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Abstract— Data compression is the art of converting a data 
stream into a small in size data bits so that it can be easily 
travel a long distance without increasing load of its volume on 
a constant Bandwidth channel regardless of its increase 
volume.  Data compression is essential techniques since last[1] 
decades because whatever the data, audio, video or many type 
of securer none secure information can be easily sent through 
small bandwidth channel with these innovative techniques.  
 

Keywords-: Huffman coding, lossless data, Runlenth coding, 
LZW. 

I. INTRODUCTION 

There are so many techniques have been developed and 
introduced in this field but still researchers are doing work to 
developed a technique which can reduced cost of storage as 
well as transmission of data packets We have proposed a 
new techniques [2] in this paper which is based on switching 
code data compression technique using adaptive Huffman 
coding is used three character-codeword [3] tables for 
alphabets table, numeric table and special symbols table. 
Each table has switching [4] codes for switch from one table 
to others. In classify to confer the comparative merits of 
information compression techniques, a structure for 
judgment necessity be recognized. There are two dimensions 
along which each of the schemes [18] discussed here may be 
measured, algorithm complexity and amount of compression 
[19]. When information compression is used in a data 
communication application, the purpose is speed. Speed of 
transmission [20] depends upon the number of bits sent, the 
time required for the encoder to generate the coded [21] 
message, and the time required for the decoder [22] to 
recover the original [23] ensemble. In a data storage 
application, although the degree [24] of compression is the 
primary concern, it is nonetheless necessary that the 
algorithm [25] be efficient in order for the scheme to be 
practical. Compression algorithm transforms [26] the 
original data in such a way that they require less space for 
their storage from what they actually require. And if require 
they reproduce [27] the same data with some minor variation 

in case of lossy compression or identical one in case of 
lossless [28] compression. 

 
II.  LITERATURE REVIEW: 

 
A. About Text Data Compression 
 The last twenty years, large-scale information transfer 
through intranet and Internet applications, the development 
of massive information [5] storage/retrieval systems, and the 
use of software packages for text/data preparation have a 
tremendous growth. Concurrent [6] with this growth, 
several problem areas such as huge size of databases and 
data transmission through communication lines have 
resulted in major economic expenditures. An efficient [7] 
data compression technique generates codes by redundancy 
in such a way that the average number of coding digits per 
[8] message is minimized. A code is a mapping of source 
messages (words from the source alphabet alpha) into 
codewords [9] (words of the code alphabet beta). The basis 
messages are the essential units into which the sequence to 
be symbolized is partitioned.  

 
B. Classification of Data Compression schemes:  
In addition to the categorization [10] of data compression 
schemes with respect to message and codeword lengths, 
these methods are classified as either static [11] or dynamic. 

1).  Static Data Compression Techniques: A static 
method is one in which the mapping from the set of 
messages [12] to the set of code words is fixed before 
transmission begins, so that a given message is represented 
by the same codeword [13] every time it appears in the 
message ensemble. The classic static defined-word scheme 
[14] is Huffman coding [Huffman 1952]. In Huffman 
coding, the assignment of codewords to source messages 
[15] is based on the probabilities with which the source 
messages appear in the message ensemble. Messages which 
appear [16] more frequently are represented [17] by short 
codewords; messages with smaller probabilities map to 
longer codewords.  
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2) Dynamic Data Compression Techniques: 

A code is dynamic [29] if the mapping from the set 
of messages to the set of codewords changes over time. For 
example, dynamic Huffman [30] coding involves computing 
an approximation to the probabilities [31] of occurrence "on 
the fly", as the ensemble is being transmitted [ 6 ]. The 
assignment of codewords to messages is based [32] on the 
values of the relative frequencies of occurrence at each point 
in time. A message x may be represented by a short [33] 
codeword early in the transmission because it occurs [34] 
frequently at the beginning of the ensemble, even though its 
probability [35] of occurrence over the total ensemble [36] 
is low. Later, when the more probable messages begin to 
occur [37] with higher frequency, the short codeword will 
be mapped [38] to one of the higher probability messages 
and x will be mapped to a longer codeword. When the 
compressed [39] message decoded it does not give back the 
original message. Data has been lost. Some information is 
lost. The lost information [40] is considered acceptable 
based on the perceptual response of the user.  

