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Abstract— Time synchronization is an important issue in 
wireless sensor networks.  Many applications based on 
these WSNs assume local clocks at each sensor node that 
need to be synchronized to a common notion of time. 
Some intrinsic properties of sensor networks such as 
limited resources of energy, storage, computation, and 
bandwidth, combined with potentially high density of 
nodes make traditional synchronization methods 
unsuitable for these networks. Hence there has been an 
increasing research focus on designing synchronization 
schemes. This paper contains a survey, relative study and 
analysis of existing clock synchronization protocols for 
wireless sensor networks, based on a various factors that 
include precision, accuracy, cost, and complexity. The 
design considerations presented in this paper will help the 
designer in structuring a successful clock synchronization 
system. Specifically, the comparisons presented based on 
various factors will provide basic guidelines to the 
designer in integrating various solution features to create 
an efficient clock synchronization scheme for the 
application.  
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I.  INTRODUCTION 

As the advances in technology have enabled the 
development of tiny, low power devices capable of 
performing sensing and communication tasks, sensor 
networks emerged and received high attention of many 
researchers. Sensor networks are a special type of ad-
hoc networks, where wireless devices (usually referred 
as nodes in the network) get together and spontaneously 
form a network without the need for any infrastructure.  

Wireless sensor networks can be applied to a wide 
range of applications in domains as diverse as medical, 
industrial, military, environmental, scientific, and home 
networks [1].  Since the sensors in a wireless sensor 
network operate independently, their local clocks may 
not be synchronized with one another. This can cause 

difficulties when trying to integrate and interpret 
information sensed at different nodes. There are many 
areas where cooperative sensing requires the nodes 
involved to agree on a common time frame such as 
configuring a beam-forming array and setting a TDMA 
(Time Division Multiple Access) radio schedule [2]. 
These situations mandate the necessity of one common 
notion of time in wireless sensor networks. Therefore, 
currently there is a huge research interest towards 
developing efficient clock synchronization protocols to 
provide a common notion of time. To achieve this 
Lamport [5] showed that, when the value of a clock 
needs to be adjusted, it always has to be set forward and 
never back. Setting the clock back could cause the 
above condition to be violated. Hence, in an ideal 
system, the slower clocks need to be adjusted to the 
value of the fastest clock, for all clocks to be 
synchronized. This restriction will also maintain the 
partial ordering of the events.  

It is useful to have a bound on the best accuracy 
achievable in any system, such that no bound lower 
than that is specified. Srikanth et al. [6] have shown that 
for any synchronization algorithm, even in the absence 
of faults, the bound on the rate of drift of logical clocks 
from real time is greater than the bound on the rate of 
drift of physical clocks. In the presence of faults such as 
message losses and node failures, the accuracy of 
logical clocks becomes even worse. 

The clock synchronization problem has been studied 
thoroughly in the areas of Internet and local area 
networks (LANs) for the last several decades. Many 
existing synchronization algorithms rely on the clock 
information from GPS (Global Positioning System). 
However, GPS-based clock acquisition schemes exhibit 
some weaknesses: GPS is not ubiquitously available 
and requires a relatively high-power receiver, which is 
not possible in tiny and cheap sensor nodes. This is the 
motivation for developing software-based approaches 
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to achieve innetwork time synchronization. Among 
many protocols that have been devised for maintaining 
synchronization in Computer Networks, NTP (Network 
Time Protocol) [3] is outstanding owing to its 
ubiquitous deployment, scalability, robustness related 
to failures, and self-configuration in large multihop 
networks. Moreover, the combination of NTP and GPS 
has shown that it is able to achieve high accuracy on the 
order of a few microseconds [4]. However, NTP is not 
suitable for a wireless sensor environment, since 
wireless sensor networks pose numerous challenges of 
their own; to name a few, limited energy and 
bandwidth, limited hardware, latency, and unstable 
network conditions caused by mobility of sensors, 
dynamic topology, and multi-hopping. Hence, clock 
synchronization protocols different from the 
conventional protocols are needed in order to deal with 
the challenges specific to WSNs.   

II.  EXISTING APPROACHES TO TIME 

SYNCHRONIZATION 

Time synchronization in sensor networks has 
attracted attention in last few years. Post-facto 
synchronization was a pioneering work by Elson and 
Estrin [13]. They proposed that unlike in traditional 
synchronization schemes such as NTP, local clocks of 
the sensor nodes should normally run unsynchronized 
in their own pace, but should synchronize whenever 
necessary. This way local timestamps of two nodes at 
the occurrence time of an event are synchronized later 
by extrapolating backwards to estimate the offset 
between clocks at a previous time (at the time of the 
event). In this section, building blocks and fundamental 
mechanisms of existing time synchronization 
algorithms are presented. 

