
Dr. R.Shashikumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 808-817

Implementation of Secured password for Web
applications using two server model

Dr.R.Shashikumar C.N.Vijay kumr
SJCIT, E&C dept

Chikballapur, Karnataka, India

H.M.Kotresh Vijay kumar K
SJCIT, E&C dept

Chikballapur, Karnataka, India

Abstract — The secured password is the most commonly used
authentication mechanism in security applications [11]. There
may be chances of password hacking from the hackers, so that it
is very essential to protect password information while sending
request to the servers. Early Web Application used central
database as the password authentication scheme. It has been one
of the biggest challenges in deploying sharing password
authenticated key exchange solutions in practice using multiple
servers. Several multi server schemes have been proposed for
authentification. This work emphasis on shared secured
password for web application using the two server model. Here
this system will overcome all the previously proposed single and
multi server model authentication systems. This new system is
being developed as secured password for web application viz,
authentication in VoIP (voice over internet protocol) services,
PDA devices ete.

Keywords- Password system, password verification data (PVD),
user authentication, key exchange, offline dictionary attack.

I. INTRODUCTION

Password systems are normally built over the following
three types of architectures

 Single-server model.
 Plain multiserver model.
 Gateway augmented multiserver model.

The first type is the single-server model given in Fig. 1,
where a single server is involved and it keeps a database of user
passwords. Most of the existing password systems follow this
single-server model, but the single server results in a single
point of vulnerability in terms of offline dictionary attacks
against the user password database.

Figure 1.

The second type is the plain multiserver model
depicted in Fig.2, in which the server side comprises multiple
servers for the purpose of removing the single point of

vulnerability; the servers are equally exposed to users and a
user has to communicate in parallel with several or all servers
for authentication. Clearly, the main problem with the plain
multiserver model is the demand on communication bandwidth
and the need for synchronization at the user side since a user
has to engage in simultaneous communications with multiple
servers. This may cause problems to resource-constrained
mobile devices such as hand phones and PDAs. The systems in
[4], [5], [8] and one of the two protocols in [9] assume this
model.

Figure 2.

The third type is the gateway augmented multiserver model
shown in Fig. 3, where a gateway is positioned as a relaying
point between users and servers and a user only needs to
contact the gateway. Apparently, the introduction of the
gateway removes the demand of simultaneous communications
by a user with multiple servers as in the plain multiserver
model. However, the gateway introduces an additional layer in
the architecture, which appears “redundant” since the purpose
of the gateway is simply to relay messages between users and
servers, and it does not in any way involve in service provision,
authentication, and other security enforcements. From security
perspective, more components generally imply more points of
vulnerabilities. Protocols based on the gateway augmented
multiserver model include [6] and [9].

Figure 3.

ISSN : 0975-3397 808

Dr. R.Shashikumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 808-817

II. TWO-SERVER MODEL

 Two-server model [7] comprises two servers at the
server side, one of which is a public server exposing itself to
users and the other of which is a back-end server staying
behind the scene. u sers contact only the public server,
but the two servers work together to authenticate users

Basic two-server model to an architecture where a
single control server supporting multiple service servers.
In such an architecture, the control server and the service
servers are managed in different administrative domains,
and the domain where the control server resides enforces
more stringent security measurements. The two server’s
model is as shown in Fig.4

Figure 4.

III. MODEL DESCRIPTION

Three types of entities are involved in this system, i.e.,
users (U), a service server (SS) that is the public server in the
two server model, and a control server (CS) that is the back-end
server. In this setting, users only communicate with SS
and do not necessarily know CS. For the purpose of user
authentication, a user U has a password which is
transformed into two long secrets, which are held by SS and
CS, respectively. Based on their respective shares, SS and CS
together validate users during user login. We assume the
following security model: CS is controlled by a passive
adversary and SS is controlled by an active adversary in terms
of offline dictionary attacks to user passwords, but they do not
collude (otherwise, it equates the single- server model). By
definition a passive adversary follows honest-but-curious
behavior, that is, it honestly executes the protocol according to
the protocol specification and does not modify data, but it
eavesdrops on communication channels, collects protocol
transcripts and tries to derive user passwords from the
transcripts; moreover, when an passive adversary controls a
server, it knows all internal states of knowledge known to the
server, including its private key (if any) and the shares of user
passwords. In contrast, an active adversary can act
arbitrarily in order to uncover user passwords. Besides, we
assume a secret communication channel between SS and CS for
this basic protocol. This security model exploits the different
levels of trust upon the two servers. This clearly holds with
respect to outside attackers. As far as inside attackers are
concerned, justifications come from our application and
generalization of the system to the architecture of a single

control server supporting multiple service servers, where
the control server affords and deserves enforcing more
stringent security measurements against inside attackers.