 

III.  COMPRESSION TECHNIQUES: 

A. Lossless Data Compression:  

Lossless data [41] compression is used when data has to be 
uncompressed [42] exactly as it was before compression. 
Text files are stored using lossless technique since losing a 
single character can in worst case make [43] the text 
dangerously misleading. Lossles data compression is 
generally used for textual data. 

 
B. Lossless Data Compression Techniques 

 
The main objective of this Section is to introduce [44] two 
important lossless compression [45] algorithms: Huffman 
Coding and Adaptive Huffman Coding and Lempel-Ziv 
Coding. A Huffman encoder takes a block [46] of input 
characters with fixed length and produces a block of output 
[47] bits of variable length. It is a fixed-to-variable span 
cryptogram. Lempel-Ziv [48], on the other hand, is a 
variable-to-fixed length [49] code. The design of the 
Huffman [50] code is optimal (for a fixed block length) 
assuming that the source [51] statistics are known a priori. 
The Lempel-Ziv system is not planned for any exacting 
source but for a huge category of sources. 
 

1) Huffman Data Compression Technique: The basic idea 
in Huffman coding is to assign short codewords to those 
input blocks with high probabilities [52] and long 
codewords to those with low probabilities. A Huffman code 
is designed by merging together the two least probable 
characters, and repeating this process until there is only one 
character remaining [ 53 ]. A cipher tree is thus produced 

and the Huffman system is acquire from the tagging of the 
rule hierarchy. 
  Run Length Data Compression Technique: In many types 
of data we have string of repeated symbol these can be 
replaced by a special marker not allowed in the data, 
followed by the symbol comprising [54] the run, followed 
by how many times it occurred.  Source data 
3100000566666, Compressed data 31a005 5 a605. 

 
     2) Adaptive Huffman Technique:   
There are a few shortcomings to the straight [55] Huffman 
compression. First of all, you need to send the Huffman tree 
at the beginning of the compressed file, or the 
Decompressor [56] will not be able to decode it. This know 
how to reason various overhead.  Also, Huffman 
compression [57] looks at the statistics of the whole file, so 
that if a part of the code uses a character more heavily [58], 
it will not adjust during that section. Not to mention the fact 
that sometimes the whole file is not available [59] to get the 
counts from (such as in live information). 

 
3): The Lempel-Ziv algorithm [60] is a variable-to-fixed 
length code. Basically, there are two versions of the 
algorithm presented in the literature: the theoretica [62]l 
version and the practical version. in theory, both versions 
present fundamentally the identical. However, the proof of 
the asymptotic [63] optimality of the theoretical version is 
easier. In practice, the practical version is easier to 
implement and is slightly more efficient [13].  

 
IV.  PROBLEM FORMULATION:  

 
The For Lossless text data Compression, The Run Length 
Coding is very easy to implement and does not required too 
much CPU horsepower but RLC Compression is only 
efficient with files that contain lots of repetitive data. This 
can suitable for text files that contain lots of spaces or Line-
art image that contain large white or black area .it is not 
efficient for real text data Huffman Coding or Adaptive 
Huffman [64] Coding is mainly efficient in compressing 
Text data or Program file But This algorithm provide best 
result when Frequency of the characters or Probability of 
occurrence of characters is very much differ. When the 
Probability of Characters is going to approximately same for 
all characters then Compression ratio Decreases and All 
Characters have Equal probability of Occurrence then 
Compression ratio is Zero. 
 
1) Problem Description:  As we have seen that data 
compression has important application in the area of data 
transmission & data storage. Many data processing 
application require storage of large volume of data, & the 
number of such application are constantly increasing as the 
use of computer extends to new application [65] area 

like in banks, stock exchanges, railway reservations etc. 
where the size of the data base is growing in  proportion 

with the time. So our main motive is to just look out for the 
techniques m[66] or design, that allow us to store this data 

ISSN : 0975-3397 871



Rajesh Daheriya et. al. / (IJCSE) International Journal on Computer Science and Engineering 
Vol. 02, No. 03, 2010, 870-879 

 
in a compact way, & make use of this design [67] or 
technique for further processing. 

