
Shaik Mohammad Rafi et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 504-516

SRGM with logistic-exponential Testing-effort function with
change-point and Analysis of Optimal release policies based on

increasing the test efficiency.

Shaik. Mohammad Rafi1 Dr.K.Nageswara Rao2

1. Assoc. Professor Sri Mittapalli College Institute of Technology for Women, NH-5, Tummalapalem, Guntur, A.P,
India.

2. Professor& H.O.D in P.V.P.S.I.T, Vijayawada affiliated to J.N.T.U, Kakinada, India.

Abstract:-Reliability is the one of the important factor of
software quality. Past few decades several software
reliability growth models are proposed to access the
quality of the software. Main challenging task of
reliability growth model is predicting the reliability, total
cost at optimal time at, software released into the market.
It has been observed that most of the reliability growth
models predict the failure rate to be constant during the
software testing, but in reality software failure rate
changes with testing time. In this paper we have
investigated software reliability growth model by
incorporating the both change point and testing effort. We
incorporated logistic-exponential TEF in software
reliability growth model with change-point. We also
investigated the how testing efficiency can be increased
by adopting the new automated testing tools into the
software testing and its effect on the total cost of the
software. Experiments are done on real datasets.
Parameters are estimated. Results show the better fit.

Keywords: Software reliability; Software testing; Non-
Homogeneous Poisson Process (NHPP); Change-
point; Testing-effort

1. Introduction

Software has been ruling this world from past few
decades. Today we require a more sophisticated and
complex software in our computer systems. Generally
software has been developed and maintained by humans
for that, there is chance that errors might be propagated
into the software. So we require a high technology for
developing reliable software. Software reliability is the
probability that software will provide failure-free
operation in a fixed environment for a fixed interval of
time [15, 18].Future failure conditions of the software can
be estimated from the past failure conditions which is
available. Several papers are published in this context.
Like Musa, Xie, Pham and Singapurvalla and Wilson
among many others. The software reliability growth
models (SRGM) are designed to make the predictions.
These predictions include failure rate and to reach the
required reliability target. A very important class of
(NHPP) non-homogeneous Poisson process models like

Goel and Okumato, Ohba, Yamada, Yamada and Osaki.
All these models had appropriate failure intensity
function. Once the failure intensity function is defined we
can estimated the quantities like number of failures
remains in the software , number of initial faults and
reliability level in a given time period.

Most SRGMs use calendar time as the unit of fault
detection/removal period. Very few SRGMs use the
human power, number of test case runs, or CPU time as
the unit [8][18][28-34]. Recently, we proposed a new
SRGM that incorporates the concept of logistic developer
of the software and an independent test group (ITG)
(Pressman, 2001). In the vast literature, most researchers
assume a constant detection rate per fault in deriving their
SRGMs. That is, they assume that all faults have equal
probability of being detected during the software testing
process, and the rate remains constant over the intervals
between fault occurrences. In fact, a successful test is
one that uncovers an as-yet-undiscovered error. It is
impossible to execute every combination of paths during
testing. Moreover, Pareto principle implies that 80% of all
errors uncovered during testing will likely be traceable to
20% of all program components (Pressman, 2001). In
practice, the fault detection rate strongly depends on the
skill of test teams, program size, and software testability.
Thus, it may not be smooth and could be changed [16].

On the other hand, if we want to detect more additional
faults, it is advisable to purchase new equipments or
introduce new tools/techniques, which are use. These
external new methods can give a detailed description of
the test methodology, a complete test report, or an expert
analysis of the findings to the clients. If the software
techniques/tools can be considered in software cost model
and viewed as the investment required improving the
long-term competitiveness. In this paper, we will review a
SRGM with logistic-exponential TEF. Furthermore, we
propose a methodology to incorporate both logistic-
exponential TEF and change-point (CP) into software
reliability growth modeling. Change-point problems have
been studied by many authors [1, 2, 6, 22, 35, 37].

In the remaining of this paper, there are four more
sections. In Section 2, we give a brief review of the

ISSN : 0975-3397 504

Shaik Mohammad Rafi et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 504-516

SRGM with a logistic-exponential TEF. Furthermore, we
will investigate how to incorporate both logistic-
exponential TEF and change-point into software
reliability modeling in Section 3. We estimate these
parameters of the proposed SRGM based on the actual
observed software failure data, plot the mean value
functions, and give a detailed comparison with other
existing well- known SRGMs in Section 4. Finally,
conclusions are presented in Section 5.

