
Rajesh Daheriya et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 870-879

Multi Subgroup Data Compression Technique Using
Switch Code

Rajesh Daheriya1, Sushil Kumar2, Vijay Chaudhari3, Dr. Bhupendra Verma4
 1.P.G Scholar,I.T.Dept 2.Asst. Prof. I.T. Dept, 3 H.O.D.IT Dept 4.Director, PG Courses.

 TIT, Bhopal, TIT, Bhopal, TIT,Bhopal, TIT, Bhopal,
 Bhopal, India Bhopal,India Bhopal, India Bhopal,India

Abstract— Data compression is the art of converting a data
stream into a small in size data bits so that it can be easily
travel a long distance without increasing load of its volume on
a constant Bandwidth channel regardless of its increase
volume. Data compression is essential techniques since last[1]
decades because whatever the data, audio, video or many type
of securer none secure information can be easily sent through
small bandwidth channel with these innovative techniques.

Keywords-: Huffman coding, lossless data, Runlenth coding,
LZW.

I. INTRODUCTION

There are so many techniques have been developed and
introduced in this field but still researchers are doing work to
developed a technique which can reduced cost of storage as
well as transmission of data packets We have proposed a
new techniques [2] in this paper which is based on switching
code data compression technique using adaptive Huffman
coding is used three character-codeword [3] tables for
alphabets table, numeric table and special symbols table.
Each table has switching [4] codes for switch from one table
to others. In classify to confer the comparative merits of
information compression techniques, a structure for
judgment necessity be recognized. There are two dimensions
along which each of the schemes [18] discussed here may be
measured, algorithm complexity and amount of compression
[19]. When information compression is used in a data
communication application, the purpose is speed. Speed of
transmission [20] depends upon the number of bits sent, the
time required for the encoder to generate the coded [21]
message, and the time required for the decoder [22] to
recover the original [23] ensemble. In a data storage
application, although the degree [24] of compression is the
primary concern, it is nonetheless necessary that the
algorithm [25] be efficient in order for the scheme to be
practical. Compression algorithm transforms [26] the
original data in such a way that they require less space for
their storage from what they actually require. And if require
they reproduce [27] the same data with some minor variation

in case of lossy compression or identical one in case of
lossless [28] compression.

II. LITERATURE REVIEW:

A. About Text Data Compression
 The last twenty years, large-scale information transfer
through intranet and Internet applications, the development
of massive information [5] storage/retrieval systems, and the
use of software packages for text/data preparation have a
tremendous growth. Concurrent [6] with this growth,
several problem areas such as huge size of databases and
data transmission through communication lines have
resulted in major economic expenditures. An efficient [7]
data compression technique generates codes by redundancy
in such a way that the average number of coding digits per
[8] message is minimized. A code is a mapping of source
messages (words from the source alphabet alpha) into
codewords [9] (words of the code alphabet beta). The basis
messages are the essential units into which the sequence to
be symbolized is partitioned.

B. Classification of Data Compression schemes:
In addition to the categorization [10] of data compression
schemes with respect to message and codeword lengths,
these methods are classified as either static [11] or dynamic.

1). Static Data Compression Techniques: A static
method is one in which the mapping from the set of
messages [12] to the set of code words is fixed before
transmission begins, so that a given message is represented
by the same codeword [13] every time it appears in the
message ensemble. The classic static defined-word scheme
[14] is Huffman coding [Huffman 1952]. In Huffman
coding, the assignment of codewords to source messages
[15] is based on the probabilities with which the source
messages appear in the message ensemble. Messages which
appear [16] more frequently are represented [17] by short
codewords; messages with smaller probabilities map to
longer codewords.

ISSN : 0975-3397 870

Rajesh Daheriya et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 870-879

2) Dynamic Data Compression Techniques:

A code is dynamic [29] if the mapping from the set
of messages to the set of codewords changes over time. For
example, dynamic Huffman [30] coding involves computing
an approximation to the probabilities [31] of occurrence "on
the fly", as the ensemble is being transmitted [6]. The
assignment of codewords to messages is based [32] on the
values of the relative frequencies of occurrence at each point
in time. A message x may be represented by a short [33]
codeword early in the transmission because it occurs [34]
frequently at the beginning of the ensemble, even though its
probability [35] of occurrence over the total ensemble [36]
is low. Later, when the more probable messages begin to
occur [37] with higher frequency, the short codeword will
be mapped [38] to one of the higher probability messages
and x will be mapped to a longer codeword. When the
compressed [39] message decoded it does not give back the
original message. Data has been lost. Some information is
lost. The lost information [40] is considered acceptable
based on the perceptual response of the user.