 

 
V.   THE PROPOSED TEXT COMPRESSION 

METHOD 
 
 

 
1) Block Diagram of Proposed Text Compression 

Method 
 

b)Block Diagram of Compressor: 
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In compression takes input file, which we want to compress. 
The compression process first makes the probability tables 

for Alphabets, numeric and Special 

Symbols. Then create codeword tables for Alphabets, numeric 
and Special Symbols by the use of probability tables. Their 
some process involves in compression 

 
 Process for Generation probability tables: It takes 
Original file as an input and make the three probability 
tables for Alphabets, numeric and Special Symbols. It works 
as input for next process. Codeword Generation Process: 

It takes probability table as input and create codeword table. 
These codeword tables will be use in Compression process 
and Decompression process.  
 Compression Process: It is main process in all over Block 
Diagram of Compression Logic. It takes all three codeword 
tables and original file as input and make out compressed 
file. 

 

b) Block Diagram of Decompressor: 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 
In decompression takes input file, which we want to 
decompress. There is single individual procedure.  
 Decompressed Process: It is main process in all 
over Block Diagram of Decompression Logic. It takes all 

three codeword tables and compressed file as input make 
out decompressed file 

. 
 

c) Algorithm For proposed data compression 
method 
 
The proposed data compression method for Text / database 
files is based on Huffman coding. This method increases the 
compression ratio than adaptive Huffman coding There can 
be provide same code for three symbols and require to apply 

prefix property only on each subgroups rather than apply 
prefix property on whole symbols that’s why same 
codeword can occur in the different groups and decreases 
the codeword length so the symbol-codeword table size also 
decreases[ 68 ]. The basic idea of the proposed method is to 
extend the encoding process of the system encodes 
frequently occurring characters with shorter bit code and 

infrequently occurring appearing characters with longer bits 
codes and same code can be use for three Kinds of 
Characters Like Blocks (for alphabet, number and special 
character) in general text files[ 69 ]. This method attractive 

density effectiveness. The proposed method work based 
on the following steps. 
alphabets, second for numbers and some operators and 
third for remaining all), and switching code. 

 ___________________________________________ 

Step 1.  Make subgroups of the total 256 characters (their 
256 characters are divided into three subgroups first for  

Step 2. Arrange symbols of each group in non-increasing 
order of the probability of occurrence.  

______________________________________________ 

Step 3.  Provide Codeword to each character of every 
subgroup  

Step 4.  affect programming procedure on particular data 
file. The decoding method enlarges the determined 
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records reverse to the creative data and mechanism 
extremely much similar to the encoder development. 

 

 

An example of variable length code compression 

       

Before compression: - By static Code 

Total bits required for message  = 60*8 

= 480 bits 

After compression: -  

Before compression: - By static Code 

Total bits required for message  = 60*8 

 
By using Huffman coding technique  TABLE I.    

 
S. No. Character Probability 

 of  

Occurrence 

Code  

Word 

Code 

Length 

01 A 10/60 11 2 

02 0 10/60 000 3 

03  10/60 001 3 

04 B 5/60 101 3 

05 1 5/60 0100 4 

06  5/60 0101 4 

07 C 3/60 1000 4 

08 2 3/60 1001 4 

09  3/60 01100 5 

10 D 1/60 011010 6 

11 3 1/60 011011 6 

12  1/60 011100 6 

13 E 1/60 011101 6 

14 4 1/60 011110 6 

15  1/60 011111 6 

 
Total bits required for message = 
10*2+25*3+16*4+3*5+6*6 =240 bits 

In this example Huffman coding provide compression ratio 
= 50% 

 

In the given example a message of 42 characters required 
336 bits for storing data in the memory using static codes. 
Huffman Coding Technique compresses this message into 
240 bits and provide compression ratio 71.42% in this 
particular case. This message also compressed by three 
Subgroups Data Compression Technique

By using three subgroups data compression technique: -  

 
 

 

021040cadaba01201020abaeaba10301ababa 

021040(Switch) (Switch)cadaba(Switch)01201020(Switch)abaeaba(Switch) 
10301(Switch)ababa 

ISSN : 0975-3397 874



Rajesh Daheriya et. al. / (IJCSE) International Journal on Computer Science and Engineering 
Vol. 02, No. 03, 2010, 870-879 

 
    

 
TABLE II. 

 
S. 

No. 

