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 Abstract 
The paper deals with the concept of data mining 
whereby the data resources can be fetched and 
accessed accordingly with reduced time complexity. 
Resource sharing is an important aspect in the field of 
information science. The retrieval techniques are 
pointed out based on the ideas of binary search tree, 
Gantt chart, text summarization. A theorem has been 
cited regarding the summation of total length of 
codes of each leaf search term. Summarization is a 
hard problem of Natural Language Processing 
because, to do it properly, one has to really 
understand the point of a text. This requires semantic 
analysis, discourse processing, and inferential 
interpretation (grouping of the content using world 
knowledge). The last step, especially, is complex, 
because systems without a great deal of world 
knowledge simply cannot do it. Therefore, attempts 
so far of performing true abstraction--creating 
abstracts as summaries--have not been very 
successful. Fortunately, however, an approximation 
called extraction is more feasible today. To create an 
extract, a system need simply to identify the most 
important/topical/central topic(s) of the text, and 
return them to the reader. Although the summary is 
not necessarily coherent, the reader can form an 
opinion of the content of the original. Most 
automated summarization systems today produce 
extracts only.  Another  purpose of this paper  is to 
addresses the problem of information discovery in 
large collections of text. For users, one of the key 
problems in working with such collections is 
determining where to focus their attention. Text 
documents often contain valuable structured data that 
is hidden in regular English sentences. This data is 
best exploited if available as a relational table that we 
could use for answering precise queries or for 
running data mining tasks. We explore a technique 
for extracting such tables from document collections 
that requires only a handful of training examples 
from users. In this paper we have tried to explain how 
to extract the different kind of relationship between 

the words with the help of a frame net analysis 
diagram of an annotation layer software. 
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I. INTRODUCTION 

Accessing information that is resources from 
heterogeneous data should be done in an optimum 
way[1,2]. The search tree can be applied for effective 
search. The average waiting time for successful 
transaction of data can easily be analyzed with the 
help of Gantt chart whereby we denote search 
transaction for an user as a process. Sometimes in 
case of web mining of resources, the context of text 
summarization is done where the search is based on 
some selected portion of text. Herein lies the 
importance of text summarization which is based on 
centroid-based algorithm. 

                          II. MINING OF RESOURCES 

                             A search can be formed based on the initial search 
term and its gradual sub term while the  process of 
matching[3,4]. Thereby the level is increased, in 
initial search term is the root and the final term fully 
matching with the context of the users’ desire is a 
leaf node. For further use if the library administrator 
save the time then he can save each tree in a database 
and denote each search term by a binary code.  

    
                                                                        
  
 
 
 
 
 
 
 
 
 
 
 

       Computer Science                                                      
                                     
          
 Hardware oriented    Application oriented                              
                                 
      
   Computer        Microprocessor             DBMS      
   Architecture                    Object-oriented                               
                          
                         8085   8086               RDBMS   PL/SQL    
        
  Iterative   Parallel        C++     JAVA           
                      

Fig1 : Binary search tree 
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In the above figure, computer science is the root that 
is initial search term. If a user wants to access library 
resources PL/SQL, then the database hierarchy, 
PL/SQL is the node in level 3 and it is a leaf node. 
For future purpose if the library administrator saves 
the model in a database and identify each search term 
as a binary code, then by giving the code number he 
can analyze the position of data in the model and 
acknowledge quickly as per users’ request. The 
concept of coding is as follows:  
                Value = 0 if the search term is a left child 
of parent node 
                            = 1 otherwise 
                                                          N 
Theorem: In the process of coding, ∑  1/2L

i =1,     
                                                           i=1 
where Li is the length of code of ith leaf  
node in the tree, N is total number of leaf nodes and 
1<i<N. 
 
Proof:  
 
In fig. 1 codes of leaf nodes are as follows: 
Hieratic Architecture   :000 
Parallel Architecture :   001 
8085 model :                 010 
8086 model :                 011 
C++ :                            100 
JAVA :                         101     
RDBMS:                      110 
PL/SQL “                     111 
So, N=8. Each leaf node has identical code length i.e. 
3. 
Therefore, 1/2L

i =1/2=1/8, 1/2= 1/8, …1/2=1/8 
 

III. MINING OF  THE LIBRARY RESOURCES 
BASED ON GANTT CHART 

 
Let R be a resource and the users are A, B, and C. 
Now, for transaction of R , each of A, B and C send  
request to the library administrator. According based 
on the priority, the search schedule is performed. 
Let, P1 = Process of search by user A 
       P2 = Process of search by user B 
       P3 = Process of search by user C 
 
