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Abstract—Recursive sets in the Euclidean space are those sets 
which can be effectively approximated by finitely many points for 
an arbitrary given precision. On the other hand, co-recursively 
enumerable sets are those sets whose complements can be 
effectively covered by open balls. If a set is recursive, then it is co-
recursively enumerable, however the converse is not true in 
general. In this paper we investigate the subsets of the Euclidean 
space called triods and we prove that each co-r.e. triod with 
computable endpoints is recursive. 
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I.  INTRODUCTION 

A real number x  is said to be computable ([7, 8]) if 

there exist recursive functions NN :,, cba , 0)( kb , 

Nk , such that  

,2<
)(

)(
1)( )( kkc

kb

ka
x   

Nk . In other words, x  is computable if there exists an 

algorithm which, for a given Nk , gives a rational number 

which is a k2 approximation of x . 

A sequence of real numbers )( ix  is said to be 

computable if there exist recursive functions 

NN 2:,, cba , 0),( kib , N ki, , such that  

,2<
),(

),(
1)( ),( kkic

i kib

kia
x   

N ki, . 

Let 1n . A point nx R , ),,(= 1 nxxx   is 

said to be computable if nxx ,,1   are computable numbers. 

We similarly define the notion of a computable sequence in 
nR . 

The central notion of this paper is the notion of a 

recursive (computable) subset of the Euclidean space nR . A 

closed subset S  of nR  is said to be recursive if =S  or if 

the sequence of real numbers )),(( Sxd i  is computable for 

each computable sequence )( ix  in nR . Here ),( Sxd i  

denotes the distance from the point ix  to the set S , i.e. the 

number }|),({inf Sssxd i   ( d  is the Euclidean metric on 
nR ). 

If a nonempty set nS R  is recursive, then S  

contains a recursive point, moreover recursive points of S  are 

dense in S . In fact, it can be shown that the following result 

holds (for simplicity we assume here that S  is bounded): a 

closed nonempty nS R  is recursive if and only if there 

exists a computable sequence )( ix  in nR  such that Sxi  , 

Ni , and a recursive function NN :f  such that  

),,2(
)(

0=

k
i

kf

i

xBS    (1) 

 Nk ; here, for na R  and 0>r , we denote by 

),( raB  the open ball of radius r  centered at a , i.e. 

}<),(|{=),( rbadbraB nR . The relation (1) means 

that any point of S  is k2 close to some of the points 

)(0 ,, kfxx  , hence the finite set of points },,{ )(0 kfxx   

represents a k2 approximation of S . 
Recursive sets can be considered as those sets which 

can be displayed by a physical computer for an arbitrary given 
resolution (as discussed in [1]). 

There is also the notion of a co-recursively 
enumerable set, which is weaker than the notion of a recursive 

set. A closed set nS R  is said to be co-recursively 

enumerable (co-r.e.) if the complement of S  can be covered 
effectively by open balls, i.e. if there exist a computable 

sequence )( ix  in nR  and a computable sequence )( ir  of 

positive real numbers such that  
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It is easy to see that each recursive set is co-r.e. On the other 
hand, a co-r.e. set need not be recursive, moreover there exists 
a co-r.e. set which does not contain any recursive point. 

Although the implication  
recursiveSercoS  ..   (2) 

 fails to be true in general, it can be shown that under certain 
topological assumptions (2) holds. For example, if S  is a 
topological circle or an arc with computable endpoints, then 
(2) holds ([5, 4]). 

In this paper we prove that (2) also holds whenever 

S  is a triod with computable endpoints. By a triod in nR  
(see [3]) we mean a set homeomorphic to  

[0,1]).({0}{0})1,1]([= T  (3) 

 Hence nS R  is a triod if and only if there exists a 

continuous injection nTf R:  such that STf =)( . 

 

 
 

Figure 1.  Examples of triods                                        

 If S  is a triod, then a point Sx  is called endpoint if 

}{\ xS  is connected. If STf :  is a continuous 

injection, then 1,0)(f , (1,0)f  and (0,1)f  are all 

endpoints of S . Hence each triod has exactly three endpoints. 
 