III. COMPRESSION TECHNIQUES:

A. Lossless Data Compression:

Lossless data [41] compression is used when data has to be
uncompressed [42] exactly as it was before compression.
Text files are stored using lossless technique since losing a
single character can in worst case make [43] the text
dangerously misleading. Lossles data compression is
generally used for textual data.

B. Lossless Data Compression Techniques

The main objective of this Section is to introduce [44] two
important lossless compression [45] algorithms: Huffman
Coding and Adaptive Huffman Coding and Lempel-Ziv
Coding. A Huffman encoder takes a block [46] of input
characters with fixed length and produces a block of output
[47] bits of variable length. It is a fixed-to-variable span
cryptogram. Lempel-Ziv [48], on the other hand, is a
variable-to-fixed length [49] code. The design of the
Huffman [50] code is optimal (for a fixed block length)
assuming that the source [51] statistics are known a priori.
The Lempel-Ziv system is not planned for any exacting
source but for a huge category of sources.

1) Huffman Data Compression Technique: The basic idea
in Huffman coding is to assign short codewords to those
input blocks with high probabilities [52] and long
codewords to those with low probabilities. A Huffman code
is designed by merging together the two least probable
characters, and repeating this process until there is only one
character remaining [53]. A cipher tree is thus produced

and the Huffman system is acquire from the tagging of the
rule hierarchy.
 Run Length Data Compression Technique: In many types
of data we have string of repeated symbol these can be
replaced by a special marker not allowed in the data,
followed by the symbol comprising [54] the run, followed
by how many times it occurred. Source data
3100000566666, Compressed data 31a005 5 a605.

 2) Adaptive Huffman Technique:
There are a few shortcomings to the straight [55] Huffman
compression. First of all, you need to send the Huffman tree
at the beginning of the compressed file, or the
Decompressor [56] will not be able to decode it. This know
how to reason various overhead. Also, Huffman
compression [57] looks at the statistics of the whole file, so
that if a part of the code uses a character more heavily [58],
it will not adjust during that section. Not to mention the fact
that sometimes the whole file is not available [59] to get the
counts from (such as in live information).

3): The Lempel-Ziv algorithm [60] is a variable-to-fixed
length code. Basically, there are two versions of the
algorithm presented in the literature: the theoretica [62]l
version and the practical version. in theory, both versions
present fundamentally the identical. However, the proof of
the asymptotic [63] optimality of the theoretical version is
easier. In practice, the practical version is easier to
implement and is slightly more efficient [13].

IV. PROBLEM FORMULATION:

The For Lossless text data Compression, The Run Length
Coding is very easy to implement and does not required too
much CPU horsepower but RLC Compression is only
efficient with files that contain lots of repetitive data. This
can suitable for text files that contain lots of spaces or Line-
art image that contain large white or black area .it is not
efficient for real text data Huffman Coding or Adaptive
Huffman [64] Coding is mainly efficient in compressing
Text data or Program file But This algorithm provide best
result when Frequency of the characters or Probability of
occurrence of characters is very much differ. When the
Probability of Characters is going to approximately same for
all characters then Compression ratio Decreases and All
Characters have Equal probability of Occurrence then
Compression ratio is Zero.

1) Problem Description: As we have seen that data
compression has important application in the area of data
transmission & data storage. Many data processing
application require storage of large volume of data, & the
number of such application are constantly increasing as the
use of computer extends to new application [65] area

like in banks, stock exchanges, railway reservations etc.
where the size of the data base is growing in proportion

with the time. So our main motive is to just look out for the
techniques m[66] or design, that allow us to store this data

ISSN : 0975-3397 871

Rajesh Daheriya et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 870-879

in a compact way, & make use of this design [67] or
technique for further processing.

