interests include: Wireless Sensor Network, Distributed &
Mobile Computing and Middleware.

ISSN : 0975-3397 541