II. CO-R.E. TRIODS 

In general, co-r.e. triods need not be recursive, as the 
following example shows.   
Example 1 Let  0,1  be a non-computable number such 

that the set ,1][  is co-r.e. in R  (Example 2.2. in [5]). Then 

{0},1][   is co-r.e. in 2R  (Example 4 in [4]) and therefore 

the set 1,1])[({1}{0}),1]([= S  is co-r.e. as the 

union of co-r.e. sets. Clearly, S  is a triod, however S  is not 

recursive since =)((0,0),Sd , which is a non-computable 

number.  

Let us suppose now that S  is a co-r.e. triod in nR  

with computable endpoints ba,  and c . Hence there exists an 

effective procedure which lists open balls which cover the 
complement of S  and, moreover, for each of the points 

cba ,,  there exists an algorithm which computes that point 

for an arbitrary given precision. We want to prove that S  is 
recursive. The idea is to find an effective procedure which, for 

a given Nk , gives a sequence of sets mAA ,,0   with the 

following properties:   

(I)  k
iA 2<diam , },{0, mi  ; 

(II)  mAAS  0 ;  

(III)   SAi , },{0, mi  .  

 Here iAdiam  denotes the diameter of the set iA , i.e. the 

number },|),({sup iAyxyxd  . Why are these three 

properties important? First, we have the following proposition, 
which is an easy consequence of the triangle inequality (see 
also Proposition 6 in [4]). 

Proposition 1  Let 0>  and let X  and Y  be nonempty 

subsets of nR . Suppose that for each Xx  there exists 

Yy  such that <),( yxd  and for each Yy  there 

exists Xx  such that <),( xyd . Then  

,|),(),(|  YzdXzd  

for each nz R .  

 Now, if we have sets mAA ,,0   with properties (I)-

(III), then for each Sx  there exists mAAy  0  

such that kyxd 2<),( , which follows trivially from (II), 

and for each mAAy  0  there exists Sx  such 

that kxyd 2<),( , which follows easily from (III) and (I). 

Therefore, by Proposition 1,  

,2|),(),(| 0
k

mAAzdSzd    

for each nz R . This means that if )( ix  is a computable 

sequence in nR , for each Ni  the distance ),( Sxd i  can 

be approximated by the number  

).,( 0 mi AAxd   (4) 

 So, if for Nki,  we can effectively compute the number 

(4), the sequence )),(( Sxd i  is computable and S  is a 

recursive set. 

The idea of finding sets mAA ,,0   with properties 

(I)-(III) comes from [4], where this concept is used in the 
proof of the fact that co-r.e. arc with computable endpoints 
must be recursive (actually of a more general fact). The 
essential notion in that proof is the notion of a chain. 

A finite sequence mCC ,,0   of nonempty open 

subsets of nR  is said to be a chain in nR  if  

1,||  jiCC ji  
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},{0,, mji   ([6]). We say that iC  is a link of the 

chain mCC ,,0  , },{0, mi  . 

 
Figure 2.  A chain 

 

In general, if ),,(= 0 mCC C  is a finite sequence of 

subsets of nR , then we will denote by C  the union 

mCC 0  and we will say that C  covers X , 
nX R , if CX . If iC  is nonempty for each 

},{0, mi  , then we define  

).(diammax=mesh
0

i
mi

C


C  

Now, if S  is an arc in nR  (a continuous injective image of 

the segment [0,1]) with endpoints a  and b , then (see [4]): 

(i) for each Nk  there exists a chain 

),,(= 0 mCC C  which covers S  such that 
k2<meshC  and 0Ca , mCb ; 

(ii) if ),,(= 0 mCC C  is a chain which covers S  

such that 0Ca , mCb , then each link of C  intersects 

S . 
These two properties are crucial in the proof of the 

fact that a co-r.e. arc S  with computable endpoints a  and b  

must be recursive. Namely, using the fact that S  is r.e. and a  

and b  are computable, for each Nk  we can effectively 

find some chain C  with property (i). This means that 

properties (I) and (II) are satisfied (for the set S  and the finite 

sequence C ), however (III) also holds which follows from 
(ii). 