Let, tP1 = time for A to search successfully = 4 
seconds 
       tP2 = time for B to search successfully = 6 
seconds 
       tP3 = time for C to search successfully = 3 
seconds 
If priority of P1>P3>P2, then Gantt chart is s follows: 
 
    P1       P3                      P2 
0              4                  7         13                         

Waiting time of P1 = 0, waiting time of P2 = 7 
seconds and waiting time of P3 = 4 seconds. 
Sometimes  the concept of  Round  Robin Scheduling 
is applied whereby a time slice is given and after that 
the process is switched to another user irrespective of  
completion time of search. Let, time slice = 2 
seconds, then the Gantt chart is as follows: 
 

     
P1 

      
P3 

 
P2 

       
P1 

 
P3 

  
P2 

  
P2 

   0            2            4           6       8       9         11       13         
 
Hence, after 9th seconds , two successive search   
engines are performed by user B as the other users  A 
and C have already fetched their information   
successfully. 
 
 

IV.   MINING  OF   THE  DATA RESOURCES 
BASED ON CENTROID BASED TEXT 

SUMMARIZATION 
 

The mining technique is based on Centroid-based 
algorithm[5] which is as follows : 
Input:  A collection of related documents. 
Output: A summary. 
 
Steps to summarize : 

 
A..  Finding Cluster Centroid 
A cluster consisting of total number of sentences 
from all input documents is formed. The ‘count’ 
value for each word indicating the average number of 
occurrences of a word across the entire cluster is 
found out. Then the centroid value for each term is 
calculated as: 

  Count * idf(w)=count(w) * (log(DN ⁄ 
df(w))) 

where df(w)=document frequency for each word. 
     DN=number of documents in the corpus. 

B.  Finding Sentence Position Score 
 The score of ith  sentence (Si) is computed 
 Pscore(Si)= max(1 ⁄ i , 1 ⁄ (n-i-1)) 

where i=sentence number 
           n=number of sentences 
 

C.  Finding Sentence Length Score 
The length here means the number of characters in 
the sentence. A sentence shorter than a certain length 
gets penalty. The length score of a sentence can be 
calculated as 
Lscore(Si)=  0    if Li≤ Lmin 

  =  (Li-Lmin) ⁄ Li      otherwise 
 where Li=length of each sentence 
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           Lmin=20 , i.e. sentence with 20 or fewer 
characters receives penalty. 
 
D.  Finding Headline Score 
The idea is that greater the number of words in a 
sentence that match those in the headline , the more 
important the sentence is likely to be. The headline 
score can be calculated as 

        Hscore(Si)= t / N 
where  t=number of words in the sentence that match 
with the words in   the headline 
              N= number of words in the sentence 

 
E.  Compute Sentence Score 

 
   SCORE(S)=∑ (wc.Ci  + wp.Pi  + wf.Fi  
+ wl.Li) 

where  i ranges from 1 to n as (1≤i≤n)  

         Also, Ci=Centroid value of the sentence 
Pi=sentence position score 
Fi=headline score 
Li=sentence length score 
Wc= wI = wf = wl =1 
 n = number of sentences in the cluster 

 
F. Extract Sentences 
 
Sentences are sorted according to descending order. 
Select d out of n sentences as an    intermediate 
summary of the input documents. The sentences are 
extracted in an order.  

                                        d= r * n 

       where  r =  Compression Rate 
       and     n =  total number of sentences taken from 
input documents. 

                 
           

V. FRAME DEVELOPMENT AND FRAME 
NET ANNOTATION 

 
A lexical unit (LU) is a pairing of word with a 
meaning. Typically each sense of polysemous word 
belongs to a different semantic frame, a script like 
conceptual structure that describes a particular type 
of situation, object, or event along with its 
participants and props. For example the Apply_heat 
frame describes a common situation involving a 
COOK, some FOOD and a 
HEATING_INSTRUMENT, and is evoked by words 
such as bake, blanch, boil, broil, brown, simmer, 
stream etc. We call these roles frame elements (FEs) 
and the frame evoking words are LUs in the 
Apply_heat frame. Some frames are more abstract, 
such as change_position_on_a_scale, which is 