V. THE PROPOSED TEXT COMPRESSION

METHOD

1) Block Diagram of Proposed Text Compression

Method

b)Block Diagram of Compressor:

Input File

Generation
probability

table Process

Probability
table for special

Symbols
Probability

table for
Numeric

Probability
table for
alphabets

Codeword Gene-
ration Process

Codeword Gene-
ration Process Codeword Gene-

ration Process

Codeword table
for special
Symbols

Codeword table
For Numeric

Codeword table
For Alphabets

Compression Process

Compressed file

A

A

ISSN : 0975-3397 872

Rajesh Daheriya et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 870-879

In compression takes input file, which we want to compress.
The compression process first makes the probability tables

for Alphabets, numeric and Special

Symbols. Then create codeword tables for Alphabets, numeric
and Special Symbols by the use of probability tables. Their
some process involves in compression

 Process for Generation probability tables: It takes
Original file as an input and make the three probability
tables for Alphabets, numeric and Special Symbols. It works
as input for next process. Codeword Generation Process:

It takes probability table as input and create codeword table.
These codeword tables will be use in Compression process
and Decompression process.
 Compression Process: It is main process in all over Block
Diagram of Compression Logic. It takes all three codeword
tables and original file as input and make out compressed
file.

b) Block Diagram of Decompressor:

In decompression takes input file, which we want to
decompress. There is single individual procedure.
 Decompressed Process: It is main process in all
over Block Diagram of Decompression Logic. It takes all

three codeword tables and compressed file as input make
out decompressed file

.

c) Algorithm For proposed data compression
method

The proposed data compression method for Text / database
files is based on Huffman coding. This method increases the
compression ratio than adaptive Huffman coding There can
be provide same code for three symbols and require to apply

prefix property only on each subgroups rather than apply
prefix property on whole symbols that’s why same
codeword can occur in the different groups and decreases
the codeword length so the symbol-codeword table size also
decreases[68]. The basic idea of the proposed method is to
extend the encoding process of the system encodes
frequently occurring characters with shorter bit code and

infrequently occurring appearing characters with longer bits
codes and same code can be use for three Kinds of
Characters Like Blocks (for alphabet, number and special
character) in general text files[69]. This method attractive

density effectiveness. The proposed method work based
on the following steps.
alphabets, second for numbers and some operators and
third for remaining all), and switching code.

Step 1. Make subgroups of the total 256 characters (their
256 characters are divided into three subgroups first for

Step 2. Arrange symbols of each group in non-increasing
order of the probability of occurrence.

__

Step 3. Provide Codeword to each character of every
subgroup

Step 4. affect programming procedure on particular data
file. The decoding method enlarges the determined

 Decompressed Process

Codeword table For
Alphabets

Decompressed
File

Compressed
file

Codeword table For
Numeric

Codeword table For
special Symbols

ISSN : 0975-3397 873

Rajesh Daheriya et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 870-879

records reverse to the creative data and mechanism
extremely much similar to the encoder development.

An example of variable length code compression

Before compression: - By static Code

Total bits required for message = 60*8

= 480 bits

After compression: -

Before compression: - By static Code

Total bits required for message = 60*8

By using Huffman coding technique TABLE I.

S. No. Character Probability

 of

Occurrence

Code

Word

Code

Length

01 A 10/60 11 2

02 0 10/60 000 3

03  10/60 001 3

04 B 5/60 101 3

05 1 5/60 0100 4

06  5/60 0101 4

07 C 3/60 1000 4

08 2 3/60 1001 4

09  3/60 01100 5

10 D 1/60 011010 6

11 3 1/60 011011 6

12  1/60 011100 6

13 E 1/60 011101 6

14 4 1/60 011110 6

15  1/60 011111 6

Total bits required for message =
10*2+25*3+16*4+3*5+6*6 =240 bits

In this example Huffman coding provide compression ratio
= 50%

In the given example a message of 42 characters required
336 bits for storing data in the memory using static codes.
Huffman Coding Technique compresses this message into
240 bits and provide compression ratio 71.42% in this
particular case. This message also compressed by three
Subgroups Data Compression Technique

By using three subgroups data compression technique: -

021040cadaba01201020abaeaba10301ababa

021040(Switch) (Switch)cadaba(Switch)01201020(Switch)abaeaba(Switch)
10301(Switch)ababa

ISSN : 0975-3397 874

Rajesh Daheriya et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 870-879

TABLE II.

S.

No.

Group 1

(Alphabet)

Probability of
occurrence

Code word Code length

01 A 10/22 1 1

02 B 5/22 01 2

03 C 3/22 001 3

04 D 1/22 00010 5

05 E 1/22 00011 5

06 Switch to group 1-2 1/22 00000 5

07 Switch to group 1-3 1/22 00001 5

TABLE III.