In our case, in the case of a triod, we modify this 

proof in the following way. We say that chains mCC ,,0   

and mDD ,,0   are complementary if for all 

},{0, mi  , },{0, mj    the following implication 

holds:  

.==  mjandmiDC ji   

A triple ),,( EDC  is called a T-chain if DC,  and E  are 

chains each two of which are mutually complementary. A T-
chain ),,( EDC  is said to be an  T-chain, where R , 

if <meshC , <meshD  and <meshE . We say 

that a T-chain ),,( EDC  covers X , nX R , if  

     .EDC  X  

 

 
Figure 3.  A T-chain 

Suppose that S  is a co-r.e. triod with computable endpoints 

ba,  and c . We want an effective procedure which, for a 

given Nk , gives a triple ),,( EDC  with the following 

properties:   

(I*)  ),,( EDC  is a k2 T-chain; 

(II*)  ),,( EDC  covers S ; 

(III*)  each link of the chains DC,  and E  intersects 

S . 
 Namely, if we have a T-chain with properties (I*), 

(II*) and (III*) and if ),,(= 0 mCC C , 

),,(= 0 mDD D , ),,(= 0 mEE E , then, for the the set 

S  and the finite sequence of sets 

mmm EEDDCC  ,,,,,,,, 000   properties (I)-(III) 

hold. So the existence of an effective procedure which, for a 
given Nk , gives a T-chain with properties (I*), (II*) and 

(III*) implies that S  is recursive. 
However, such a procedure do exist: in the same way 

as in case of arcs in [4] we can, for a given Nk , effectively 

find a triple ),,( EDC  such that   

    (1*)  ),,( EDC  is a k2 T-chain;  

    (2*)  ),,( EDC  covers S ;  

    (3*)  0Ca , 0Db  and 0Ec ,  
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where 000 ,, EDC  are first links of the chains EDC ,,  

respectively. Such a T-chain clearly satisfies properties (I*) 
and (II*), but it also satisfies property (III*). If we suppose, for 
example, that there exists some },{0, mi   such that 

 =SCi , then clearly 1i  and, if mi < ,  

,10  iCC   

 

   ED   mi CC 1  

are two disjoint open sets whose union covers S  and each of 

them intersects S . This is impossible since S , as a triod, is a 
connected set. Hence mi = , but this also, in the same way, 
gives a contradiction. 

III. FORMAL PROOF 

In this section we will give some technical details 
which will formalize the idea of the previous section. We will 
see that the main result of this paper, the result that each co-
r.e. triod with computable endpoints is recursive, holds not just 
in the Euclidean space, but more generally in some 
computable metric space. 

A computable metric space is a tuple ),,,( dX  

where ),( dX  is a metric space and XN:  is a 

sequence dense in ),( dX  such that the function ,2 RN   

),(),( jidji   is computable. (The notion of a 

computable function RN 2  is defined in the same way as 
the notion of a computable sequence of real numbers.) 

 

Example 2  Let 1n  and let )( i  be some computable 

sequence in nR  such that the set }|{ Nii  is dense in 
nR . Then ))(,,( i

n d R  is a computable metric space, 

where d  is the Euclidean metric.   
 
Let ),,( dX  be a computable metric space. Let 

)( iq  be some computable sequence of rational numbers (in 

the sense that 
)(

)(
1)(= )(

ib

ia
q ic

i  , Ni , where 

NN :,, cba  are recursive functions) such that  

.0,=}|{  QNiqi  

Let NN :, 21   be some recursive functions such that  

.=}|))(),({( 2
21 NNiii   

 

For Ni  we define the sets iI  and iI  by  

 ).,(= ),,(= )(2)(1)(2)(1 iiiiii qBIqBI    

Here, for Xx  and 0>r , we denote by ),( rxB  the open 

ball of radius r  centered at x  and by ),( rxB  the 

corresponding closed ball, i.e. 
}<),(|{=),( ryxdXyrxB  , 

}),(|{=),( ryxdXyrxB  . 