IV. MODULES OF TWO SERVER MODEL

It consists of three modules
 User Registration
 User Authentication using two servers
 Session creation using Key exchange

 The Symbols used in this paper has summarized in the
fallowing table.1

TABLE.1

SS Service Server name.
CS Control Server name
π Hashed encrypted password.
π1 First half of the Hashed encrypted password

π2 Second half of the Hashed encrypted password
R Zq Random number in long integer
U Request message generated by user
b1 Random number generated at SS.
B1 Combination of b1 and encrypted half password of

SS (π1).
B2 Combination of b2 and encrypted half password of

CS (π2).

B Combination of both B1 and B2 .

A Random number generated at User.

Su Authentication Key of the User.

S1 SS Authentication Key.

S2 CS Authentication Key.

k Session Key of user.

g1, g2 random numbers.

q Number of bits used in algorithm.

Ss Service server session key.

Q,p,
q

Three large primes such that Q=2p+1 and p=2q+1

ЄR Belongs to real part of
QRp Quadratic residues
g1,g
2

g1,g2 Є QRp are of order q and discrete logarithms
to each other are not known ,where QRp is the
group of quadratic residues of p

g3 g1,g2 ЄQRq is of order q
h(.) A Cryptographic hash Function

ISSN : 0975-3397 809

Dr. R.Shashikumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 808-817

A. User Registration

In any password system, to enroll as a
legitimate user in a service, a user must
beforehand register with the service provider by
establishing a shared password with the provider. U
needs to register not only to the service provider SS but
also to the control server CS. Let us suppose U has
already successfully identified himself to SS, e.g., by
showing his identification card, U splits his password π
into two long random numbers π1 ЄR Zq and π2 ЄR
Zq such that π 1 + π 2 ═ π.(mod q), where q is defined
in Table 1. U then registers in a secure manner π1and
π2 to SS and CS, respectively. SS stores the account
(U, π1) to its secret database, and CS stores (U, π2) to
its secret Database. In case CS supports multiple
servers, it stores (U, π2, SS) to distinguish users
associated with different servers. This completes the
user registration phase. One may wonder how U
registers π 2 to CS as CS is supposed hidden from U.
This actually is not a problem in practice: U can reach
CS through out-of-band channels. Figure.5 shows the
flowchart for user registration procedure.

Figure.5

B. User authentication

Figure.6 shows the flowchart of procedures in User
authentication.

Figure.6

 U sends his identity together with a service request
Req to SS.

 SS first relays the request to CS by sending the user
ID and then selects a random number b1 ЄR Zq and computes
B1 = g1

b1g2
π1(mod p), using his password share π1.

 CS chooses a random number b2 ЄR Zq and computes
B2 = g1

b2g2
π2(mod p) using his password share π2.

Start

Input Authentication
Information

Set the Bit Level

 Split password into two Value π =
π1+π2.

 Store π1 in Service Server

 Store π2 In Control Server

Get Register Message

 End

YES

NO

Calculation of B1 in SS

Calculation of B in Ss

Proceed To Key Calculation

Calculation of S2 in Cs

Calculation of S1 in SS

Calculation of SU in Client

Calculation of B2 in CS

IF SU=h (S1, S2)?

STOP

Start

ISSN : 0975-3397 810

Dr. R.Shashikumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 808-817

 CS then sends B2 to SS. Upon reception of B2, SS
computes and sends B = B1 B2 (mod p),

 U selects α ЄR Zq, and computes A = g1
α (mod p),

 S'u= (B/ g2
π) = g1

α (b1+b2) (mod p) and Su =h(S'u),
respectively.

 U then sends A and Su to SS. Getting the message, SS
computes

 S1 = A b1 (mod p) and sends S1, A and Su to CS .