S.

No.

Group 2

(Numeric)

Probability of
occurrence

Code word Code length

01 0 10/22 1 1

02 1 5/22 01 2

03 2 3/22 001 3

04 3 1/22 00010 5

05 4 1/22 00011 5

06 Switch to group 2-1 1/22 00000 5

07 Switch to group 2-3 1/22 00001 5

TABLE IV.

S. No. Group 3(Special character) Probability of
occurrence

Code word Code length

01  10/22 1 1

02  5/22 01 2

03  3/22 001 3

04  1/22 00010 5

05  1/22 00011 5

06 Switch to group 3-1 1/22 00000 5

07 Switch to group 3-2 1/22 00001 5

Total bits required for message =1*30+15*2+9*3+12*5

 = 147 bit

ISSN : 0975-3397 875

Rajesh Daheriya et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 870-879

In this example three subgroups data compression technique
provide compression ratio = 43.75%.

It is 18.75% more than Huffman Coding .the compression ratio
in proposed technique is depend upon number of switching,
number of switching increases compression ratio decreases.
Given example consider 6 switching [68] in 60 characters and
got compression ratio 18.75%more then Adaptive Huffman

Coding. When 10 switching in 60 characters and got
compression ratio 12% more then Adaptive Huffman Coding.
When 18 switching in 60 characters and got compression ratio
9% more then Adaptive Huffman Coding. Generally found in
math’s books/database files have switching among the groups
is vary between 50% to 10%. This method increases Adaptive
Huffman coding compression ratio more 2 to 8%.

VI. RESULT COMPARISON

This Pyramid Chart shows the compression ratio of different size of Text files by using Huffman data Compression
Technique and Proposed Compression Technique.

Comparison of compression ratio between
Proposed & Huffman Coding

40
45
50
55
60

2
8

4

5
2

7

1
0

1
7

1
5

0
7

2
0

5
5

2
9

6
9

3
7

7
3

4
0

7
5

5
2

4
2

Size of File in Bytes

C
o

m
p

re
s

s
io

n

R
a

ti
o Huffman

Proposed

This XY Scatter Chart shows the compression ratio of different Percentage of number of switching in same size of Text
files(284 bytes) by using Huffman data Compression Technique and Proposed Compression Technique.

Comparison of Compression Ratio Of Huffman coding and Proposed
Technique with respect to Switching Percentage

0

20

40

60

0 2 4 6Switching in Percent with constant file size(284
bytes)

C
om

p
re

ss
io

n
 R

at
io

Switching In %

Huffman

Propsed

This Graph shows the compression ratio of different Percentage of number of switching in same size of Text files(284 bytes)
by using Huffman data Compression Technique and Proposed Compression Technique.

ISSN : 0975-3397 876

Rajesh Daheriya et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 870-879

Comparison of Compression Ratio Of Huffman coding and Proposed Technique
with respect to Switching Percentage

0
20
40
60

80
100
120

6 10 20 30 50

Switching in Percentage with constant file size(284 bytes)

C
om

pr
es

si
on

 R
at

io Propsed

Huffman

VII. CONCLUSION & FUTURE ENHANCEMENT

In this Thesis we presented an innovative compression
technique recently introduce in text Files, Reducing the size
of Text files. By using a compression algorithm Specifically
designed for text files, which hold numbers [72] and special
symbols approximately equal-probable to alphabets this
algorithms is able to data much more effectively than
standard [73] compression technique. In the example
compression ratio 43.75%, it’s varied depending on the
number of switching among the groups. This method
increases Huffman [74] coding compression ratio [75] more
2 to 8%. However, internal analysis of real world data
compression showed more up to 12% more [68] than
Huffman coding, which provide compression ratio up to
52.51%. The vast majority of compression ratio of the
proposed system gives 4 to 8% more than Huffman Coding
Technique.

When the percentage of switching is increases then the
compression [69] performance decreases but by the
provided logic allows maximum percentage of switching
[70] is 50%. And that time compression ratio is equal to
used method compression ratio. And in the real world the
data base file has average [71] percentage of switching is 6
to 20% on these files proposed technique provide 4to
8%more compression then used technique.