A.  REFERENCE BROADCAST SYNCHRONIZATION (RBS) 

RBS [7] provides synchronization for a whole 
network. The basic synchronization primitive is a 
reference broadcast to a set of client nodes in the one-
hop neighborhood of a beacon node. The beacon node 
broadcasts manage synchronization pulses. The clients 
then exchange their respective reception times and use 
linear regression to compute relative offsets and rate 
differences to each other. Using offset and rate 
difference, each client can transform a local clock 
reading to the local timescale of any other client. To 
extend this scheme to multi-hop networks, the network 
is clustered such that a single beacon can synchronize 
all nodes in its cluster. Gateway nodes that participate 
in two or more clusters independently take part in the 
reference-broadcast procedure of all their clusters. By 
knowing offsets and rate differences to nodes in all 
adjacent clusters, gateway nodes can transform time 
stamps from one cluster to another. Time 
synchronization across multiple hops is then provided 

as follows. Nodes send their time-stamp data using their 
local clocks. Whenever time stamps are exchanged 
among nodes, the time stamps are transformed to the 
receiver’s local time using offset and rate difference. In 
experiments it has been shown that adjacent Berkeley 
Motes can be synchronized with an average error of 
11μs by using 30 broadcasts. Over multiple hops, the 
average error grows with O(√n), where n is the number 
of hops. 

 B. TIMING SYNCHRONIZATION PROTOCOL FOR SENSOR 

NETWORKS (TPSN) 

TPSN [8] provides synchronization for a whole 
network. First, a node is elected as a synchronization 
master and a spanning tree with the master at the root is 
constructed by flooding the network. In a second phase, 
nodes synchronize to their parent in the tree by means 
of round-trip synchronization. 
Synchronization is performed in rounds and initiated by 
the root and broadcasting a synchronization-request 
message to its children. Each child then performs a 
round-trip measurement to synchronize with the root. 
Nodes further down in the tree overhear the messages 
of their parents and start synchronization when their 
parents have synchronized. To eliminate message-delay 
uncertainties, time-stamping for the round-trip 
synchronization is done in the MAC layer. In case of 
node failures and topology changes, master election and 
tree construction must be repeated. 

Measurements showed that two adjacent Berkeley 
Motes can be synchronized with an average error of 
16.9μs, which is a worse figure than the 11μs given for 
RBS in [8]. However, the authors of [10] claim that a 
re-implementation of RBS on their hardware resulted in 
an average error of 29.1μs between adjacent nodes, 
effectively claiming that TPSN is about twice as precise 
as RBS. 

C. TINYSYNC AND MINISYNC (TS/MS) 

Tiny-Sync and Mini-Sync [9] are methods for pair 
wise synchronization of sensor nodes. Both Tiny-Sync 
and Mini-Sync use multiple round-trip measurements 
and a line-fitting technique to obtain the offset and rate 
difference of the two nodes. For this, a constant-rate 
model (see clock model) is assumed. To obtain data 
points for line fitting, multiple round-trip 
synchronizations are performed  

Note that each of the two lines is unambiguously 
defined by two (a priori unknown) data points. The 
same results would be obtained if the remaining data 
points could be eliminated. Since the computational and 
memory overhead depends on the number of data 
points, it is a good idea to remove as many data points 
as possible before the line fitting. Tiny-Sync and Mini-
Sync only differ in this elimination step. Essentially, 
Tiny-Sync uses a heuristic to keep only two data points 
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for each of the two lines. However, the selected points 
may not be the optimal ones. Mini-Sync uses a more 
complex approach to eliminate exactly those points that 
do not change the solution. Hence, Tiny-Sync achieves 
a slightly suboptimal solution with minimal overhead, 
Mini-Sync gives an optimal solution with increased 
overhead. 

Measurements on a 802.11b network with 5000 data 
points resulted in an offset bound of 945μs (3230μs) 
and a rate bound of 0.27ppm (1.1ppm) for adjacent 
nodes (nodes five hops away). 

D. TIME DIFFUSION SYNCHRONIZATION (TDP) 

TDP [10] supports the synchronization of a whole 
network. Initially, a set of master nodes is elected. For 
external synchronization, these nodes must have access 
to a global time. This is not required for internal 
synchronization, where masters are initially 
unsynchronized. 

Master nodes then broadcast a request message 
containing their current time, and all receivers send 
back a reply message. Using these round-trip 
measurements, a master node calculates and broadcasts 
the average message delay and standard deviation. 