 Upon receipt of S1, CS computes S2 = A b2 (mod p)
and checks

 Whether Su (?)= h (S1S2) = h (g1
α (b1+b2)): If it holds,

CS is assured of the authenticity of U

C. Key exchange

Figure.7 shows the flowchart of procedures involved in
key exchange.

Figure.7

 After authentication Service server SS receives S2

,Which is calculated in authentication phase it checks
whether Su (?)= h (S1S2). If it holds, SS is convinced of the
authenticity of U. At this stage, both servers have
authenticated U.

 SS then computes and sends Ss = h (0,S1S2) to U and
afterward computes a session key K = h(U,SS,S1S2);
otherwise, SS aborts the protocol.

 Upon receiving K, U checks if h (0, S’u) (?)= Ss. If it
holds, U has validated the servers and then computes a
session key K = h (U, SS, S'u); otherwise, U aborts the
protocol

V. ALGORITHMS

A. Algorithm used for user Registration

SHA (Secure Hash Algorithm) refers to a family of
NIST-approved cryptographic hash functions. The most
commonly used hash function from the SHA family is SHA-1
[9]. It is used in many applications and protocols that require
secure and authenticated communications. SHA-1 Algorithm is
used for user registration. Most secure hash functions are
based on the structure proposed by Merkle as shown in
figure.8.

Figure.8

Figure.8 consists of L stages of processing, each stage
processing one of the b-bit blocks of the input message.
Each stage of the structure in Figure takes two inputs, the b
bit block of the input message meant for that stage and the
n-bit output of the previous stage. For the n-bit input, the first
stage is supplied with a special N-bit pattern called the
Initialization Vector (IV). The function f that processes the two
inputs, one n bits long and the other b bits long, to produce an
n bit output is usually called the compression function. That is
because, usually, b > n, so the output of the f function is
shorter than the length of the input message segment. The
function f itself may involve multiple rounds of processing of
the two inputs to produce an output.

B. Algorithm used for Encryption and Decryption

Blowfish algorithm is used for encryption and decryption
[6]. Blowfish has a 64-bit block size and a key length of
anywhere from 32 bits to 448 bits (32-448 bits in steps of 8
bits; default 128 bits). The computation diagram is as shown in
figure.9. It is a 16-round Feistel cipher and uses large key-

Stop

Calculate Ss in Service Server

Calculate h (U, SS, SU) in client

Calculate h (SU, 0) in Service

Calculate h (U, SS, S1.S2) in SS

If Ss=h (SU, 0)?

Print
Error

START

ISSN : 0975-3397 811

Dr. R.Shashikumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 808-817

dependent S-boxes. Initialize the P-array and S-boxes XOR P-
array with the key bits. For example, P1 XOR (first 32 bits of
key), P2 XOR (second 32 bits of key),...

Encrypt the new P1 and P2 with the modified subkeys This
new output is now P3 and P4 repeat 521 times in order to
calculate new subkeys for the P-array and the four S-boxes

Figure.9

B. Algorithm used for Key exchange

The Diffie-Hellman key agreement protocol (also called
exponential key agreement) is used for Key exchange[10].

The protocol has two system parameters p and g. They are
both public and may be used by all the users in a system.
Parameter p is a prime number and parameter g (usually called
a generator) is an integer less than p, with the following
property: for every number n between 1 and p-1 inclusive,
there is a power k of g such that n = gk mod p.

Suppose A and B want to agree on a shared secret key using
the Diffie-Hellman key agreement protocol. They proceed as
follows: First, A generates a random private value a and B
generates a random private value b. Both a and b are drawn
from the set of integers. Then they derive their public values
using parameters p and g and their private values. A's public
value is ga mod p and B's public value is gb mod p. They then
exchange their public values. Finally, A computes gab = (gb)a
mod p, and B computes gba = (ga)b mod p. Since gab = gba = k,
A and B now have a shared secret key k.

VI. STEPS USED FOR IMPLEMENTATION

Following Are the Important steps in implementing this
project and it is shown in figure.10.

A FRONT END(HTML,JSP)

 HTML is used only for designing the static page

 JSP are same as the html but are dynamic and
execution is same as servlets but saves the time in
calling the separate servlets for each time.