This Proposed Algorithm gives 4-8% of Compression Ratio
more than Huffman Data Compression Technique. I suggest
that a framework should be developed so that a more
efficient technique can like LZW can be applied to it
without changing the core concept of proposed algorithms.
A method or query should be devised so that the
compressed file which is compressed by using my

proposed algorithm can be used or accessed directly with
the use of supporting codeword tables (created while

creating compressed file) and without decompressing the
compressed file.

VIII. REFRENCES:

[1] Dr. muhammad younus Javed and mr. abid nadeem,Data Compression

Through Adaptive Huffman Coding Scheme IEEE 2000, Vol. II,
pp.187-190

[2] D.A. Huffman,A method for the constraction of Minimum Redundancy
Codes , Proceedings of the IRE, 1952 ,pp. 1098-1101

[3] Vitter, S. V.,Design and analysis of dynamic Huffman codes ,Journal of
the Assocition for Computing Machinery ,Vol. 34, No. 4, 1987 ,pp. 825-
845.

[4] Hirschberg , D.S. and Lelewer,D.A. ,Efficient Decoding of prefix codes
,Communication of the ACM,1990 ,pp.449-458.

[5] Nadeem, A., Design and Implementation of Data Compression System,
College of Electrical and Mechanical Engineering, Rawalpindi,Thesis
,1995.

[6] N. J. Larsson, “The context trees of block sorting compression," Proc.
1998 Data Compression Conference, pp. 189-198 ,Mar. 1998.

[7] Khalid Sayhood ,” Introduction to Data Compression “ , Morgan
Kaufmann , 1996.TK 5102.92.S39 1996.

[8] I. E. Bocharova, R. Johannesson, andB. D. Kudryashov, “Low state
complexity block codes via convolutional codes,” IEEE Trans.
Inf.Theory, vol. 50, no. 9, pp. 2022–2030, Sep. 2004.

[9] A. Gersho and R. M. Gray, Vector Quantization and Signal
Compression.

[10] J. Ziv and A. Lempel, ``A Universal Algorithm for Sequential Data
Compression,'' IEEE Transactions on Information Theory, Vol. 23, pp.
337--342, 1977.

[11] J. Ziv and A. Lempel, ``Compression of Individual Sequences Via
Variable-Rate Coding,'' IEEE Transactions on Information Theory, Vol.
24, pp. 530--536, 1978.

ISSN : 0975-3397 877

Rajesh Daheriya et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 870-879

[12] T. A. Welch, ``A Technique for High-Performance Data Compression,''

Computer, pp. 8-18, 1984
[13] “Dynamic Mapping Technique for Adaptive Huffman Code”Liang-Wei

Lee, Liang-Ying Liu, Jhing-Fa Wang and Jau-Yien Lee,Department of
Electrical Engineering National Cheng Kung University, 1 Univ.
Rd.,Tainan 701 Taiwan , China, IEEE TENCON'93/ Beijng

[14] “DATA COMPRESSION THROUGH ADAPTIVE HUFFMAN
CODING SCHEME”

[15] Dr. Muhammad Younus Javed and Mr. Abid Nadeem Computer
Engineering Department College of Electrical and Mechanical
Engineering Peshawar Road, Rawalpindi – 46000 (National University
of Sciences and Technology - PAKISTAN),2000 IEEE

[16] U. Mehta, N. Devashrayee, and K. Dasgupta, “Survey of test data
compression techniques emphasizing code based schemes,” in
Proceedings of the 12th IEEE Euromicro Conference on Digital System
Design (DSD '09), pp. 617–620, Patras, Greece, August 2009.

[17] J. Rajski, J. Tyszer, M. Kassab, et al., “Embedded deterministic test for
low cost manufacturing test,” in Proceedings IEEE International Test
Conference (ITC '02), pp. 301–310, Baltimore, Md, USA, October 2002.

[18] B. Koenemann, C. Barnhart, B. Keller, et al., “A SmartBIST variant
with guaranteed encoding,” in Proceedings of the 10th Asian Test
Symposium (ATS '01), pp. 325–330, Kyoto, Japan, November 2001.

[19] http://www.reed-electronics.com/tmworld.
[20] N. Tauba, “Survey of test vector compression techniques,” IEEE

Transaction Design & Test of Computers, pp. 294–303, 2006.
[21] A. Jas and N. Touba, “Test vector compression via cyclical scan chains

and its application to testing core-based designs,” in Proceedings of the
IEEE International Test Conference (ITC '98), pp. 458–464, IEEE CS,
Washington, DC, USA, October 1998.