Receiving nodes record these data for all leaders. 
Then, they turn themselves into so-called “diffused 
leaders” and repeat the procedure. The average delays 
and standard deviations are summed up along the path 
from the masters. The diffusion procedure stops at a 
given number of hops from the masters. In a simulation 
with 200 static nodes with 802.11 radios and a delay of 
5 seconds between consecutive synchronization rounds, 
the deviation of time across the network dropped to 0.6 
seconds after about 200 seconds. 

E. ASYNCHRONOUS DIFFUSION (AD) 

AD [11] supports the internal synchronization of a 
whole network. The algorithm is very simple: each 
node periodically sends a broadcast message to its 
neighbors, which reply with a message containing their 
current time. The receiver averages the received time 
stamps and broadcasts the average to the neighbors, 
which adopt this value as their new time. It is assumed 
that this sequence of operations is atomic, that is the 
averaging operations of the nodes must be properly 
sequenced. In a simulation with a random network of 
200 static nodes showed that the synchronization error 
decreases exponentially with the number of rounds. 

III.  EVALUATION AND COMPARISON OF 

PROTOCOLS 

In this section we compare and evaluate the various 
synchronization protocols. Before evaluating the 
various protocols, we define the criterion in detail first, 
which is used in comparisons. For this, we have 
evaluated the presented protocols in two ways (1) 

quantitative criteria and (2) qualitative criteria. This 
contains synchronization accuracy, computational 
complexity, and convergence time. A qualitative 
criterion includes scalability, energy efficiency, and 
fault-tolerance. By combining together, these factors 
provide a good characterization of the applicability and 
performance of each protocol. 

A.  QUANTITATIVE EVALUATION 

Here, the protocols differ broadly in their 
computational requirements, energy consumption, 
precision of synchronization results, and 
communication requirements is presented. In addition, 
no protocol clearly outperforms the others in all 
possible applications of wireless networks. Rather, it is 
quite likely that the choice of a protocol will be driven 
by the characteristics and requirements of each 
application. For instance, a low-cost, low-precision 
protocol could be appropriate for many environmental 
monitoring applications. However, many safety-critical 
applications, such as aircraft navigation or intrusion 
detection in military systems, will demand high-
precision protocols in order for nodes to correctly 
identify events occurring in the net and for an 
application to respond to those events. 
Synchronization precision: Each network node has a 
physical clock consisting of hardware oscillator 
circuits. Unfortunately, the frequency of hardware 
clocks varies from one node to another within a 
specified range. Thus, clocks on different nodes in 
wireless networks operate at different rates. 
Consequently, the clock values used for 
synchronization in wireless networks are not physical 
clock readings. Instead, network nodes generally use a 
logical notion of clocks and time. Logical clocks can be 
modified both by software (e.g., during 
synchronization) and hardware (e.g., by the physical 
clocks). Consequently, synchronization precision can 
be defined in two ways. 
1. Absolute precision: The maximum error (i.e., skew 
and offset) of a node’s logical clock with respect to an 
external standard such as UTC. 
2. Relative precision: The maximum deviation (i.e., 
skew and offset) among logical clock readings of the 
nodes belonging to a wireless network.  

In general, high synchronization precision is clearly a 
desirable feature of a synchronization protocol. 
However, in the protocols that we studied, higher 
synchronization precision comes at the expense of 
increased computational cost measured in terms of 
algorithmic complexity, the number of messages 
exchanged among nodes, and the storage requirements 
of the protocol. The quantitative precision of the 
various protocols appears in Table 1. 
Piggybacking: Piggybacking is the process of 
combining the acknowledgement messages during 
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synchronization with messages that carry 
synchronization data among nodes. Instead of sending 
independent acknowledgement messages, these 
messages are piggybacked on the data messages that 
have to be sent to the node, in order to reduce message 
traffic in the network. Piggybacking is clearly 
advantageous because wireless networks are often 
subject to severe bandwidth constraints and 
piggybacking alleviates communication demands on the 
network. In addition, piggybacking can also reduce the 
storage requirements on network nodes because storage 
space is also saved by clubbing acknowledgements 
with data messages. TPSN time synchronization [8] 
use piggybacking. 
Computational complexity: As wireless networks 
often have limited hardware capabilities and severe 
energy constraints, the complexity of a 
synchronization protocol can make a protocol 
impractical for many applications. Here we 
distinguish between the computational complexity of 
a protocol (i.e., its run-time and memory 
requirements) from the message complexity (i.e., the 
number of messages exchanged during 
synchronization). (See also discussion on convergence 
time below.) 