 JavaScript is for client side calculation purpose. For
example, calculation of hashed value of the password
used before sending it to servlet

B. MIDDLE TIER (SERVLETS) SERVER SIDE
SCRIPTING (CONTROLLER)

HTML, JSP pages will call servlets after clicking the submit
button

 All the business logic is programmed in servlet
programs

 All the responses for which the client will get is from
the servlet program

 Servlet may return text message or give response as
the HTML page and all database transaction logic is
written in the servlet program itself

C. DATABASE USED (BACK END)

 MYSQL 5.5 and MSSQL 2005 SERVER EDITION

 All the values are stored in respective database.

Figure.10

VII. IMPLEMENTATION OF THE ALGORITHMS

In this project Implementation is being done as three modules

A User registration

 In this phase user(U) gives user name and
password for authentication using these parameters. User
side module calculates as shown below
π = calcSHA1 (u + ":" + p);
CalcSHA1 uses function str2blks_SHA1 (str) above function
convert a string to a sequence of 16-word blocks, stored as
an array. Append padding bits and the length. And function
calcSHA1Blks (str2blks_SHA1 (str)) take a string and return
the hex representation of its SHA-1. The pseudo code for
SHA1 algorithm as follows.
Initialize variables: h0 = 0x67452301
 h1 = 0xEFCDAB89
 h2 = 0x98BADCFE
 h3 = 0x10325476

WEB CLIENT
(JSP, HTML)

SCRIPTING LANGUAGE :(JAVASCRIPT)

J2EE COMPONENTS USED IN THE PROJECT

 WEB CONTAINER

SERVLETS JSP

MSSQL DATABASE
(SQL SERVER 2005)

MYSQL DATABASE
(MYSQL 5.5)

ISSN : 0975-3397 812

Dr. R.Shashikumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 808-817

 h4 = 0xC3D2E1F0
Break message into 512-bit chunks. Each chunk

breaks into sixteen 32-bit big-endian words w[i], 0 ≤ i ≤ 15
Extend the sixteen 32-bit words into eighty 32-bit words:
for i from 16 to 79 w[i] = (w[i-3] XOR w[i-8] XOR w[i-14]
XOR w[i-16]) leftrotate 1.
Initialize hash value for this chunk:
 a = h0;
 b = h1;
 c = h2;
 d = h3;
 e = h4;

 Main loop:
 for i from 0 to 79
 if 0 ≤ i ≤ 19 then
 f = (b and c) or ((not b) and d)
 k = 0x5A827999
 else if 20 ≤ i ≤ 39
 f = b xor c xor d
 k = 0x6ED9EBA1
 else if 40 ≤ i ≤ 59
 f = (b and c) or (b and d) or (c and d)
 k = 0x8F1BBCDC
 else if 60 ≤ i ≤ 79
 f = b xor c xor d
 k = 0xCA62C1D6
 temp = (a leftrotate 5) + f + e + k + w[i]
 e = d
 d = c
 c = b leftrotate 30
 b = a
 a = temp
Add this chunk's as shown below
 h0 = h0 + a
 h1 = h1 + b
 h2 = h2 + c
 h3 = h3 + d
 h4 = h4 + e
It produces the final hash value hash.
hash = h0 append h1 append h2 append h3 append h4
User module splits π into π1 and π2 in such a way that π
= π1 + π2 , π1 and π2 are the variables of type Big Integer.
A cryptographically strong random number minimally
complies with the statistical random number generator
tests specified in FIPS 140-2, Security Requirements for
Cryptographic Modules. Additionally, Secure Random must
produce non-deterministic output. Therefore any seed
material passed to a Secure Random object must be
unpredictable, and all Secure Random output sequences must
be cryptographically strong, as described in RFC 1750:
Randomness Recommendations for Security. Using π and π1
easy to calculate π2 as π2 = π – π1. Next step is to register
splitted passwords in to the two servers databases

B. User Authentication

For authentication splitted password π1 and π2 are
used. π1 is send to the Service server and π2 is send to the
Control Server. The Service server selects the random prime
numbers g1, g2 and b1, using these variables and stored
password π1, it calculates the value B1
B1=g1

b1 . g2
π 1

Control Server is also calculates B2 using probable
Prime functionality available in BigInteger class.
Along with these variables and store password π2 Server
Calculates the B2 value
B2=g1b2 . g2 π 2.
After calculated B2, Control Server sends back B2 value to the
Service Server. Service Server calculates B in such a way that
B=B1B2
After calculated A and Su these values are passed to the
Service Server SS, then SS computes
S1=Ab1 and sends {A, Su, S1} to CS.
Control Server CS also calculates S2=Ab2 and also SS
calculates h(S1,S2) the resultant value is compared with
Su if both values are same then only user successfully
authenticated himself to the server otherwise entire process
will be aborted.