[22] A. Chandra and K. Chakrabarty, “Test data compression for system-on-
a-chip using Golomb codes,” in Proceedings of the 18th IEEE VLSI Test
Symposium (VTS '00), pp. 113–120, Montreal, Canada, May 2000.

[23] L. Li and K. Chakrabarty, “On using exponential—Golomb codes and
subexponential codes for system-on-chip test data compression,” Journal
of Electronic Testing, vol. 20, no. 6, 2004.

[24] A. Chandra and K. Chakrabarty, “Efficient test data compression and
decompression for system-on-a-chip using internal scan chains and
Golomb coding,” in Proceedings of the Conference on Design,
Automation and Test in Europe (DATE '01), Munich, Germany, March
2001.

[25] A. Chandra and K. Chakrabarty, “Frequency-directed run-length (FDR)
codes with application to system-on-a-chip test data compression,” in
Proceedings of the 19th IEEE VLSI Test Symposium (VTS '01), pp. 42–
47, Marina Del Rey, Calif, USA, March 2001.

[26] A. Chandra and K. Chakrabarty, “Test data compression and test
resource partitioning for system-on-a-chip using frequency-directed run-
length (FDR) codes,” IEEE Transactions on Computers, vol. 52, no. 8,
pp. 1076–1088, 2003.

[27] A. El-Maleh and R. Al-Abaji, “Extended frequency-directed run-length
code with improved application to system-on-a-chip test data
compression,” in Proceedings of the 8th IEEE International Conference
on Electronic Circuits and Systems (ICECS '02), vol. 2, pp. 449–452,
Dubrovnik, Croatia, September 2002.

[28] A. Chandra and K. Chakrabarty, “Reduction of SOC test data volume,
scan power and testing time using alternating run-length codes,” in
Proceedings of the 39th Design Automation Conference (DAC '02), pp.
673–678, New Orleans, La, USA, June 2002.

[29] S. Hellebrand and A. Würtenberger, “Alternating run-length coding—a
technique for improved test data compression,” in Proceedings of the 3rd
IEEE International Workshop on Test Resource Partitioning (TRP '02),
Baltimore, Md, USA, October 2002.

[30] P. Gonciari, B. Al-Hashimi, and N. Nicolici, “Variable-length input
Huffman coding for system-on-a-chip test,” IEEE Transactions on
Computer-Aided Design, vol. 22, no. 6, pp. 783–796, 2003.

[31] P. Gonciari, B. Al-Hashimi, and N. Nicolici, “Improving compression
ratio, area overhead, and test application time for system-on-a-chip test
data compression/decompression,” in Proceedings of the Conference on
Design, Automation and Test in Europe (DATE '02), Paris, France,
March 2002.

[32] C. Giri, B. Rao, and S. Chattopadhyay, “Test data compression by spilt-
VIHC (SVIHC),” in Proceedings of the International Conference on
Computing: Theory and Applications (ICCTA '07), Kolkata, India,
March 2007.

[33] J. Feng and G. Li, “A test data compression method for system-on-a-
chip,” in Proceedings of the 4th IEEE International Symposium on
Electronic Design, Test and Applications (DELTA '08), Hong Kong,
January 2008.

[34] S. Kajihara, et al., “On combining pinpoint test set relaxation and run-
length codes for reducing test data volume,” in Proceedings of the 21st
International Conference on Computer Design (ICCD '03), San Jose,
Calif, USA, October 2003.

[35] X. Ruan and R. Katti, “Data-independent pattern run-length compression
for testing embedded cores in SoCs,” IEEE Transactions on Computers,
vol. 56, no. 4, pp. 545–556, 2007.

[36] H. Fang, C. Tong, and X. Cheng, “RunBasedReordering: a novel
approach for test data compression and scan power,” in Proceedings of
the Conference on Asia South Pacific Design Automation (ASP-DAC
'07), Yokohama, Japan, January 2007.

[37] W. Zhan, H. Liang, F. Shi, et al., “Test data compression scheme based
on variable-to-fixed-plus-variable-length coding,” Journal of Systems
Architecture, vol. 53, no. 11, pp. 877–888, 2007.