In our evaluations, we consider both the asymptotic 
behavior of a protocol’s computation time and its 
memory requirements, relative to the number of nodes 
being synchronized. Even though a protocol’s 
computational requirements might be linear in the 
number of nodes synchronizing with each other, the 
protocol may still be impractical if these requirements 
exceed physical node resources. RBS [7], asynchronous 
diffusion [11], and TDP[10] have higher computational 
and storage complexity compared to TPSN [8], and the 
Tiny Sync and Mini Sync[9]. 
Convergence time: Convergence time is the total time 
required to synchronize a network. A protocol that 
requires a large number of message exchanges per 
synchronization will result in a longer convergence 
time. RBS [7] does not emphasize low convergence 
time because they are based on reactive routing. In 
these protocols, synchronization is performed relatively 
infrequently, when an event of interest occurs in the 
net. Thus, convergence time and message complexity 
are of less critical importance in protocols that use 
reactive routing. The protocols Tiny Sync and Mini 
Sync [9]can tolerate high convergence times for multi-
hop networks. 
Network size: Some authors have conducted empirical 
evaluations of synchronization protocols on actual 
sensor networks. Although this information is not 
available for most of the protocols that we studied, the 
TPSN time synchronization protocol of Ganeriwal et al. 
[8] is noteworthy in this regard. This protocol was 
found to handle neighborhoods with up to 300 nodes. 

Compatibility with sleep mode: The ability of a node to 
be in low-power (sleep) mode can be critical to meeting 
the node’s energy requirements. The key idea 
underlying sleep mode is that nodes must be 
synchronized and active only when the application 
demands it. RBS [7] highlights this feature by way of 
post-facto synchronization and other protocols TPSN 
[8], Tiny[9] support this feature as well. 

TABLE I.       QUANTITATIVE PERFORMANCE COMPARISON OF 

SYNCHRONIZATION PROTOCOLS 

 
TPSN time synchronization [8] is an excellent 

compromise among synchronization accuracy, 
computational complexity, and convergence time. 
While the accuracy results are in the order of tens of 
microseconds, low computational complexity and fast 
convergence time make this protocol quite attractive 
when higher accuracy is not required. An additional 
strength of this protocol is that the protocol has been 
tested on an actual sensor network containing 300 
nodes. The delay-measurement time synchronization 
protocol has comparable accuracy results as network-
wide time synchronization [8]. However, this result is 
obtained at the expense of a longer convergence time. 
Improvements to TPSN synchronization were defined 
by Dai and Han [12]. Their method has yielded 
excellent accuracy results with lower message 
complexity than RBS. Finally, a protocol by Sichitiu 
and Veerarittiphan [9] achieves good accuracy results 
(less than one millisecond). This is quite impressive 
considering that the protocol also has low 
computational complexity. However, the convergence 
time of this protocol is quite high. The asynchronous 
diffusion protocol of Li and Rus [11] and the time 
diffusion protocol of Su and Akyildiz [10] use an 
averaging method to adjust node clocks. These 
protocols are reasonably robust; however, the issue of 
clocks running backward must be suitably addressed 
before these protocols are implemented in practice. 

B.  QUALITATIVE EVALUATION 

In this section we evaluate the protocols based on 
overall quality criteria. In contrast to Section 3.1 above, 

Protocols Precision Piggy 
backing

Complexity Conver
-gence 
time 

Network 
size 

Sleep 
mode 

RBS [7] 
 

1.85 ± 
1.28 μs 

N/A High N/A 2-20 
Nodes 

Yes 

TPSN [8]
 

16.9 μs No Low Unkno
wn 

150-300 
Nodes 

Yes 

TS/MS[9]
 

945 μs No Low High 
(Multi-

hop) 

N/A Yes 

TDP [10]
 

100 μs No High High 
(Multi-

hop) 

200 
Nodes 

Yes 

AD [11] 
 

Unkno
wn 

No High High 
(Multi-

hop) 