2. Software reliability modeling and testing-effort
function

In this section, an NHPP model with TEF is present.
The following assumptions are made for software
reliability modeling [7, 8, 9, 12, 14, 29, 31, 32]
(i) The fault removal process follows the Non-

Homogeneous Poisson process (NHPP)

(ii) The software system is subjected to failure at random

time caused by faults remaining in the system.

(iii) The mean time number of faults detected in the time

interval (t, t+Δt) by the current test effort is

proportional for the mean number of remaining faults

in the system.

(iv) The proportionality is constant over the time.

(v) Consumption curve of testing effort is modeled by

Logistic-exponential TEF.

(vi) Each time a failure occurs, the fault that caused it is

immediately removed and no new faults are

introduced.

We can describe the mathematical expression of a testing-
effort based on following for stochastic modeling of a
software error detection phenomenon, we define a
counting process [N(t), t>0] where N(t) represents the
cumulative number of software errors detected by testing
time t with mean value function m(t). We can then
formulate a SRGM based on NHPP under the assumptions
of Goel and Okumoto (1979) as:

 (1)

In general, an implemented software system is tested to
detect and correct software error in the software
development process. During the testing phase software
errors are remaining in the system because software
failure and the errors are detected and corrected by test
personnel. Based on the assumptions if the numbers of
detected errors by the current testing effort expenditure
are proportional to the number of remaining errors, and

then we obtain the following differential equations.

 (2)

Where m(t) represents the expected mean number of
errors detected in time (0,t), w(t) current testing effort
consumption at time t, a is the expected number of
initial faults , and r is a fault detection rate per unit
testing effort at testing time t. solving above equation
under boundary conditions m(0)=0 and W(0)=0 we get
the following equation

 (3)

The relation between current and cumulative testing-effort
given by

 (4)

The Eq.(3) represents the MVF incorporated with testing-
effort. Generally testing-effort describes the how
effectively the faults are detected and can be modeled by
different expenditure curves.
Recently we proposed a SRGM with logistic-exponential
testing-effort function [22]. The cumulative testing effort
consumption is [38]

 (5)
Current testing effort is

t>0 (6)

α is the total expenditure , λ is the effort consumption rate
and k is the structuring index. The intensity function at a
time t is

 (7)
3.1 SRGM with Logistic-exponential TEF and change-
point
During a software testing process, the nature of the
failure data can be affected by many factors such as the
testing environment, test strategy, resource allocation
and so on. The factors are unlikely to all be kept stable
during the whole process of software testing. The
detection rate may not be smooth and can be changing
when the testing environment and resource allocation is
changed. The testing effort can be described by amount
CPU hours, man power and number test cases. During
the software development process the fault detection rate
may not be constant; it may change after some time

ISSN : 0975-3397 505

Shaik Mohammad Rafi et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 504-516

moment called change point [6, 22]. Here we will
incorporate the logistic-exponential testing effort and
change point into the SRGM. SRGM based on testing-
effort and change point is given by

 (8)

 (9)

 0< t < (10)

 , t > τ (11)

Complete solutions for Eq.(9) are present in Appendix A

3.2 New technique for increasing the software testing
efficiency

Any testing strategy must incorporate test planning, test
cases design, test execution, and resultant data collection
and evaluation. The increasing visibility of software as a
system element and the attendant costs associated with a
software failure are motivating forces for well planed
through testing. It is not usual for software development
organization to expend between 30 to 40 percent of total
project effort on testing [Pressman 2001]. Once the all
faults are removed the software is deploy to the customer.
A software engineer needs more rigorous criteria for
determining when sufficient testing has been conducted.
Testing has been conducted in properly, by adopting the
new testing tools we can speed up the testing, although it
increases the extra cost. Here we study the change point
problem in a different angle. When a change point occurs
there the developer will adopt a new automated testing
tool which speeds up the process even though it effects
the cost. A gain parameter is proposed by Huang 2006[6,
9] which is defined fraction of additional faults found by
using the automated testing tool. In this assumption he
proposed that fraction of fault detection is constant. But it
is observed that no testing tool is efficient all time, so
fraction of faults detected might not be constant.

The modified mean value is depicted as [6, 9]

 (12)

Where t > τ and σ(t) is the gain parameter(GP). Therefore
from Eq(11) and Eq (12), we have

 (13)

Also from Eq (3) , Eq (11) , and (12) we can also re-
define the gain effect of employing new automated
techniques /tools and depicted it as follows.