evoked by LUs such as decline, decrease, gain, 
plummet, rise, etc. and has FEs such as ITEM, 
ATTRIBUTE, INITIAL_VALUE and 
FINAL_VALUE. 
In the simplest case, the frame-evoking LU is a verb 
and the FEs are its syntactic dependents: 
(i) (Cook) Mathew fried (food) the fish 
(Heating_Instrument) in a heavy iron skillet. 
(ii) (Item) ITC stock rose (Difference) $4 
(Final_value) to $40.  
However, event noun such as reduction in the 
cause_change_of_scalar_position frame also evoke 
frames: 
….the reduction (item) of debt levels (value_2) to 
$500 million (value_1) from $2.5 billion 
or objectives such as asleep in the Sleep frame: 
(Sleeper) They were asleep (Duration) for hours. 
The lexical entries for a predicting word, derived 
from such annotations, identifies the frame which 
underlies a given meaning and specifies the ways in 
which FEs are realized in structures headed by the 
word. Framenet annotations derive from two sources. 
In pursuing the goal of recording the range of 
semantic and syntactic combinatory possibilities of 
each word in which of it senses, we normally 
concentrate on a particular target LU and extract 
sentences from the different texts containing that LU. 
In another kind of work that represents a much 
smaller percentage of our overall annotations, we 
annotate running text. Full text annotation differs 
from sentence annotation mostly in that the sentences 
are chosen for us, so to speak, by the author of the 
text. The annotation of running text is also 
technically possible. Frame net lexicographers can 
one by one declare each word in a sentence of target, 
select a frame relative to which the new target is to be 
annotated, get a new set of annotation layers (frame 
element, grammatical function, phrase type) and 
appropriate frame element tags, and then annotate the 
relevant constituents. The core of the process has 
always been looking at attestations of a group of 
words that we believe to have some semantic overlap, 
and dividing these attestations into groups. Afterward 
we combine the small groups into large enough 
groupings to make reasonable frames at which point 
we may (equivalently) call the words targets, lexical 
units, or frame-evoking elements. In the past the 
criteria of such grouping have been informal and 
intuitive, but recently, the criteria have become more 
explicit. The basic semantic type for a frame element 
ought to be broadly constant across uses. If that is not 
so it suggests the need to posit distinct frame 
elements. In some cases, however, we still want to 
recognize a relationship between frame elements 
whose syntactic form suggests that they refer to 
ontologically different kinds of entities. For example, 
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in I want [to win] compared with I want [an orange], 
both complements of the verb “want” have something 
to do with the desiring frame, but each of the 
complements directly refers to something rather 
different. 
As a technical matter, the way in which FrameNet 
analyzes instances of a target predicate consists of 
marking up parallel aligned layers of annotation with 
appropriate label sets. The number of layers and the 
kind of information that can be recorded on them is 
technically unlimited. But in FrameNet’s current 
practice the four core annotation layers are the 
Target, frame element (FE), grammatical function 
(GF), and phrase type (PT) layers. On the first, 
the(parts of the) target predicate are marked while on 
the latter three, labels are applied to the constituents 
expressing the frame elements of the target. The next-
most important set of layers consists of the layers 
called other; a layer called either Noun, Verb, Adj, or 
Prep depending on the part of speech of the target 
(this layer is also often called the part-of-speech-
specific layer); and the Sent(sentence ) layer. A final 
group of layers includes, among others, layers 
holding labels related to part of speech (POS) and 
Named Entity Recognition (NER). Generally 
FrameNet is the collection of frames consisting 
different types of frame elements like  Noun phrase 
(NP), Verb phrase (VP), Adverb phrase (ADP), 
Adjective phrase (AJP),  Preposition phrase (PP) and 
FrameNet analyzes the instances of  different layer of 
annotation like  Frame Elements (FE), Grammatical 
Functions (GF) and  Phrase Types (PT). 
 

VI.  EXPERIMENT METHODOLOGY 
 
We used the parser of Collins (1997)[6], a statistical 
parser trained on examples from the Penn Treebank, 
to generate parses of the same format for the 
sentences in our data. Phrase types were derived 
automatically from parse trees generated by the 
parser. Given the automatically generated parse tree, 
the constituent spanning 
the same set of words as each annotated frame 
element was found, and the constituent’s 
nonterminal label was taken as the phrase type. In 
cases where more than one constituent matches due 
to a unary production in the parse tree, the higher 
constituent was chosen. 
The matching was performed by calculating the 
starting and ending word positions for each 
constituent in the parse tree, as well as for each 
annotated frame element, and matching each frame 
element with the parse constituent with the same 
beginning and ending points. Punctuation was 
ignored in this computation. Due to parsing errors, or, 
less frequently, mismatches between the parse tree 