C. Key exchange

 Client side key calculation:
 KSs = calcSHA1 (u + "," + temp_s1s2 + "," + temp_Ss);
 Var temp_Hc = bigInt2Str (sup);
 Var temp_z = String (0);
 Hc = calcSHA1 (temp_z + ","+temp_Hc);
 Alert ("Hc="+Hc); var temp_HSs = str2BigInt (HSs);
 Var temp_Hc = str2BigInt (Hc);
 if (temp_HSs.subtract(temp_Hc)==0)
 {
 alert ("Authentication success between SS hash and
Client
 hash");
 }
 else
 {
 alert ("Authentication Failed"); } var temp_Sup =
 bigInt2Str(sup); var temp_Ss =
 HSs; Server side key calculation

 Server side key calculation:
 KCs =calcSHA1 (u + "," + temp_Sup + "," +
 temp_Ss); alert ("KCs"+KCs);

VIII. RESULT

The home page for registration is as shown in figure.11

ISSN : 0975-3397 813

Dr. R.Shashikumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 808-817

Figure.11

In Home page we get two options to click

 User Registration

 User Authentication page

The registration page is as shown in figure.12

Figure.12

In Registration Page, user has to enter User Name and

Password, the private Key and hashing of password are

automatically executed by the JavaScript. User going to enter

the security question’s answer in order to protect users from

online and offline dictionary attacks. If the registration is

successful, it displays as shown in figure.13 and if it not

successful, it displays as shown in figure.14

Figure.13

Figure.14

For authentication, user has to enter user name and password as
shown in figure.15. All other values are automatically
generated.

Figure.15

For protection from Brute force or online attack or if the
user enters his name more than two times, the security question
is raised and he is not going to be authenticated until user
answers the security question correctly as shown in figure.16

ISSN : 0975-3397 814

Dr. R.Shashikumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 808-817

Figure.16

 Once the authentication process is over, the below screen
will appear for further calculations as shown in figure.17 and
calculation is as shown in figure.18

Figure.17

Figure.18

After User authentication, a unique session ID is generated
that involves authentication by both the servers as shown in
figure.19

Figure.19

Resultant values for all intermediate variables as shown
below.
N=eeaf0ab9adb38dd69c33f80afa8fc5e86072618775ff3c0b9ea
2314c9c25576
d674df7496ea81d3383b4813d692c6e0e0d5d8e250b98be48e4
95c1d6089dad15dc7d7b46154d6b6ce8ef4ad69b15d4982559b
297bcf1885c529f566660e57ec68edbc3c05726cc02fd4cbf4976
eaa9afd5138fe8376435b9fc61d2fc0eb06e3
User name = Vijay
Password = abc$123
π = h (U: P) = 3f5eae7cca48f2c05f1c36cbee727637e7af4d86
π1 = c16c951e1b6ec7049c8c8a7b2f67a0fc
π2 = 3f5eae7c08dc5da243ad6fc751e5ebbcb847ac8a
b1=a4ca2457261b1336d43ad5af18807c93d1dca2f9e15ed02d6
a530186 e00131d3
b2=7f7d8d1b6d0bbdd18d174db4b594780e6eb06c96649f01be
b9bc6bde1 a80638a
g1=49d8b06e48603e8e93073d375c2641ee099111ae7b628f4f
dbc5faaa7b0cefc8
g2=5790fa312f5b1ab5627dc6ef5df614a8feaae3549a88c042ce