 (14)
Hence we can conclude that

 (15)

 (16)

 (17)

 (18)
Where P is the additional of faults detected by using new
automated tools or techniques during the testing [9, 10].
Depending on the characteristic of tool the value of P
varies. The nature of the testing tool will characterize the
value of P at that time.

4) EVALUATION CRITERIA
4.1) a) The goodness of fit technique

Here we used MSE [21,23]which gives real
measure of the difference between actual and
predicted values. The MSE defined as

 (19)

A smaller MSE indicate a smaller fitting error and
better performance.

b) Coefficient of multiple determinations (R2) which
measures the percentage of total variation about mean
accounted for the fitted model and tells us how well a
curve fits the data. It is frequently employed to
compare model and access which model provies the
best fit to the data. The best model is that which
proves higher R2. that is closer to 1.
c) The predictive Validity Criterion
The capability of the model to predict failure behavior
from present & past failure behavior is called
predictive validity. This approach, which was
proposed by [7], can be represented by computing RE
for a data set

 (20)

ISSN : 0975-3397 506

Shaik Mohammad Rafi et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 504-516

In order to check the performance of the logistic-
exponential software reliability growth model and
make a comparison criteria for our evaluations.
SSE criteria: SSE can be calculated as: [21]

 (21)

Where yi is total number of failures observed at a
time ti according to the actual data and m(ti) is the
estimated cumulative number of failures at a time ti

for i=1,2,…..,n.

4.2) Model comparisons with real applications
DS1: the first set of actual data is from the study by Ohba
1984 [19].the system is PL/1 data base application
software , consisting of approximately 1,317,000lines of
code
.During nineteen weeks of experiments, 47.65 CPU hours
were consumed and about 328 software errors are
removed. Fitting the model to the actual data means by
estimating the model parameter from actual failure data.
 Here we used the LSE (non-linear least square
estimation) and MLE to estimate the parameters. The
unknown parameters of Logistic-exponential TEF are
α=72(CPU hours), λ=0.04847, and k=1.387.Calculations
are given in appendix A. from the table 2 it is observed
that proposed model fits better than other models(Goel
and Okumoto , Yamda Delayed S shaped model). In this
we will take change-point is occurred at τ=6 and
estimated values are given in the table. DS 2: the dataset
used here presented by wood [25] from a subset of
products for four separate software releases at Tandem
Computer Company. Wood Reported that the specific
products & releases are not identified and the test data has

been suitably transformed in order to avoid
Confidentiality issue. Here we use release 1 for
illustrations. Over the course of 20 weeks, 10000 CPU
hours are consumed and 100 software faults are removed.
Similarly the least square estimates of the parameters for
logistic-exponential TEF in the case of DS2 are
α=12600(CPU hours), λ=0.06352, and k=1.391.

Table 1
Parameters of logistic-exponential

TEF for the dataset-1

Model α λ k

E.q (5) 72 0.04847 1.387

Table 3
Parameters of logistic-exponential

TEF for the dataset-2

Model α λ k

E.q (5) 12600 0.06352 1.391

ISSN : 0975-3397 507

Shaik Mohammad Rafi et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 504-516

(a)

(b)

(c)

(d)

 (e)

Fig 1.(a) Observed/estimated TE vs time for dataset 1 (b) mean value function for Eq 3 (c) Mean value function for Eq 10 and Eq 11 (d) RE curves
for proposed model at τ=6 (e) RE curve for Yamada Delayed S shaped model

ISSN : 0975-3397 508

Shaik Mohammad Rafi et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 504-516