formalism and the FrameNet annotation standards, 
there was sometimes no parse constituent matching 
an annotated frame element. This occurred for 13% 
of the frame elements in the training set. The one 
case of systematic mismatch between the parse tree 
formalism and the FrameNet annotation standards is 
the FrameNet convention of including both a relative 
pronoun and 
its antecedent in frame elements. Mismatch caused 
by the treatment of relative pronouns accounts for 1% 
of the frame elements in the training set. During 
testing, the largest constituent beginning at the frame 
element’s left boundary and lying entirely within the 
element was used to calculate the features. We did 
not use this technique on the training set, as we 
expected that it would add noise to the data, but 
instead discarded examples with no matching parse 
constituent. Our technique for finding a near match 
handles common parse errors such as a prepositional 
phrase being incorrectly attached to a noun phrase at 
the right-hand edge, and it guarantees that some 
syntactic category will be returned: the part-of-
speech tag of the frame element’s first word in the 
limiting case. 
Algorithm used for extracting new tupples using a set 
of patterns 
GenerateTuples(Patterns) 
For each text segment  
(1) {<o,l>,< ls,t1,ms,t,rs >}=  
  CreateOccurrence(text_segment); 
 TC = <o,l>; 
 SimBest = 0; 
 For each p in Patterns 
(2) sim = Match(<ls,t1,ms,t2,rs >,p); 
 if (sim>=Tsim) 
(3) UpdatePatternSelectivity(p,TC); 
 if(sim>=SimBest) 
  SimBest=sim; 
  PBest=p; 
 if(SimBest>=Tsim) 
 CandidateTuples[TC].Patterns[PBest]= SimBest; 
return CandidateTuples; 
 

VII. RESULTS  
 
Results on identifying frame elements (FEs), 
including partial matches. A total of 7,681 
constituents were identified as FEs, and 8167 FEs 
were present in hand annotations, of which matching 
parse constituents were present for 7,053(86%). 
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Type of Overlap 
 

Identified 
Constituents 
 

Number 
 

Exactly matching 
boundaries 

63% 5326 

Identified constituent 
entirely within true 
frame element 
 

8 653 

True frame element 
entirely within 
identified constituent 
 

7 593 

Both partially within 
the other 
 

0 23 

No overlap with any 
true frame element 
 

13 997 

 
                Table 1:  Matching of overlaps 

 
When the automatically identified constituents were 
fed through the role labeling system described above, 
79.6% of the constituents that had been correctly 
identified in the first stage were assigned the correct 
role in the second, roughly equivalent to the 
performance when assigning roles to constituents 
identified by hand.  
 

 
Fig 2: Precision/recall is plotted for various methods of identifying 

frame elements. 
 

VIII. CONCLUSION 
 

    In the paper we have observed that efficient ways of 
optimum data mining reduces time complexity. In 

case of text summarization. Researches are going on 
this topic. There are many other techniques related to 
text summarization based on position of sentences or 
length of sentences of the documents. It will be more 
reliable if the sentences are parsed in phrase level 
using Link Grammar parser. For each sentence with 
the content of the sentence there should be associated 
the information of the words of the sentence. The 
information of the word means ‘subject’, ‘time’, 
’space/ location’, ‘action i.e. verb’ etc. Using these 
information the sentences are clustered on the basis 
of same ‘subject’ or ‘action’ etc. These clusters are 
ranked on the basis of size. The clusters are extracted 
from top order until required summary length is 
achieved. Experiments are also going on other 
several features of sentences.  The results of this 
experiment are very encouraging. They demonstrate 
that the technique employed is capable of identifying 
numerous associations of interest in large text 
collections in a completely automated fashion. The 
approach could be used to provide a rapid overview 
of large volumes of text. In a dynamic collection 
environment it could be used to automatically alert 
users when text has been acquired that contains 
information of interest.  
The approach described here has a number of 
important characteristics that make it particularly 
well-suited for intelligence analysis applications:  
(1) It is independent of topic, genre, or language.  
(2) Identified relationships represent the aggregate 
implications of high-order associations. For this 
reason, the approach is capable of identifying quite 
subtle relationships.  
(3)The user has complete flexibility in specifying 
items of interest. Any point in the LSI representation 
space can be used as a basis for defining a row or 
column in the comparison matrices. In particular, a 
textual description of an entity or concept of interest 
may be chosen as a definition of an item of interest. 
That description does not have to have been derived 
from the documents indexed. There need only be 
some minimal degree of overlap in terminology 
between the description and the aggregate 
terminology employed in the documents used to 
generate the representation space.  
(4)The technique has significant utility in identifying 
possible use of aliases.  
(5)There is no need for predefined auxiliary 
structures such as taxonomies or ontologies. Nor is 
there need for any linguistic analysis, other than that 
contained in the entity extraction software  
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