Group 1 

(Alphabet) 

Probability of 
occurrence 

Code word Code length 

01 A 10/22 1 1 

02 B 5/22 01 2 

03 C 3/22 001 3 

04 D 1/22 00010 5 

05 E 1/22 00011 5 

06 Switch to group 1-2 1/22 00000 5 

07 Switch to group 1-3 1/22 00001 5 

 

TABLE III. 

S. 

No. 

Group 2 

(Numeric) 

Probability of 
occurrence 

Code word Code length 

01 0 10/22 1 1 

02 1 5/22 01 2 

03 2 3/22 001 3 

04 3 1/22 00010 5 

05 4 1/22 00011 5 

06 Switch to group 2-1 1/22 00000 5 

07 Switch to group 2-3 1/22 00001 5 

 
 

TABLE IV. 
 

S. No. Group 3(Special  character ) Probability of 
occurrence 

Code word Code length 

01  10/22 1 1 

02  5/22 01 2 

03  3/22 001 3 

04  1/22 00010 5 

05  1/22 00011 5 

06 Switch to group 3-1 1/22 00000 5 

07 Switch to group 3-2 1/22 00001 5 

 
Total bits required for message =1*30+15*2+9*3+12*5 

  = 147 bit 
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In this example three subgroups data compression technique 
provide compression ratio = 43.75%. 

It is 18.75% more than Huffman Coding .the compression ratio 
in proposed technique is depend upon number of switching, 
number of switching increases compression ratio decreases. 
Given example consider 6 switching [68] in 60 characters and 
got compression ratio 18.75%more then Adaptive Huffman 

Coding. When 10 switching in 60 characters and got 
compression ratio 12% more then Adaptive Huffman Coding. 
When 18 switching in 60 characters and got compression ratio 
9% more then Adaptive Huffman Coding. Generally found in 
math’s books/database files have switching among the groups 
is vary between 50% to 10%. This method increases Adaptive 
Huffman coding compression ratio more 2 to 8%. 

 

VI.  RESULT COMPARISON 

This Pyramid Chart shows the compression ratio of different size of Text files by using Huffman data Compression 
Technique and Proposed Compression Technique.  

Comparison of compression ratio between 
Proposed & Huffman Coding
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This XY Scatter Chart shows the compression ratio of different Percentage of number of switching in same size of Text 
files(284 bytes) by using Huffman data Compression Technique and Proposed Compression Technique. 

 

Comparison of Compression Ratio Of Huffman coding and Proposed 
Technique with respect to Switching Percentage
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This Graph shows the compression ratio of different Percentage of number of switching in same size of Text files(284 bytes) 
by using Huffman data Compression Technique and Proposed Compression Technique. 
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Comparison of Compression Ratio Of Huffman coding and Proposed Technique 
with respect to Switching Percentage
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VII. CONCLUSION & FUTURE ENHANCEMENT 
 

In this Thesis we presented an innovative compression 
technique recently introduce in text Files, Reducing the size 
of Text files. By using a compression algorithm Specifically 
designed for text files, which hold numbers [72] and special 
symbols approximately equal-probable to alphabets this 
algorithms is able to data much more effectively than 
standard [73] compression technique. In the example 
compression ratio 43.75%, it’s varied depending on the 
number of switching among the groups. This method 
increases Huffman [74] coding compression ratio [75] more 
2 to 8%. However, internal analysis of real world data 
compression showed more up to 12% more [68] than 
Huffman coding, which provide compression ratio up to 
52.51%. The vast majority of compression ratio of the 
proposed system gives 4 to 8% more than Huffman Coding 
Technique. 

 

When the percentage of switching is increases then the 
compression [69] performance decreases but by the 
provided logic allows maximum percentage of switching 
[70] is 50%. And that time compression ratio is equal to 
used method compression ratio. And in the real world the 
data base file has average [71] percentage of switching is 6 
to 20% on these files proposed technique provide 4to 
8%more compression then used technique. 

 
This Proposed Algorithm gives 4-8% of Compression Ratio 
more than Huffman Data Compression Technique. I suggest 
that a framework should be developed so that a more 
efficient technique can like LZW can be applied to it 
without changing the core concept of proposed algorithms. 
A method or query should be devised so that the 
compressed file which is compressed by using my 

proposed algorithm can be used or accessed directly with 
the use of supporting codeword tables (created while 

creating compressed file) and without decompressing the 
compressed file. 
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