Table 2
Comparison results of different SRGMs for the first dataset

Model a r τ MSE R2
 SSE

Proposed model Eq. (10) 578.8 0.01903 ------- 128.36 0.9889 2183

Proposed model Eq (11) 703.9
0.01642

4 114.70 0.9906 1835
0.01397

Proposed model Eq (11) 703.9
0.01578

5 114.70 0.9906 1835
0.01397

Proposed model Eq (11) 703.6
0.01539

6 113.96 0.992 1833
0.01397

Proposed model Eq (11) 703.6
0.01513

7 113.96 0.992 1833
0.01397

Proposed model Eq (11) 703.6
0.01495

8 113.96 0.992 1833
0.01397

Yamada Delayed S shaped 374.1 0.1977 ------ 188.51 0.9837 3205

TABLE 4
Comparison results of different SRGMs for the second dataset

Model a r τ MSE R2
 SSE

Proposed model Eq. (10) 135.6 0.0001423 ------- 18.413 0.9796 331.4

Proposed model Eq (11) 183.8
0.000111

4 6.80 0.9929 115.7
0.000078

Proposed model Eq (11) 183.8
0.0001028

5 6.80 0.9929 115.7
0.000078

Proposed model Eq (11) 183.8
0.0000977

6 6.80 0.9929 115.7
0.000078

Proposed model Eq (11) 183.8
0.0000944

7 6.77 0.9929 114.7
0.000078

Proposed model Eq (11) 183.8
0.0000921

8 6.77 0.9929 114.7
0.01397

Yamada Delayed S shaped 99.4 0.0005434 ------ 107.12 0.9857 232.3

 ISSN : 0975-3397 509

Shaik Mohammad Rafi et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 504-516

(a)

(b)

(c)

(d)

Fig 2.(a) Observed/estimated TE vs time for dataset 2 (b) mean value function for Eq 3 (c) Mean value function for Eq 10 and Eq 11 (d) RE curves for
proposed model at τ=7

ISSN : 0975-3397 510

Shaik Mohammad Rafi et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 504-516

6. Optimal release policy

One of the major problems in software industry is at
what time and when the software is released in to
market. This problem is defined in many papers and a
solution is defined. If more testing is conducted on
the software ultimately it increases the cost related to
it, at the same if testing period is less than the
software cannot be reliable enough. For that we have
to know at what optimal time the software has to be
released into market. Many people like [Musa,
Yamada] had studied the above problem and they had
given their respective solutions. In certain context
people explicitly stated the scheduled delivery of the
software analyzed its penalty cost [31]. Recently
some authors had proposed warranty cost, cost based
model. The software testing process is either can be
done manually are automated testing tools are used
between the process. It is observed that the software
development company has to keep track of the
scheduled time of the software, if the testing takes
more time, the current time increases greater than
scheduled time. In order to cop-up with scheduled
time testers will adopt the new automated testing
tools which are more efficient than manual testing.
By incorporating the new testing

tools into testing can increase the test efficiency. Use
of testing tools speed up the process but increases the
software cost.
6.1 Optimal release policy based on cost

This section deals with the release policy based on
the cost-reliability criterion. Using the total software
cost evaluated by cost criterion, the cost of testing-
effort expenditures during software
testing/development phase and the cost of fixing
errors before and after release are: [17, 18, 19, 20,
21].
Where C1 the cost of correcting an error during
testing, C2 is the cost of correcting an error during the
operation, C2 > C1, C3 is the cost of testing per unit
testing effort expenditure and TLC is the software life-
cycle length.

T

LC
dttwTmmTmTC CTCC

0
321

)()]()([)()(1

 (22)
Now testing time reaches the time τ they adopt the
new automated tool. New cost of adopting the new
automated testing tool is added along with the
previous costs [9].
Now new cost equation

T

LC
dtTwTmPm

TmPTTC

CTC

CC

0
32

10

)()]()1()([

)()1()()(2

(23)

Now above equation C2(T) is total cost of the
software by incorporating the new automated testing
tools. Now subtract Eq.(22) and E.q(23) (C1(T)-
C2(T)) ≥ 0 then

)(][)(
012

TTmP CCC (24)

From the equation (24) we can decide that adopting
new automated tools can be beneficiary or not. Now
differentiate Eq (23) with respect to T then

(25)
By making the above equation to zero now we will
get a fine unique solution . From the mean value
function E.q (3)

(26)
We can consider several possibilities of

1) If is constant : in this case
= , T ≥ τ; for T<τ where τ
is the starting time of adopting new
technique and method and

then we have the following cases
a) From Eq.(26) by assigning

0
)(2

dt

TdC
 then

CeCC TarP
rW

3

)(

12
)1()(

 And

CeCC TarP
rW

3

)(

12
)1()(

 (27)

 And there exist a unique solution

Op

timal release time
 (b)

CeCC TarPif
rW

3

)(

12
)1()(

 There

exist CeCC TarP
rW

3

)(

12
)1()(

 for

τ<T< Therefore optimal release time T
*

since 0
)(2

dT

TdC
 for τ < T < .