200–400 
Nodes 

Yes 
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here the goals of each protocol are discussed and the 
extent to which we consider that the protocol succeeds 
in achieving those goals. While a quantitative study 
deals with parameters that help the reader fine-tune a 
synchronization protocol by providing a telescopic 
view, a qualitative study provides a broader and more 
general perspective. Table 2 compares the various 
protocols in terms of the following qualitative criteria. 
Energy efficiency: Energy efficiency is an implicit 
requirement in most wireless networks. The extent to 
which this requirement must be enforced will vary 
depending on an application. For instance, in the case 
of sensor networks the requirement is quite strict, 
forcing nodes to sleep as frequently as possible and 
severely limiting the energy available for 
synchronization and other network tasks. The main 
reason behind this energy constraint is the small size of 
batteries in sensor nodes, which greatly limits the 
amount of energy that can be stored and produced (e.g., 
with solar cells). An important tradeoff for wireless 
networks is between using the available energy for 
computing or for communicating. 
Accuracy: Accuracy is a measure of how well the 
time maintained within the network is true to the 
standard time. In other words, it is a measure of the 
precision of synchronization. A protocol with high 
accuracy thereby guarantees high precision. In the 
case of absolute precision, this means that the 
synchronized time in the network does not deviate 
much from an external standard (e.g., UTC or GPS). 
In the case of relative precision, this means that, 
when a set of synchronized nodes is considered, the 
maximum deviation of the clock of any node within the 
set is reasonably small. 
Scalability: Scalability is the scope of a network that is 
the geographic span of nodes that are synchronized and 
the completeness of coverage within that region. In 
general, the scope of a network can be expanded by 
increasing the number of nodes in the network. As the 
sensors are becoming cheaper, wireless sensor networks 
are becoming increasingly large, up to tens of 
thousands of nodes. Thus, synchronization protocols 
must be sufficiently scalable with respect to network 
size. Most protocols that handle sensor networks place 
scalability on top of their list of priorities. 

Although most authors have not measured scalability 
in their experiments, Ganeriwal et al. [8] have used a 
network of 150-300 nodes to test scalability. In 
addition, Su and Akyildiz used a net with 200 nodes to 
test the scalability of TDP [10]. RBS [7] typically 
synchronizes 3-20 nodes in a neighborhood; however, 
this protocol works well even in much larger networks 
using gateways between neighborhoods.  
Overall complexity: The quantitative evaluation in the 
previous subsection distinguishes various complexity 
measures, including CPU load, storage requirements, 

and message complexity (i.e., convergence time). In 
this section, overall complexity is viewed as a 
combination of algorithmic complexity, overhead 
caused due to fault tolerance provisions, and 
communication overhead.  
Fault tolerance: Fault tolerance plays an important role 
because a wireless medium is rather error-prone. The 
poor reliability of message delivery in a wireless 
medium can have devastating effects on 
synchronization protocols because synchronization 
requires message exchanges. 

Some fault-tolerant protocols [8, 10] address message 
loss to some extent, but others have not addressed this 
issue. Consequently, it is unclear how sensitive their 
protocols are to message loss. This is somewhat 
troublesome because handling message loss can result 
in significant overheads and performance degradation 
during synchronization. 

TABLE II:           QUALITATIVE PERFORMANCE COMPARISONS OF 

SYNCHRONIZATION PROTOCOLS. 

IV.  CONCLUSIONS 

Wireless sensor networks have tremendous 
advantages for monitoring object movement and 
environmental properties but require some degree of 
synchronization to achieve the best results. With 
increasing frequency, attention has been focused on 
wireless sensor networks because of their wide range of 
application areas. Among the many difficulties in 
designing and building such sensor networks, a 
essential challenge is providing clock synchronization 
among the sensor nodes.  
In wireless sensor network traditional clock 
synchronization protocols for wired networks cannot be 
used because the sensor protocols deals with dynamical 
behavior, the ability to handle sensor mobility, and 
scalability. Due to limited energy resources the sensors 
themselves are heavily resource-constrained. Therefore, 
they need to operate in highly unreliable environments.  
In this paper we presented a survey, relative study and 
analysis of existing clock synchronization protocols for 
wireless sensor networks, based on a range of factors 
that includes precision, accuracy, cost, and complexity. 

Protocols  Accuracy  Energy  
Efficiency  

Overall  
Complexity  

Scalability Fault  
Tolerance 

RBS [7] High  High  High  Good  No  

 
TPSN [8] 

 
High  

 
Average  

 
Low  

 
Good  

 
Yes  

 
TS/MS [9] 

 
High  

 
High  

 
Low  

 
N/A  

 
Yes  

 
TDP [10] 

 
High  

 

 
Average  

 
High  

 
Good  

 
Yes  

 
AD [11] 

 
Unknown 

  

 
Low  

 
High  

 
N/A  

 
Yes  
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The design considerations presented in this paper will 
help the designer in structuring a successful clock 
synchronization system. 

Specifically, the comparisons presented based on 
various factors will provide basic guidelines to the 
designer in integrating various solution features to 
create a successful clock synchronization scheme for 
the application.  
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