[38] G. Sheng, et al., “Combined partial test vector reuse and FDR coding for
two dimensional SoC test compression,” in Proceedings of the
International Conference on Internet Computing in Science and
Engineering (ICICSE '08), Harbin, China, January 2008.

[39] K. Balakrishnan and N. Touba, “Relating entropy theory to test data
compression,” in Proceedings of the European Test Symposium (ETS
'04), Corsica, France, May 2004.

[40] A. Chandra, et al., “How effective are compression codes for reducing
test data volume?” in Proceedings of the VLSI Test Symposium (VTS
'02), Monterey, Calif, USA, May 2002.

[41] R. Sankaralingam, R. Orugani, and N. Touba, “Static compaction
techniques to control scan vector power dissipation,” in Proceedings of
the IEEE VLSI Test Symposium (VTS '00), pp. 35–40, Montreal,
Canada, May 2000.

[42] Manber, U.; Myers, G. Suffix arrays: A new method for on-line string
searches. SIAM J. Comput.1993, 22, 935–948. 2. Larsson, N.J.;
Sadakane, K. Faster suffix sorting. Theoret. Comput. Sci. 2007, 317,
258–272.

[43] Manzini, G.; Ferragina, P. Engineering a lightweight suffix array
construction algorithm.Algorithmca 2004, 40, 33–50.

[44] Puglisi, S.J.; Smyth, W.F.; Turpin, A. A taxonomy of suffix array
construction algorithms. ACM Comput. Surv. 2007, 39, 1–31.

[45] Gusfield, D. Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology; Cambridge University Press:
Cambridge, UK, 1997.

[46] Burrows, M.; Wheeler, D.J. A Block-Sorting Lossless Data
Compression Algorithm; Research Report 124; Digital Equipment
Corporation: Palo Alto, CA, USA, 1994.

[47] Adjeroh, D.; Bell, T.; Mukherjee, A. The Burrows-Wheeler Transform:
Data Compression, Suffix Arrays and Pattern Matching; Springer-
Verlag: New York, NY, USA, 2008.

[48] Seward, J. On the performance of BWT sorting algorithms. In
Proceedings of IEEE Data Compression Conference, Snowbird, UT,
USA, March 28–30, 2000; Volume 17, pp. 173–182.

[49] K¨arkk¨ainen, J.; Sanders, P.; Burkhardt, S. Linear work suffix array
construction. J. ACM 2006,53, 918–936. Algorithms 2010, 3 166

[50] Ko, P.; Aluru, A. Space-efficient linear time construction of suffix
arrays. J. Discrete Algorithms 2005, 3, 143–156.

[51] Cleary, J.G.; Teahan, W.J. Unbounded length contexts for PPM.
Comput. J. 1997, 40, 67–75.12. Bell , T.; Cleary, J.; Witten, I. Text
Compression; Prentice-Hall: Englewood Cliffs, NJ, USA, 1990.

[52] Szpankowski, W. Asymptotic properties of data compression and suffix
trees. IEEE Trans. Inf. Theory 1993, 39, 1647–1659.

[53] Abouelhoda, M.I.; Kurtz, S.; Ohlebusch, E. Replacing suffix trees with
enhanced suffix arrays. J. Discrete Algorithms 2004, 2, 53–86.

[54] Farach-Colton, M.; Ferragina, P.; Muthukrishnan, S. On the sorting-
complexity of suffix tree construction. J. ACM 2000, 47, 987–1011.

ISSN : 0975-3397 878

Rajesh Daheriya et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 870-879

[55] Kim, D.K.; Sim, J.S.; Park, H.; Park, K. Constructing suffix arrays in

linear time. J. Discrete Algorithms 2005, 3, 126–142.
[56] Nong G.; Zhang, S. Optimal lightweight construction of suffix arrays for

constant alphabets. In Proceedings of Workshop on Algorithms and
Data Structures, Halifax, Canada, August 15–17, 2007; Volume 4619,
pp. 613–624.

[57] Maniscalco, M.A.; Puglisi, S.J. “Engineering a lightweight suffix array
construction algorithm” In Proceedings of the 2008 ACM SIGMOD
International Conference on Management of Data, Vancouver, BC,
Canada, June 10–12, 2008.

[58] Itoh, H.; Tanaka, H. “An efficient method for in memory construction of
suffix arrays” In Proceedings of String Processing and Information
Retrieval Symposium and International Workshop on Groupware,
Cancun, Mexico, September 22–24, 1999; pp. 81–88.