2) In this the cost of adopting new testing tool is
linearly related to the effort

ISSN : 0975-3397 511

Shaik Mohammad Rafi et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 504-516

T

dttwT CCC

)()(
0010

 , T τ ; 0)(
0

TC , T <

τ , where is the cost of adopting new technique.

(28)

Since w (t)>0 for 0≤ T ≤ ∞ , if

(29)
Because the left side is monotonically decreasing
function of T if

and

 ,
there exist unique solution for Eq.(29)

(30)

3) In this the cost of incorporating new testing tool is
exponentially related to the effort

 , T τ;

 , T < τ, because w(t)>0 for 0 T <∞ ,

 if

(31)

6.2 software release time based on reliability
Criterion
Generally software is release into the market when its
reliability reaches its acceptance level. So we need to
determine the time at which our software has to be
released to market. Reliability of the software is
given by [6, 9, 20]

 (32)
Solve the above equation and obtain the unique
solution satisfying R()= .
6.3 Software release time based on cost-reliability
criterion with efficiency
This section deals with minimizing the total software
cost with respect to the desired reliability, then
calculate the software release time. In this minimize
the C(T) with respect to the R(T) where 0 < < 1.

=Optimal release time where is
satisfying the equations (27) ,(30) ,(31) and

satisfying Eq.(32).
Theorem 1:
Assume C0(T)=C0 (constant) , C0 >0 , C1 >0 ,C2 > 0,
C3>0, and C2 >C1 we have

i) And

T* =max(T0 ,T1) for R(τ)<R0 <1 or T*

=T0 for 0<R0 ≤ R(τ).

ii) If ,
T* =T1 for R (τ)<R0 <1 or T* =τ for 0<R0

≤R(τ).

iii) If ,
T* ≥T1 for R(τ)<R0 <1 or T* ≥τ for 0<R0

≤R(τ).
Theorem 2:

Assume C0 (T)=C01 +C0 , C01 , C0 >0, C1

>0, C2 > 0, C3>0, and C2 >C1 we have

i) If

 and

 and T* =max(T0 ,T1) for R(τ)<R0 <1 or
T* =T0 for 0<R0 ≤R(τ).

ii) If

 then T* =T1 for R(τ)<R0 <1 or T* =τ for
0<R0 ≤R(τ).

iii) If

, T* ≥T1 for R(τ)<R0 <1 or T* ≥τ for
0<R0 ≤R(τ).

6.4 Numerical examples.
DS1:For estimated parameters for proposed model for
dataset 1we have α=72, λ=0.04847, k=1.387,
a=578.8, r=0.01903, , ,

 , , , τ=19 and
 weeks. Table 5 shows the relationship

between the cost , Optimal release time and P. as the
value of P is increasing the Optimal release time and
decreases the total cost of the software.

ISSN : 0975-3397 512

Shaik Mohammad Rafi et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 504-516

Table 5 : Relation between , and R which is based on P.

P
Optimal Time

Optimal Cost
C2()

R() P
Optimal Time Optimal Cost

C2(R()

0.01 20.7 14358 0.612 0.2 27.56 10891 0.802
0.02 21.02 14184 0.622 0.21 27.99 10700 0.812
0.03 21.34 14008 0.632 0.22 28.44 10509 0.822
0.04 21.66 13832 0.642 0.23 28.89 10317 0.832
0.05 21.99 13655 0.652 0.24 29.36 10124 0.842
0.06 22.32 13477 0.662 0.25 29.84 9931 0.852
0.07 22.65 13297 0.672 0.26 30.33 9737 0.862
0.08 22.99 13117 0.682 0.27 30.84 9542 0.872
0.09 23.34 12936 0.692 0.28 31.36 9346 0.882
0.10 23.69 12755 0.70 0.29 31.9 9150 0.900
0.11 24.05 12572 0.712 0.3 32.46 8954 0.912
0.12 24.41 12388 0.722 0.31 33.04 8756 0.922
0.13 24.78 12204 0.732 0.32 33.64 8559 0.932
0.14 25.15 12019 0.742 0.33 34.26 8161 0.942
0.15 25.53 11833 0.752 0.34 34.91 7961 0.952
0.16 25.92 11646 0.762 0.35 35.59 7761 0.962
0.17 26.32 11458 0.772 0.36 36.29 7560 0.972
0.18 26.72 11270 0.782 0.37 37.04 7359 0.990
0.19 27.14 11081 0.792

Table 6 : Relation between , and R which is based on P.

