
P. Chakrabarti et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 487-492

Text Summarization and Discovery of Frames
and Relationship from Natural Language Text -

A R&D Methodology

P.Chakrabarti1 , J.K. Basu2
1Sir Padampat Singhania University, Udaipur-313601, Rajasthan, India

2Heritage Institute of Technology, Kokata-700107, West Bengal, India

 Abstract
The paper deals with the concept of data mining
whereby the data resources can be fetched and
accessed accordingly with reduced time complexity.
Resource sharing is an important aspect in the field of
information science. The retrieval techniques are
pointed out based on the ideas of binary search tree,
Gantt chart, text summarization. A theorem has been
cited regarding the summation of total length of
codes of each leaf search term. Summarization is a
hard problem of Natural Language Processing
because, to do it properly, one has to really
understand the point of a text. This requires semantic
analysis, discourse processing, and inferential
interpretation (grouping of the content using world
knowledge). The last step, especially, is complex,
because systems without a great deal of world
knowledge simply cannot do it. Therefore, attempts
so far of performing true abstraction--creating
abstracts as summaries--have not been very
successful. Fortunately, however, an approximation
called extraction is more feasible today. To create an
extract, a system need simply to identify the most
important/topical/central topic(s) of the text, and
return them to the reader. Although the summary is
not necessarily coherent, the reader can form an
opinion of the content of the original. Most
automated summarization systems today produce
extracts only. Another purpose of this paper is to
addresses the problem of information discovery in
large collections of text. For users, one of the key
problems in working with such collections is
determining where to focus their attention. Text
documents often contain valuable structured data that
is hidden in regular English sentences. This data is
best exploited if available as a relational table that we
could use for answering precise queries or for
running data mining tasks. We explore a technique
for extracting such tables from document collections
that requires only a handful of training examples
from users. In this paper we have tried to explain how
to extract the different kind of relationship between

the words with the help of a frame net analysis
diagram of an annotation layer software.

Keywords-- data mining , time complexity, binary
search tree , Gantt chart, text summarization

I. INTRODUCTION

Accessing information that is resources from
heterogeneous data should be done in an optimum
way[1,2]. The search tree can be applied for effective
search. The average waiting time for successful
transaction of data can easily be analyzed with the
help of Gantt chart whereby we denote search
transaction for an user as a process. Sometimes in
case of web mining of resources, the context of text
summarization is done where the search is based on
some selected portion of text. Herein lies the
importance of text summarization which is based on
centroid-based algorithm.

 II. MINING OF RESOURCES

 A search can be formed based on the initial search
term and its gradual sub term while the process of
matching[3,4]. Thereby the level is increased, in
initial search term is the root and the final term fully
matching with the context of the users’ desire is a
leaf node. For further use if the library administrator
save the time then he can save each tree in a database
and denote each search term by a binary code.

 Computer Science

 Hardware oriented Application oriented

 Computer Microprocessor DBMS
 Architecture Object-oriented

 8085 8086 RDBMS PL/SQL

 Iterative Parallel C++ JAVA

Fig1 : Binary search tree

ISSN : 0975-3397 487

P. Chakrabarti et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 487-492

In the above figure, computer science is the root that
is initial search term. If a user wants to access library
resources PL/SQL, then the database hierarchy,
PL/SQL is the node in level 3 and it is a leaf node.
For future purpose if the library administrator saves
the model in a database and identify each search term
as a binary code, then by giving the code number he
can analyze the position of data in the model and
acknowledge quickly as per users’ request. The
concept of coding is as follows:
 Value = 0 if the search term is a left child
of parent node
 = 1 otherwise
 N
Theorem: In the process of coding, ∑ 1/2L

i =1,
 i=1
where Li is the length of code of ith leaf
node in the tree, N is total number of leaf nodes and
1<i<N.

Proof:

In fig. 1 codes of leaf nodes are as follows:
Hieratic Architecture :000
Parallel Architecture : 001
8085 model : 010
8086 model : 011
C++ : 100
JAVA : 101
RDBMS: 110
PL/SQL “ 111
So, N=8. Each leaf node has identical code length i.e.
3.
Therefore, 1/2L

i =1/2=1/8, 1/2= 1/8, …1/2=1/8

III. MINING OF THE LIBRARY RESOURCES
BASED ON GANTT CHART

Let R be a resource and the users are A, B, and C.
Now, for transaction of R , each of A, B and C send
request to the library administrator. According based
on the priority, the search schedule is performed.
Let, P1 = Process of search by user A
 P2 = Process of search by user B
 P3 = Process of search by user C