[59] Hon, W.; Sadakane, K.; Sung, W. Breaking a time-and-space barrier in
constructing full-text indices. In Proceedings of IEEE Symposium on
Foundations of Computer Science, Cambridge, MA, USA, October 11–
14, 2003.

[60] Na, J.C. Linear-time construction of compressed suffix arrays using O(n
log n)-bit working space for large alphabets. In Proceedings of 16th
Annual Symposium on Combinatorial Pattern Matching 2005, LNCS,
Jeju Island, Korea, June 19–22, 2005; Volume 3537, pp. 57–67.

[61] Burkhardt, S.; K¨arkk¨ainen, J. Fast lightweight suffix array construction
and checking. In Proceedings of the 14th Annual ACM-SIAM
Symposium on Discrete Algorithms, Baltimore, MD, USA, January 12–
14, 2003.

[62] Nong, G.; Zhang, S.; Chan, W.H. Linear time suffix array construction
using D-critical substrings. In CPM; Kucherov, G., Ukkonen, E., Eds.;
Springer: New York, NY, USA, 2009; Volume 5577, pp. 54–67.

[63] Nong, G.; Zhang, S.; Chan, W.H. Linear suffix array construction by
almost pure induced-sorting. In DCC; Storer, J.A., Marcellin, M.W.,
Eds.; IEEE Computer Society: Hoboken, NJ, USA, 2009; pp. 193–202.

[64] Franceschini, G.; Muthukrishnan, S. In-place suffix sorting. In ICALP;
Arge, L., Cachin, C., Jurdzinski, T., Tarlecki, A., Eds.; Springer: New
York, NY, USA, 2007; Volume 4596; pp. 533–545.

[65] Okanohara, D.; Sadakane, K. A linear-time Burrows-Wheeler Transform
using induced sorting. In SPIRE; Karlgren, J., Tarhio, J., Hyyr¨o, H.,
Eds.; Springer: New York, NY, USA, 2009; Volume 5721; pp. 90–101.
Algorithms 2010, 3 167 27.

[66] Ferragina, P.; Manzini, G. Opportunistic data structures with
applications. In Proceedings of the 41st Annual Symposium on
Foundations of Computer Scienc, Redondo Beach, CA, USA, November
12–14, 2000; pp. 390–398.

[67] Grossi, R.; Vitter, J.S. Compressed suffix arrays and suffix trees with
applications to text and string matching. In Proceedings of the 32nd
Annual ACM Symposium on Theory of Computing, Baltimore, MD,
USA, May 22–24, 2005.

[68] Sir´en, J. Compressed suffix arrays for massive data. In SPIRE;
Karlgren, J., Tarhio, J., Hyyr¨o, H. Eds.; Springer: New York, NY, USA,
2009; Volume 5721, pp. 63–74.

[69] Karlin, S.; Ghandour, G.; Ost, F.; Tavare, S.; Korn, L. New approaches
for computer analysis of nucleic acid sequences. Proc. Natl. Acad. Sci.
USA 1983, 80, 5660–5664.

[70] Fox, E.A.; Chen, Q.F.; Daoud, A.M.; Heath, L.S. Order-preserving
minimal perfect hash functions and information retrieval. ACM Trans.
Inf. Syst. 1991, 9, 281–308.

[71] Cover, T.M.; Thomas, J.A. Elements of Information Theory; Wiley
Interscience: Malden, MA, USA, 1991. Symvonis, A. Optimal stable
merging. Comput. J. 1995, 38, 681–690.

[72] Huang, B.; Langston, M. Fast stable sorting in constant extra space.
Comput. J. 1992, 35, 643–649.

[73] Moffat, A.; Neal, R.M.; Witten, I.H. Arithmetic coding revisited. ACM
Trans. Inf. Syst. 1995,16, 256–294. 2010 by the authors; licensee
Molecular Diversity Preservation International, Basel, Switzerland.

[74] Huang, B.; Langston, M. Fast stable sorting in constant extra space.
Comput. J. 1992, 35, 643–649.

[75] Moffat, A., Neal, R.M., Witten, I.H. Arithmetic coding revisited. ACM
Trans. Inf. Syst. 1995,16, 256–294. 2010 by the authors, licensee
Molecular Diversity Preservation International, Basel, Switzerland.

ISSN : 0975-3397 879