ISSN : 0975-3397 815

Dr. R.Shashikumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 808-817

132bb7c8 f6b2c9
B1=3f6249c383bb53d09e0e25b830dfd7fe09596d2f2c5cbd9c7
1b62fc8c156e23b7a1650425755f9045fa1016710c7e7c751d27
264093a06eecbc77eca0c6348d2616e0a5b911c7451c048d0e40
16a499a96d78f892cbec7daaf80dbdb8aa15ba18b64603eeab9a
d96bf0369dcb8f7c7c0ee6f70 bc63f0a640167a1f214b88b8bb

B2=3c86bd83c584c74502a5be0cd951de4131232eb79d56c21b
e23835f095e16ad3c0ea8855e3993c1deb504a19e0f9082156e0
93daf635d32e4b3f02f8a95c3f432024a7e9c3024c186cbf3f888
06530d1789b6c5850dc04eda2ee09070b3aecde7086bc05b915
84b5124e9d7bc173282e8ea6a59f980dd25307a984cbc07e0b4f
B=B1*B2(modN)=52208fa4cc7a9ffb91f8f48b42c0391f55064
b13da971a72fcf5184de56e78e244667aa4842ca0705f7245f2e3
2425a9824d6802ec1497771f4884d5435116f031b5c1a573e1c
0ade49354335e3646a20e17b410dbc62f6d9a1ec63adf02628ae
a508b9a6123dea21d9f85fb64ac0c91cfa2c90152359ca47bf28b
a908d7c2ee
 a = 12cb716fd3a2ff6f1912e6f349a8cc2
A=g1^a=eab26052b3cef945dccd2ac251dfeabb6e950c7d76f7e
bfeef8c173e2e7969268a5383f07431483288a3747e97a34e3c3
ebac4e2ae7683f5ba90159ab25ddb4db4d64870a840bddde3c3b
cd4e06ff90817b5e05b711a8ee051af044e2be5fed8f82d7108a6
f109dead4d0d624c794d3136d888aa967a088d22726275e3006
433
Su1=g1^(a(b1+b2))=26aefe2d5823f0d29428973a967530b0c1
fdfba8c5bfbbd137a74cdb1f47ff2ac838955523f66817c2a0210
5504d8599b85d48daac553d5aaaddf09f2bb90c3718756d71bbf
964063595ab45abc3d326747adc31ab97f569cbeda31001d33f1
b08740ba8b13924fa027801cdeba3eb38f0716a1df83ab196fd2
7149a65ce4026dbf5ab2f54514e0336e4a094922da1695903be0
12948a1e6781cb6f57f519792c2d625cf7604e22fb2aa6988831
84275409f71b7db1a3921a722b3e0bb4e4756315b149e9e3db8
e4c9bd53d6bb1befe2655c04e4e5ae3fd096a3e794068c3be4c3f
355c94af84a206537c07826b01a845c384175e3998dc3a76669
117febadbc
Su=h(g1a(b1+b2))=6345623bdedb15004bf079b33d7b67ad1c
7862b6
S1=A^b1=38d8c7145d94def0c9e13024b90410fd0e1251db18
1a0985689654abf2752843332ffadcd170530fae4bbd7df6b70e
102be89741b9b803cdd7eafa12ad3694b2656b0925943415e35
5e6ed40318e9ca357a506daaf4d7f1c55e57515d8788bbe86f1fc
15a3aa5ac14da6c3130f327d415747064b70f961f78b3ee3a58d
24c91
S2=A^b2=ae3478d5ae568c153d13e51b9f0f90b1775ccd0505
0e6cbeb3820437f88374e7103ac29624f26568af7cff31cd1ceb7
27b6af9e26c227d6b77e9ebb3be9306278f46cff9e341e1c1826
b3bee19b25a1671b26bc8240ecbc826f333c5aa2ba52ddac1affb
5ad7d0a05e864edcd725eb013227f73499b9b406cdfec3046fd6
dffc
S1.S2(modN)=26aefe2d5823f0d29428973a967530b0c1fdfba8
c5bfbbd137a74cdb1f47ff2ac838955523f66817c2a02105504d
8599b85d48daac553d5aaaddf09f2bb90c3718756d71bbf96406
3595ab45abc3d326747adc31ab97f569cbeda31001d33f1b0874
0ba8b13924fa027801cdeba3eb38f0716a1df83ab196fd27149a
65ce4026dbf5ab2f54514e0336e4a094922da1695903be012948
1e6781cb6f57f519792c2d625cf7604e22fb2aa6988831842754
09f71b7db1a3921a722b3e0bb4e4756315b149e9e3db8e4c9bd

