
P. Niranjan Reddy et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 826-830

Java
Program

Pattern Property
Matching

Pattern Information

Design Patterns: A Resource for Reverse
Engineering

Abstract
Design patterns are gaining popularity because
they support modifiability and flexibility of
designs. Design patterns are solutions to
frequently recurring problems in design. Reverse
engineering of source code primarily focuses on
the software architecture. Understanding software
architecture in terms of design patterns simplifies
the process of identifying some key properties such
as coupling, flexibility and maintainability. This
paper presents a novel approach to extract design
patterns using structural metrics of object-oriented
programs. It involves two steps. In the first step,
structural metrics are extracted from the source
code. In the second step, these metrics are
matched with the properties of structural design
patterns of Gang-of-Four to identify a design
pattern. Our approach is demonstrated by
extracting design patterns from a Java program
using our pattern extraction tool.
Keywords: Design pattern, extraction, structural
metrics, matching

1. Introduction
Design patterns are solutions to frequently
recurring problems. Extracting design patterns
from source code is useful in understanding the
evolutionary nature of software. Software that is
developed with design patterns is more
maintainable. Antoniol et al.[1] identified a method
for extracting design patterns from source code or
design when relationships of classes are mapped to
Abstract Object Language(AOL). Learning AOL is
similar to any other learning process. So it
consumes some time for learning. We eliminated
this process by building structural information
directly from source code. Their focus was on C++

source code. Giuseppe et al.[2] formulated a
method for extracting interaction design patterns
from web applications. Their approach was based
on the frequency of a feature F in a web page.

2. Model of Pattern Extraction

We propose a method for extracting design patterns
from source code, which is an improvement over
other works. Our approach is implemented in two
phases. In the first phase we extracted structural
metrics from source code. These metrics are stored
in a hash table. In second phase, aggregations and
associations are identified and stored in two
separate tables. The pattern extraction process
model is shown in Figure 1. In aggregation
relationship, a method delegation is used with a
member object of a class. In association
relationship, a method delegation is used with a
class object on temporary basis. We extracted two
structural design patterns from Java source code
namely bridge and composite.
 Ex1: Representation of Aggregation:
 class Television
 { Button b1;
 void on_off()
 { b1.push (); } }
Ex2: Representation of Association:
 class Compiler
 { void compile()
 { Scanner s = new Scanner();
 s.scan();
 }
 }

Figure 1 Pattern Extraction Process

Jayadev Gyani
University of Hyderabad
INDIA

P.R.K. Murti
University of Hyderabad
INDIA

Metrics
Calculation

P. Niranjan Reddy
Kakatiya Institute of Technology &

Science, Warangal, INDIA

ISSN : 0975-3397 826

P. Niranjan Reddy et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 826-830

Phase I: In the first step, structural information
of classes is stored in a hash table. This
information is used for building aggregation
table and association table. The structural
information of classes include number of super
classes, names of super classes, number of
subclasses, names of subclasses, method names
of classes and names of interfaces a class is
implementing. A snapshot of these metrics
stored in a hash table for a sample program is
shown in Table 1. The sample source program
is based on the examples of Gamma et al.[8].

Phase II: Association and aggregation tables
are formed with the metrics identified in the
previous phase. These tables for the sample
program are shown in Table 2 and Table 3

respectively. Every pattern can be stated as a set of
elements with some relationships. In a formal way a
pattern p can be represented as a graph <e, R> where
e is the number of elements and R is a set of
relations. If a relationship exists between a pair of
elements then it must be a relation specified in set R.
We focused on the structural design patterns because
these patterns follow unique structural properties in
design. We have eliminated Abstract Object
Language representation specified by Antoniol et
al.[1] and simplified the searching process by directly
building a table for association and a table for
aggregation. Every design pattern is bound by a set of
constraints specified in terms of structural metrics.
These constraints will vary from one pattern to
another pattern.

Constraint verification algorithms for each of the three patterns are given below:

2.1 Algorithm for Bridge pattern extraction

 For each row r in the aggregation table do
 If r[0] is an abstract class and r[1] is an interface then
 If r[0] has one or more subclasses and r[1] is implemented
 by one or more classes then
 Display bridge detected
 Endif
 Endif
 Endfor

2.2 Algorithm to detect Composite pattern

 For each abstract class C which has at least two subclasses do
 If composite exists then
 //composite is identified as the class with ArrayList, Hashtable, LinkedList, Stack,

// Vector or Dictionary as member or contains reference to parent class
 If number of subclasses of C is one more than the number of composite
 Classes then
 mark the subclasses which are not composite as leaves
 Display Composite pattern detected
 Endif
 Endif
 Endfor
After verifying the constraints patterns are
generated After verifying the constraints patterns
are generated dynamically from the source code.
If the source code is modified the corresponding
patterns are affected. In the given sample code
there are 2 design patterns namely one bridge
and one composite pattern. The patterns which
are generated from our tool are shown in results
section .
3. Sample program

 interface WindowImp
{
 final int x = 20;
 abstract void DevDrawText();
 abstract void DevDrawRect();
}
abstract class Window
{
 WindowImp k;
 abstract void DrawText();