Let, tP1 = time for A to search successfully = 4
seconds
 tP2 = time for B to search successfully = 6
seconds
 tP3 = time for C to search successfully = 3
seconds
If priority of P1>P3>P2, then Gantt chart is s follows:

 P1 P3 P2
0 4 7 13

Waiting time of P1 = 0, waiting time of P2 = 7
seconds and waiting time of P3 = 4 seconds.
Sometimes the concept of Round Robin Scheduling
is applied whereby a time slice is given and after that
the process is switched to another user irrespective of
completion time of search. Let, time slice = 2
seconds, then the Gantt chart is as follows:

P1

P3

P2

P1

P3

P2

P2

 0 2 4 6 8 9 11 13

Hence, after 9th seconds , two successive search
engines are performed by user B as the other users A
and C have already fetched their information
successfully.

IV. MINING OF THE DATA RESOURCES
BASED ON CENTROID BASED TEXT

SUMMARIZATION

The mining technique is based on Centroid-based
algorithm[5] which is as follows :
Input: A collection of related documents.
Output: A summary.

Steps to summarize :

A.. Finding Cluster Centroid
A cluster consisting of total number of sentences
from all input documents is formed. The ‘count’
value for each word indicating the average number of
occurrences of a word across the entire cluster is
found out. Then the centroid value for each term is
calculated as:

 Count * idf(w)=count(w) * (log(DN ⁄
df(w)))

where df(w)=document frequency for each word.
 DN=number of documents in the corpus.

B. Finding Sentence Position Score
 The score of ith sentence (Si) is computed
 Pscore(Si)= max(1 ⁄ i , 1 ⁄ (n-i-1))

where i=sentence number
 n=number of sentences

C. Finding Sentence Length Score
The length here means the number of characters in
the sentence. A sentence shorter than a certain length
gets penalty. The length score of a sentence can be
calculated as
Lscore(Si)= 0 if Li≤ Lmin

 = (Li-Lmin) ⁄ Li otherwise
 where Li=length of each sentence

ISSN : 0975-3397 488

P. Chakrabarti et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 487-492

 Lmin=20 , i.e. sentence with 20 or fewer
characters receives penalty.

D. Finding Headline Score
The idea is that greater the number of words in a
sentence that match those in the headline , the more
important the sentence is likely to be. The headline
score can be calculated as

 Hscore(Si)= t / N
where t=number of words in the sentence that match
with the words in the headline
 N= number of words in the sentence

E. Compute Sentence Score

 SCORE(S)=∑ (wc.Ci + wp.Pi + wf.Fi
+ wl.Li)

where i ranges from 1 to n as (1≤i≤n)

 Also, Ci=Centroid value of the sentence
Pi=sentence position score
Fi=headline score
Li=sentence length score
Wc= wI = wf = wl =1
 n = number of sentences in the cluster

F. Extract Sentences

Sentences are sorted according to descending order.
Select d out of n sentences as an intermediate
summary of the input documents. The sentences are
extracted in an order.

 d= r * n

 where r = Compression Rate
 and n = total number of sentences taken from
input documents.

V. FRAME DEVELOPMENT AND FRAME
NET ANNOTATION

A lexical unit (LU) is a pairing of word with a
meaning. Typically each sense of polysemous word
belongs to a different semantic frame, a script like
conceptual structure that describes a particular type
of situation, object, or event along with its
participants and props. For example the Apply_heat
frame describes a common situation involving a
COOK, some FOOD and a
HEATING_INSTRUMENT, and is evoked by words
such as bake, blanch, boil, broil, brown, simmer,
stream etc. We call these roles frame elements (FEs)
and the frame evoking words are LUs in the
Apply_heat frame. Some frames are more abstract,
such as change_position_on_a_scale, which is