P
Optimal Time

Optimal Cost
C2()

R() P
Optimal Time Optimal Cost

C2(R()

0.01 19.17 14399 0.5919 0.2 25.16 10550 0.7819
0.02 19.45 14225 0.6019 0.21 25.52 10358 0.7919
0.03 19.74 14050 0.6119 0.22 25.89 10166 0.8019
0.04 20.03 13873 0.6219 0.23 26.27 9972 0.8119
0.05 20.32 13518 0.6319 0.24 26.65 9778 0.8219
0.06 20.62 13339 0.6419 0.25 27.05 9583 0.8319
0.07 20.92 13159 0.6519 0.26 27.45 9388 0.8419
0.08 21.22 12978 0.6619 0.27 27.85 9192 0.8519
0.09 21.52 12796 0.6719 0.28 28.27 8995 0.8619
0.10 21.83 12613 0.6819 0.29 28.70 8798 0.8719
0.11 22.14 12430 0.6919 0.3 29.14 8600 0.8819
0.12 22.46 12245 0.7019 0.31 29.59 8402 0.8919
0.13 22.78 12060 0.7119 0.32 30.05 8202 0.9019
0.14 23.11 11874 0.7219 0.33 30.52 8003 0.9119
0.15 23.44 11500 0.7319 0.34 31.01 7803 0.9219
0.16 23.77 11311 0.7419 0.35 31.51 7602 0.9319
0.17 24.11 11122 0.7519 0.36 32.03 7400 0.9419
0.18 24.45 10932 0.7619 0.37 32.57 7198 0.9519
0.19 24.80 10742 0.7719

ISSN : 0975-3397 513

Shaik Mohammad Rafi et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 504-516

From above table 5 we observed that optimal cost
 =7961 at =34.91 at the same time

C1()=8414 and reliability has been improved
from 0.81 to 0.95 at P=0.37. Now the condition of
C1(T)-C2(T)>0 is satisfied. From the table 6 in
which cost of using the automated tools are
exponentially related to the effort involved.

DS2: From the dataset two estimated values of
SRGM with Logistic-exponential TEF
α=12600(CPU hours), λ=0.06352 /week, k=1.391,
a=135.6 and r=0.0001432 C1=1, C2 =300, C3 =2
and TLC =100, , τ=9 and
weeks. Table 7 shows the relationship between the
cost, Optimal release time and P. as the value of P
is increasing the Optimal release time and
decreases the total cost of the software.

Table 7: Relation between at , and R which is based on P.

P
Optimal Time

Optimal Cost
C2()

R() P
Optimal Time Optimal Cost

C2(R()

0.01 5.13 26354 0.3166 0.31 7.89 17846 0.6166
0.02 5.233 26087 0.3266 0.32 7.97 17547 0.6266
0.03 5.34 25818 0.3366 0.33 8.05 17248 0.6366
0.04 5.44 25549 0.3466 0.35 8.13 16948 0.6466
0.05 5.54 25278 0.3566 0.35 8.21 16647 0.6566
0.06 5.64 25006 0.3666 0.36 8.30 16345 0.6666
0.07 5.74 24732 0.3766 0.37 8.38 16042 0.6766
0.08 5.83 24457 0.3866 0.38 8.46 15739 0.6866
0.09 5.93 24182 0.3966 0.39 8.54 15435 0.6966
0.10 6.03 23904 0.4066 0.40 8.62 15131 0.7066
0.11 6.12 23626 0.4166 0.41 8.70 14825 0.7166
0.12 6.22 23347 0.4266 0.42 8.78 14519 0.7266
0.13 6.31 23066 0.4366 0.43 8.86 14212 0.7366
0.14 6.40 22785 0.4466 0.44 8.93 13905 0.7466
0.15 6.50 22502 0.4566 0.45 9.01 13597 0.7566
0.16 6.59 22218 0.4666 0.46 9.09 13288 0.7666
0.17 6.68 21933 0.4766 0.47 9.17 12978 0.7766
0.18 6.77 21648 0.4866 0.48 9.25 12668 0.7866
0.19 6.86 21361 0.4966 0.49 9.32 12357 0.7966
0.20 6.95 21073 0.5066 0.50 9.40 12046 0.8066
0.21 7.03 20784 0.5166 0.51 9.48 11734 0.8166
0.22 7.12 20494 0.5266 0.52 9.56 11421 0.8266
0.23 7.21 20204 0.5366 0.53 9.63 11108 0.8366
0.24 7.29 19912 0.5466 0.54 9.71 10794 0.8466
0.25 7.38 19619 0.5566 0.55 9.79 10479 0.8566
0.26 7.47 19326 0.5666 0.56 9.86 10164 0.8666
0.27 7.55 19302 0.5766 0.57 9.94 9849 0.8766
0.28 7.64 18736 0.5866 0.58 10.01 9533 0.8866
0.29 7.72 18440 0.5966 0.59 10.093 9216 0.8966
0.30 7.80 18143 0.6066 0.60 10.169 8898 0.9066