ISSN : 0975-3397 827

P. Niranjan Reddy et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 826-830

 abstract void DrawRect();
}
class IconWindow extends Window
{
 int z;
 void DrawBorder()
 {
 int a;
 System.out.prinltn("testing") ;
 }
}
class TransientWindow extends Window
{
 int z;
 void DrawCloseBox()
 {
 int a;
 System.out.prinltn("testing") ;
 }
}
class XWindowImp implements WindowImp
{
 int k;
 void DevDrawText()
 {
 int a;
 System.out.prinltn("testing") ;
 }
}
class PMWindowImp implements WindowImp
{
 int k;
 void DevDrawText()
 {
 int a;
 System.out.prinltn("testing") ;
 }
}
abstract class MyComponent
{
 void operation()
 {
 System.out.println("component operation") ;
 }
 void add(MyComponent c)
 {

 System.out.println("add operation") ;
 }
 void remove()
 {
 System.out.println("remove operation") ;
 }
 void getChild(int n)
 {
 System.out.println("getchild operation") ;
 }
}
class Leaf extends MyComponent
{
 void operation()
 {
 System.out.println("Leaf operation") ;
 }
}
class Composite extends MyComponent
{
 ArrayList a;
 Composite()
 {
 a = new ArrayList() ;
 }
 void operation()
 {
 System.out.println("composite operation") ;
 }
 void add(MyComponent c)
 {
 System.out.println("composite add operation") ;
 a.add(c) ;
 }
 void remove()
 {
 System.out.println("composite remove
operation") ;
 }
 void geftChild(int n)
 {
 System.out.println("composite getchild
operation") ;
 }
}

4. Results

ISSN : 0975-3397 828

P. Niranjan Reddy et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 826-830

 Table 1 : Structural Metrics

CLASSNAME SUPERCLASS SUBCLASSES INTERFACES METHODS

TransientWindow Window void DrawCloseBox()
IconWindow Window void DrawBorder()
PMWindowImp WindowImp void DevDrawText()
MyComponent Leaf Composite void operation(),void remove(),void add(MyComponent),void getChild(int)
Window TransientWindow IconWindow void DrawRect(),void DrawText()
Leaf MyComponent void operation()
Composite MyComponent void operation(),void remove(),void geftChild(int),Composite(),void add(MyComponent)
XWindowImp WindowImp void DevDrawText()
--

 Table 2 : Association Table
 --
 no Associations found

 Table 3 : Aggregation Table
 --
 CLASSNAME C/I NAME
 --
 Window WindowImp
 - ---------------------------------------

 C/I refers to Class/Interface

 Figure 2 : Bridge Pattern Instance

ISSN : 0975-3397 829

P. Niranjan Reddy et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 826-830

Figure 3: Composite Pattern Instance

5. Conclusions and Future Work

Design pattern extraction is essential in
understanding the design of the software. Even
though our example is simple it is sufficient to
prove our concept. Currently we are working on
extracting all the remaining GOF structural
design patterns. Our approach simplifies the
extraction process by eliminating intermediate
code generation. Other design patterns will also
be extracted using dynamic behavior of objects in
our future work.

References

[1] G.Antoniol, R.Fiutem and L.Cristoforetti,"Using Metrics
to Identify Design paterns in Object-Oriented Software",
Proceedings of the Fifth International Symposium on software
(METRICS98), Nov, 1998
[2] Giuseppe Antonio Di Lucca, Anna Rita Fasolino, Porfirio
Tramontana,"Recovering Interaction Design Patterns in Web
Applications",Ninth European Conference on Software
Maintenance and reengineering(CSMR'05),366-374,2005
[3] Herve Albin-Amiot, Pierre Cointe, Yann-Gael Gueheneuc,
and Narendra Jussien,"Instantiating and detecting design
patterns: Putting bits and pieces together",Proceedings of
16th conference on Automated software Engineering, IEEE
Computer Society Press, 2001, pg.166-173
[4] Asencio, A.; Cardman, S.; Harris, D.; Laderman, E.;
“Relating expectations to automatically recovered design
patterns.” Reverse Engineering, Proceedings. Ninth Working
Conference on , Page(s): 87 –96, 2002
[5] Kyle Brown, “Design Reverse-engineering and
Automated Design Pattern Detection in Smalltalk”,1996
[6] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,
and M. Stal, “Pattern-Oriented Software Architecture: A
System of Patterns.” John Wiley & Sons, New York,
April,1996
[7] Eide, E.; Reid, A.; Regehr, J.; Lepreau, J.; “Static and
dynamic structure in design patterns” Software Engineering.

ICSE 2002. Proceedings of the 24rd International
Conference on , Page(s): 208 –218, 2002
[8] E.Gamma, R. Johnson, and R. Helm, and J. Vlissides,
“Design Patterns: Elements of Reusable Object-Oriented
Software.” Addison-Wesley,1995.
[9] C.Kramer and L. Prechelt. “Design recovery by
automated search for structural design patterns in object-
oriented software.” In Proc. Of the 3rd working Conference
on Reverse Engineering(WCRE), Monterey,CA, page 208-
215. IEEE Computer Society Press, November 1996.
[10] Paolo Tonella and Alessandra Potrich, “Static and
Dynamic C++ Code Analysis for the Recovery of the Object
Diagram.” In Proc. of ICSM2002, International Conference
on Software Maintenance, 2002.
[11] Winn, T.; Calder, P.; “Is this a pattern?” IEEE
Software, Volume: 19 Issue: 1 , Page(s): 59 –66, Jan/Feb
2002
[12] Antoniol, G., Fiutem, R. and Cristoforetti, L. “Design
pattern recovery in object-oriented software.” In 6th
International Workshop on Program Comprehension, 153-
160, Ischia, Italy, June 1998

ISSN : 0975-3397 830