evoked by LUs such as decline, decrease, gain,
plummet, rise, etc. and has FEs such as ITEM,
ATTRIBUTE, INITIAL_VALUE and
FINAL_VALUE.
In the simplest case, the frame-evoking LU is a verb
and the FEs are its syntactic dependents:
(i) (Cook) Mathew fried (food) the fish
(Heating_Instrument) in a heavy iron skillet.
(ii) (Item) ITC stock rose (Difference) $4
(Final_value) to $40.
However, event noun such as reduction in the
cause_change_of_scalar_position frame also evoke
frames:
….the reduction (item) of debt levels (value_2) to
$500 million (value_1) from $2.5 billion
or objectives such as asleep in the Sleep frame:
(Sleeper) They were asleep (Duration) for hours.
The lexical entries for a predicting word, derived
from such annotations, identifies the frame which
underlies a given meaning and specifies the ways in
which FEs are realized in structures headed by the
word. Framenet annotations derive from two sources.
In pursuing the goal of recording the range of
semantic and syntactic combinatory possibilities of
each word in which of it senses, we normally
concentrate on a particular target LU and extract
sentences from the different texts containing that LU.
In another kind of work that represents a much
smaller percentage of our overall annotations, we
annotate running text. Full text annotation differs
from sentence annotation mostly in that the sentences
are chosen for us, so to speak, by the author of the
text. The annotation of running text is also
technically possible. Frame net lexicographers can
one by one declare each word in a sentence of target,
select a frame relative to which the new target is to be
annotated, get a new set of annotation layers (frame
element, grammatical function, phrase type) and
appropriate frame element tags, and then annotate the
relevant constituents. The core of the process has
always been looking at attestations of a group of
words that we believe to have some semantic overlap,
and dividing these attestations into groups. Afterward
we combine the small groups into large enough
groupings to make reasonable frames at which point
we may (equivalently) call the words targets, lexical
units, or frame-evoking elements. In the past the
criteria of such grouping have been informal and
intuitive, but recently, the criteria have become more
explicit. The basic semantic type for a frame element
ought to be broadly constant across uses. If that is not
so it suggests the need to posit distinct frame
elements. In some cases, however, we still want to
recognize a relationship between frame elements
whose syntactic form suggests that they refer to
ontologically different kinds of entities. For example,

ISSN : 0975-3397 489

P. Chakrabarti et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 487-492

in I want [to win] compared with I want [an orange],
both complements of the verb “want” have something
to do with the desiring frame, but each of the
complements directly refers to something rather
different.
As a technical matter, the way in which FrameNet
analyzes instances of a target predicate consists of
marking up parallel aligned layers of annotation with
appropriate label sets. The number of layers and the
kind of information that can be recorded on them is
technically unlimited. But in FrameNet’s current
practice the four core annotation layers are the
Target, frame element (FE), grammatical function
(GF), and phrase type (PT) layers. On the first,
the(parts of the) target predicate are marked while on
the latter three, labels are applied to the constituents
expressing the frame elements of the target. The next-
most important set of layers consists of the layers
called other; a layer called either Noun, Verb, Adj, or
Prep depending on the part of speech of the target
(this layer is also often called the part-of-speech-
specific layer); and the Sent(sentence) layer. A final
group of layers includes, among others, layers
holding labels related to part of speech (POS) and
Named Entity Recognition (NER). Generally
FrameNet is the collection of frames consisting
different types of frame elements like Noun phrase
(NP), Verb phrase (VP), Adverb phrase (ADP),
Adjective phrase (AJP), Preposition phrase (PP) and
FrameNet analyzes the instances of different layer of
annotation like Frame Elements (FE), Grammatical
Functions (GF) and Phrase Types (PT).

VI. EXPERIMENT METHODOLOGY

We used the parser of Collins (1997)[6], a statistical
parser trained on examples from the Penn Treebank,
to generate parses of the same format for the
sentences in our data. Phrase types were derived
automatically from parse trees generated by the
parser. Given the automatically generated parse tree,
the constituent spanning
the same set of words as each annotated frame
element was found, and the constituent’s
nonterminal label was taken as the phrase type. In
cases where more than one constituent matches due
to a unary production in the parse tree, the higher
constituent was chosen.
The matching was performed by calculating the
starting and ending word positions for each
constituent in the parse tree, as well as for each
annotated frame element, and matching each frame
element with the parse constituent with the same
beginning and ending points. Punctuation was
ignored in this computation. Due to parsing errors, or,
less frequently, mismatches between the parse tree

formalism and the FrameNet annotation standards,
there was sometimes no parse constituent matching
an annotated frame element. This occurred for 13%
of the frame elements in the training set. The one
case of systematic mismatch between the parse tree
formalism and the FrameNet annotation standards is
the FrameNet convention of including both a relative
pronoun and
its antecedent in frame elements. Mismatch caused
by the treatment of relative pronouns accounts for 1%
of the frame elements in the training set. During
testing, the largest constituent beginning at the frame
element’s left boundary and lying entirely within the
element was used to calculate the features. We did
not use this technique on the training set, as we
expected that it would add noise to the data, but
instead discarded examples with no matching parse
constituent. Our technique for finding a near match
handles common parse errors such as a prepositional
phrase being incorrectly attached to a noun phrase at
the right-hand edge, and it guarantees that some
syntactic category will be returned: the part-of-
speech tag of the frame element’s first word in the
limiting case.
Algorithm used for extracting new tupples using a set
of patterns
GenerateTuples(Patterns)
For each text segment
(1) {<o,l>,< ls,t1,ms,t,rs >}=
 CreateOccurrence(text_segment);
 TC = <o,l>;
 SimBest = 0;
 For each p in Patterns
(2) sim = Match(<ls,t1,ms,t2,rs >,p);
 if (sim>=Tsim)
(3) UpdatePatternSelectivity(p,TC);
 if(sim>=SimBest)
 SimBest=sim;
 PBest=p;
 if(SimBest>=Tsim)
 CandidateTuples[TC].Patterns[PBest]= SimBest;
return CandidateTuples;