The sets iI  represent ``rational balls'' and iI  

``closed rational balls'' in ),,( dX . The next step is to find 

some effective enumeration of all finite unions of rational 
balls. In order to do this, we first fix some recursive functions 

NN 2:  and NN :  with the following property: 

each finite sequence maa ,,0   in N  is equal  

))(,(,,0),( jjj    

for some Nj . We are going to use the following notation: 

ij)(  instead of ),( ij  and j  instead of ).( j  Hence for 

each Nm  and Nmaa ,,0   there exists Nj  such 

that  

).)(,,)((=),,( 00 jm jjaa   

For Nj  we define  

.= )(0)(
j

jjj IIJ   

The sets jJ , Nj , represent finite unions of rational balls 

in ),,( dX . 

Let ),,( dX  be a computable metric space. We 

say that Xx  is a computable point in ),,( dX  if there 

exists a recursive function NN :f  such that 
k

kfxd 2<),( )( , Nk . 

A closed subset S  of ),( dX  is said to be 

recursively enumerable in ),,( dX  if  

}|{  iISi N  

is a recursively enumerable subset of N  (in sense of classical 
recursion theory). 

A closed subset S  is said to be co-recursively 

enumerable in ),,( dX  if =S  or there exists a 

recursive function NN :f  such that  

.=\ )(if
i

ISX 
N

 

We say that S  is a recursive set in ),,( dX  if S  is both 

recursively enumerable and co-recursively enumerable. 
 

Example 3 Let ))(,,( i
n d R  be the computable metric 

space of Example 2. Then nx R  is a computable point in 
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this computable metric space if and only if x  is a computable 

point in the sense of Section I. Furthermore, S  is a co-r.e. set 

in this computable metric space if and only if S  is co-r.e. 

subset of nR  in the sense of Section I and, similarly, S  is 

recursive in ))(,,( i
n d R  if and only if S  is a recursive 

subset of nR .  
 

We say that a computable metric space ),,( dX  

has the effective covering property ([2]) if  

}|),{( 2
ji JIji N  

is a recursively enumerable subset of 2N . For example, the 

computable metric space ))(,,( i
n d R  of Example 2 has the 

effective covering property ([4]). 
 

Theorem 1 Let ),,( dX  be a computable metric space 

which has the effective covering property and compact closed 
balls. Let S  be a co-r.e. triod in this space with computable 

endpoints ba,  and c . Then S  is recursive.  

 Proof.  For Nl  let lH  be the finite sequence of sets  

.,, )(0)(
l

ll JJ   

The idea of the proof given in the previous section now gets a 
precise form: we want an algorithm which, for a given 

Nk , gives N321 ,, lll  such that for the triple 

),,(
321 lll HHH  properties (1*), (2*) and (3*) hold. In other 

words, we want to prove that there exist recursive functions 

NN :,, 321 LLL  such that for each Nk  the following 

holds:   

    (1)  ),,( )(3)(2)(1 kLkLkL HHH  is a k2 T-chain;  

    (2)  ),,( )(3)(2)(1 kLkLkL HHH  covers S ;  

    (3)  
0))(1( kLJa , 

0))(2( kLJb  and 

0))(3( kLJc .  

 
First, note the following: for each Nk  there exist 

numbers N321 ,, lll  with described property. Indeed, using 

the fact that S  is a continuous injective image of the set T  

defined by (3), we can divide S  into the parts mCC ,,0  , 

mDD ,,0  , mEE ,,0   as in Figure 4, where each of these 

 

 
 

Figure 4.                                       Figure  5. 

sets has sufficiently small diameter. Using the fact that these 
sets are compact, it is easy to conclude that each of them can 

be replaced by a bigger set of the form jJ  for some Nj  in 

such way that new sets form a T-chain ),,( EDC  which 

satisfies (1*), (2*) and (3*) (Figure 5). Each link in this T-
chain is finite union of rational balls and it follows that there 

exist numbers 321 ,, lll  with desired property. 

Using the previous construction and applying the 
arguments used in the proof of Theorem 35 in [4], we get in a 
similar way as in [4] that there exist recursive functions 

NN :,, 321 LLL  with properties (1)-(3). As noticed 

before, this gives the recursiveness of S . Formally, we apply 

Lemma 14 in [4] and the fact that S  is recursive follows. 
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