ISSN : 0975-3397 514

Shaik Mohammad Rafi et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 504-516

7. Conclusions

In this paper, we proposed a SRGM incorporating the
Logistic-exponential testing effort function with
change-point. We observed that most of software
failure is time dependent. By incorporating testing-
effort and change-point into SRGM we can make
realistic assumptions about the software failure. In
order to speed up the testing process we used the
automated testing tools. The experimental results
indicate that our proposed model fits fairly well.
Appendix –A

(33)

(3

4)

 (35)

(36)

If I.F=
(37)

(38)

Solving the above equation

, 0< t <
(39)

(40)

(41)

(42)

Integrating right side of the equation

(43)

(44)

 > τ
(45)

References

[1] Chang, Y.P., 2001. Estimation of parameters for non-

homogeneous Poisson process software reliability with Chang-
point model. Communications in Statistics: Simulation and
Computation 30, 623–635.

[2] Chatman, V.V., 1995. Change-points: a proposal for software
productivity measurement. Journal of Systems and Software
31, 71–91.

[3] Grottke, M., 2001. Software reliability model study. Research
Report, A.2, Project PETS, University of Erlangen-
Nuremberg, Germany.

[4] Hou, R.H., Kuo, S.Y., Chang, Y.P., 1994. Applying various
learning curves to the hyper-geometric distribution software
reliability growth model. In: Proceedings of the 5th
International Symposium on Software Reliability Engineering,
Monterey, CA, pp. 196– 205.

[5] Hou, R.H., Kuo, S.Y., Chang, Y.P., 1996. Optimal release
policy for hyper-geometric distribution software reliability
growth model.IEEE Transactions on Reliability 45 (4), 646–
651.

[6] Huang, C.Y., in press, Performance analysis of software
reliability growth models with testing-effort and change-point.
Journal of Systems and Software.

[7] Huang, C.Y., Kuo, S.Y., 2002. Analysis and assessment of
incorporating logistic testing effort function into software
reliability modeling. IEEE Transactions on Reliability 51 (3),
261–270.

[8] Huang, C.Y., Lo, J.H., Kuo, S.Y., 1998. A pragmatic study of
parametric decomposition models for estimating software
reliability growth. In: Proceedings of the 9th IEEE
International Symposium on Software Reliability Engineering,
Paderborn, Germany, pp. 111–123.

[9] Huang, C.Y., Lo, J.H., Kuo, S.Y., Lyu, M.R., 1999a. Software
reliability modeling and cost estimation incorporating testing-
effort and efficiency. In: Proceedings of the 10th IEEE
International Symposium on Software Reliability Engineering,
Boca Raton, FL, pp. 62–72.

[10] Huang, C.Y., Kuo, S.Y., Lyu, M.R., 1999b. Optimal software
release policy based on cost, reliability and testing efficiency.
In: Proceedings of the 23rd IEEE Annual International
Computer Software and Applications Conference, Phoenix,
AZ, pp. 468–473.

ISSN : 0975-3397 515

Shaik Mohammad Rafi et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 504-516

[11] Kapur, P.K., Bardhan, A.K., 2002. Testing effort control
through software reliability growth modeling. International
Journal of Modeling and Simulation 22 (2), 90–96.

[12] Kapur, P.K., Younes, S., 1995. Software reliability growth
model with error dependency. Microelectronics and
Reliability 35 (2), 273–278.

[13] Kapur, P.K., Garg, R.B., Kumar, S., 1999. Contributions to
Hardware and Software Reliability. World Scientific,
Singapore.

[14] Framework for modeling software reliability, using various
testing-effort and fault-detection rates. IEEE Transactions on
Reliability 50 (3), 310–320.

[15] Lyu, M.R., 1996. Handbook of Software Reliability
Engineering. McGraw Hill.

[16] Malaiya, Y.K., Mayrhauser, A., Srimani, P., 1993. An
examination of fault exposure ratio. IEEE Transactions on
Software Engineering
19 (11), 1087–1094.