VII. RESULTS

Results on identifying frame elements (FEs),
including partial matches. A total of 7,681
constituents were identified as FEs, and 8167 FEs
were present in hand annotations, of which matching
parse constituents were present for 7,053(86%).

ISSN : 0975-3397 490

P. Chakrabarti et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 487-492

Type of Overlap

Identified
Constituents

Number

Exactly matching
boundaries

63% 5326

Identified constituent
entirely within true
frame element

8 653

True frame element
entirely within
identified constituent

7 593

Both partially within
the other

0 23

No overlap with any
true frame element

13 997

 Table 1: Matching of overlaps

When the automatically identified constituents were
fed through the role labeling system described above,
79.6% of the constituents that had been correctly
identified in the first stage were assigned the correct
role in the second, roughly equivalent to the
performance when assigning roles to constituents
identified by hand.

Fig 2: Precision/recall is plotted for various methods of identifying

frame elements.

VIII. CONCLUSION

 In the paper we have observed that efficient ways of
optimum data mining reduces time complexity. In

case of text summarization. Researches are going on
this topic. There are many other techniques related to
text summarization based on position of sentences or
length of sentences of the documents. It will be more
reliable if the sentences are parsed in phrase level
using Link Grammar parser. For each sentence with
the content of the sentence there should be associated
the information of the words of the sentence. The
information of the word means ‘subject’, ‘time’,
’space/ location’, ‘action i.e. verb’ etc. Using these
information the sentences are clustered on the basis
of same ‘subject’ or ‘action’ etc. These clusters are
ranked on the basis of size. The clusters are extracted
from top order until required summary length is
achieved. Experiments are also going on other
several features of sentences. The results of this
experiment are very encouraging. They demonstrate
that the technique employed is capable of identifying
numerous associations of interest in large text
collections in a completely automated fashion. The
approach could be used to provide a rapid overview
of large volumes of text. In a dynamic collection
environment it could be used to automatically alert
users when text has been acquired that contains
information of interest.
The approach described here has a number of
important characteristics that make it particularly
well-suited for intelligence analysis applications:
(1) It is independent of topic, genre, or language.
(2) Identified relationships represent the aggregate
implications of high-order associations. For this
reason, the approach is capable of identifying quite
subtle relationships.
(3)The user has complete flexibility in specifying
items of interest. Any point in the LSI representation
space can be used as a basis for defining a row or
column in the comparison matrices. In particular, a
textual description of an entity or concept of interest
may be chosen as a definition of an item of interest.
That description does not have to have been derived
from the documents indexed. There need only be
some minimal degree of overlap in terminology
between the description and the aggregate
terminology employed in the documents used to
generate the representation space.
(4)The technique has significant utility in identifying
possible use of aliases.
(5)There is no need for predefined auxiliary
structures such as taxonomies or ontologies. Nor is
there need for any linguistic analysis, other than that
contained in the entity extraction software

REFERENCES

[1] Daniel N ; Radev D, and Allison T (2003) - Sub-event
based multidocument summarization. In HLT-NAACL
Workshop on Text Summarization, Edmonton, AB, Canada

ISSN : 0975-3397 491

P. Chakrabarti et al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 487-492

[2] Grewal A ; Allison T ; Dimitrov S and Radev D (2003)
- Multi-document summarization using o_ the shelf
compression software. In HLT-NAACL Workshop on Text
Summarization, Edmonton, AB, Canada

[3] Kareem O and Radev D (2004) - Hierarchical text
summarization for WAP-enabled mobile devices. Submitted to
SIGIR 2004 Demo Session

[4] Otterbacher J and Radev D (2004) - A resource for
revision-based multi-document summarization and evaluation.
In LREC, Lisbon, Portugal

[5] Radev D; Blair-Goldensohn S, and Zhang Z (2001) -
Experiments in single and multi-document summarization
using M EAD. In First Document Understanding Conference,
New Orleans, LA

[6] Collins, Michael. 1997. Three generative, lexicalised
models for statistical parsing. In Proceedings of the 35th Annual
Meeting of the ACL, pages 16–23, Madrid, Spain.

ISSN : 0975-3397 492