53d6bb1befe2655c04e4e5ae3fd096a3e794068c3be4c3f355c9
4af84a206537c07826b01a845c384175e3998dc3a76669117fe

badbc
Su=h(S1.S2)
=6345623bdedb15004bf079b33d7b67ad1c7862b6
SS=h(0,S1S2)
=3e3b099368878c7be1249de624294d4f7b8d9293
K=h(U,SS,S1S2)
= e4be9956e091ab007c155fa182ef0d43e579453b
H (0, Su1) = 3e3b099368878c7be1249de624294d4f7b8d9293
K=h(U,SS,Su1)=e4be9956e091ab007c155fa182ef0d43e5794
53b

IX. CONCLUSION

In contrast to existing multiserver password systems, our
system has great potential for practical applications. It can be
directly applied to fortify existing standard single-server
Password applications, e.g., FTP and Web applications. It can
also be applied in the federated enterprise setting, where a
single control server supports multiple service servers. also be
applied in the federated enterprise setting, where a single
control server supports multiple service servers.

REFERENCES
[1] Ivan Bayross, “java Server Programming”, 2007 Edition, Shroff

publication.

[2] William Stallings, “Cryptography and Network Security”, Third edition,
Pearson publication.

[3] Tom Negrino and Dori smith, “Java Script for The World Wide Web”,
second edition ,Pearson publication.

[4] Roger S Pressman, “Software Engineering”, McGraw Hill Inc., 3rd
Edition ,McGraw Hill Inc publication.

[5] Livion, “SQL Complete Reference”, second edition, McGraw Hill

[6] Bruce sheienier,”cryptography algorithms and source codes, The
Blowfish Encryption Algorithm” – Tata mcgraw hill Inc

[7] “A pracical password –based two server authentication and key
exchange system”, Yanjiang Yang, Robert H.Deng and Feng Bao, IEEE
transactions on dependable and secure computing, vol3, no.2, 2006.

[8] J.Brainard, A.Juels, B.Kaliski, and M.Szydlo, “ A new two server
approch for authentication with short secrets”, Proc, USENIX Security
Symp.2003

[9] Bruce Schneier, “Schneier on Security: Cryptanalysis of SHA-1” ,
htttp://www.schneier.com/blog/archives/20005/02/cryptanalysis_o_html,
Februry 18, 2005.

[10] E. Bresson, O. Chevassut and D. Pointcheval,
A Security Solution for IEEE 802.11's Ad-hoc Mode: Password-
Authentication and Group-Diffie-Hellman Key Exchange,
International Journal of Wireless and Mobile Computing. Special Issue
on Security of Computer Network and Mobile Systems. Volume 2,
Number 1, pages 4-13. © IJWMC, Inderscience, 2007.

[11] A.Allan, reserch note, Gartner reserch, G00124979, dec, 2004

 AUTHORS PROFILE

 [1] Dr. R. Shashikumar is presently working as a Professor

in E & C dept, SJCIT, Chikballapur, Karnataka,
India. He is having 10 years of teaching and 6
years of Industry experience. His areas of
interest includes ASIC, FPGA, Network
Security, Cryptography.

ISSN : 0975-3397 816

Dr. R.Shashikumar et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 808-817

[2] Prof.C.N.Vijayakumar M.E, MISTE,
MIE, MIETE is presently working as a HOD
and Assistant Professor in the department of
Telecommunication engg , SJCIT,
Chikballapur, Karnataka, India. He is having
15 years of teaching experience. His areas of
interest are Power Electronics, Low Power

VLSI, ASIC and Cryptography.

[3] Mr. H.M.Kotresh M.E, MISTE is working as a Senior Lecturer
in the Dept of E & C, SJCIT, Chikballapur, Karnataka, India. He is
having 7 years of teaching experience. His areas of interest are
VLSI, Network security, Cryptography.

[4] Mr. K.Vijaykumar is M.Tech student in the department of
Electronics, SJCIT, Chikballapur. His areas of interest are
networking, image Processing and cryptography.

ISSN : 0975-3397 817