[17] Musa, J.D., 1999. Software Reliability Engineering: More
Reliable Software, Faster Development and Testing.
McGraw-Hill.

[18] Musa, J.D., Iannino, A., Okumoto, K., 1987. Software
Reliability, Measurement, Prediction and Application.
McGraw Hill.

[19] Ohba, M., 1984. Software reliability analysis models. IBM
Journal of Research and Development 28 (4), 428–443.

[20] Okumoto, K., Goel, A.L., 1980. Optimum release time for
software systems based on reliability and cost criteria.
Journal of Systems and Software 1, 315–318.

[21] Pham, H., 2000. Software Reliability. Springer-Verlag.
[22] Rafi M.D, Dr.K.Nageswara Rao, Shaheda Akthar “Software

Reliability Growth Model with Logistic-Exponential Test-
Effort Function and Analysis of Software Release Policy.”
(IJCSE) International Journal on Computer Science and
Engineering Vol. 02, No. 02, 2010, 368-380.

[23] Shyur, H.J., 2003. A stochastic software reliability model with
imperfect-debugging and change-point. Journal of Systems
and Software 66, 135–141.

[24] Singpurwalla, N.D., Wilson, S.P., 1999. Software
Engineering: Reliability and Risk. Springer-Verlag,

[25] Wood, Predicting software reliability, IEEE computers 11
(1996) 69–77.

[26] Xie, M., 1991. Software Reliability Modeling. World
Scientific Publishing Company.

[27] Xie, M., 2000. Software reliability models—past, present and
future.
[28] Yamada, S., 2000. Software reliability models and their

applications: a survey. In: Proceedings of the International
Seminar on SoftwareReliability of Man-Machine Systems,
Kyoto University, Kyoto, Japan, pp. 56–80.

[29] Yamada, S., Ohtera, H., 1990. Software reliability growth
models for testing effort control. European Journal of
Operational Research 46 (3), 343–349.

[30] Yamada, S., Osaki, S., 1985. Software reliability growth
modeling: models and applications. IEEE Transactions on
Software Engineering 11 (12), 1431–1437.

[31] Yamada, S., Narihisa, H., Osaki, S., 1984. Optimum release
policies for a software system with a scheduled software
delivery time. International Journal of Systems Science 15
(8), 905–914.

[32] Yamada, S., Ohtera, H., Narihisa, H., 1986. Software
reliability growth models with testing effort. IEEE
Transactions on Reliability 35 (1), 19–23.

[33] Yamada, S., Hishitani, J., Osaki, S., 1991. Test-effort
dependent software reliability measurement. International
Journal of Systems Science 22 (1), 73–83.

[34] Yamada, S., Hishitani, J., Osaki, S., 1993. Software reliability
growth model with Weibull testing effort: a model and
application. IEEE Transactions on Reliability 42, 100–105.

[35] Zhao, M., 1993. Change-point problems in software and
hardware reliability. Communications in Statistics—Theory
and Methods 22
(3), 757–768.

[36] Zheng, S., 2002. Dynamic release policies for software
systems with a reliability constraint. IIE Transactions 34 (3),
253–262.

[37] Zou, F.Z., 2003. A change-point perspective on the software
failure process. Software Testing, Verification and Reliability
13, 85–93.

[38] Y. Lan, and L. Leemis, (Aug. 2007) “The Logistic-
Exponential Survival Distribution,” Naval Research Logistics
(NRL) volume 55, number 3, pp. 252-264.

Sk.MD.Rafi received B.Tech
(comp) from Jawaharlal Nehru
Technological University,
M.Tech (comp) from Acharya
Nagarjuna University. Pursuing
PhD from Jawaharlal Nehru
Technological University.

Presently working as Associate. Professor in Sri
Mittapalli Institute of Technology for women,
affiliated to J.N.T.U, Kakinada. My area of
interest is Software Reliability, Software
Architecture Recovery, Network Security, and
Software Engineering.

Dr.K.Nageswara Rao received B.Tech (electronics)
from Karnataka University, M.Tech (comp) from
Andhra University and PhD from Andhra University.
Presently working as Professor& H.O.D in
P.V.P.S.I.T, Vijayawada affiliated to J.N.T.U,
Kakinada. My area of interest is Robotics, Software
Engineering, Algorithms, and Software Reliability.

ISSN : 0975-3397 516

