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ABSTRACT- Open shop scheduling problem is a common 
scheduling problem and has wide engineering applications 
in manufacturing. In some industrial cases, open shop 
scheduling could be a long scheduling problem as an 
aircraft production. In these cases, time value of money 
plays a significant role in determining a schedule cost. This 
paper addresses the problem of minimizing sum of weighted 
mean flow time and intermediate storage cost in an open 
shop scheduling environment. The main contribution of this 
work is to concern time-dependent weights which results in 
a more realistic insight for decision makers via considering 
time value of money in long scheduling problems. We have 
formulated the problem as a mixed integer linear 
programming model. Due to the nondeterministic 
polynomial time complexity of the problem, a novel genetic 
algorithm is also presented to solve the problem in 
reasonable time. Computational results indicate remarkable 
improvement of the objective function as compared with the 
case of having constant weights over scheduling horizon. 

Keywords: Open shop scheduling, time value of money, mixed 
integer linear programming, genetic algorithm. 

 
1. INTRODUCTION 

 
In an open shop scheduling problem, we have a set that 
consists of m machines and another set that consists of n 
jobs which must be operated by machine set. We assume 
that needed time for each operation is given. Another 
assumption is that each job can be operated by only one 
machine at a time and also each machine can process 
only one job at a time. 

This problem has wide use in industries. For example 
consider repairs of a huge airplane that may be include its 
engines and electrical system. These operations are both 
necessary but it is impossible to do them simultaneously.    
Other cases such as: in automobile repair, quality control 
centers, class assignments, examination scheduling, and 
satellite communications are described by Kubiak et al. 
[1], Liu and Bulfin [2] and Prins [3]. 

Suppose that ܥ is the completion time of job ܬ, j= 1, 2, 
… , n,. In this paper, the objective function is to minimize 
sum of the weighted completion times which could be 
referred as ܱ|| ∑൫ ܹܥ൯. 

Most studies in this scope dealt with the minimization 
total completion time. Gonzalez et al. [4] proposed an 

algorithm with linear polynomial time complexity for the 
two-machine open shop problem. The preemptive 
problem can be solved in polynomial time for an 
arbitrary number of machines.  

For the problem of makespan minimization in open 
shop scheduling, a number of branch and bound and 
heuristic algorithms have been devised. It can be said that 
Dorndorf et al. [5] have presented the most efficient 
exact algorithm. They have applied constraint 
propagation methods to discard non optimal solution 
from the solution space. Brasel et al. [6] presented some 
heuristic algorithms based on matching algorithms and  
insertion of operations which are applied into partial 
schedules combined with a search method. Gueret and 
Prins [7] have proposed Some other heuristic algorithms. 

Among evolutionary algorithms, Alcaide et al. [8] 
developed a tabu search algorithm for the open shop 
scheduling to minimize makespan. A hybrid genetic 
algorithm for solving the open shop problem with 
makespan minimization was developed by Liaw [9]. 
Prins [10] has also presented another genetic algorithm 
which leads to excellent solutions. 

In recent years, multi-criteria open shop scheduling 
problems has attracted researchers. Kyparisis and 
Koulamas [11] and Gupta et al. [12] have presented some 
polynomial solvable cases of the two-machine problem 
with heuristics to search for a schedule with minimum 
mean flow time subject to minimum total completion 
time. In some recent works on multi-criteria scheduling 
problems one objective is to minimize of mean flow 
time. On the other hand, there exist only a small number 
of works whose objective function is only minimization 
of weighted mean flow time.  

A common assumption of works in the literature is that 
weights are constant over planning horizon and not time 
dependent. The idea that money available at the present 
time is worth more than the same amount in the future 
due to its potential earning capacity is core principle of 
benefit-cost analysis. Since w୨ in the proposed objective 
function is an estimation for worth of j th job, it would be 
more realistic to consider weights as time dependent 
parameters. In this paper, we addresses the problem of 
minimizing summation of time-dependent weighted 
mean flow time with intermediate storage cost in open 
shop environments. This problem is formulated as a 
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mixed integer linear programming model. Due to the NP-
hard complexity of the problem, exact methods are only 
efficient to solve small instances. So, an effective genetic 
algorithm is proposed to solve the problem. 
Computational results demonstrate that the proposed 
algorithm obtains high quality solutions in reasonable 
time. 

The rest of this paper is organized as follows. In 
Section 2, the mixed integer linear programming model is 
presented. We elaborate on the proposed genetic 
algorithm in Section 3. Section 4 includes computational 
results. Section 5 concludes the paper. 

 
2. The mixed integer linear formulation 

 
Sets, indices, parameters and variables used in the 
mathematical model are as follows: 
 
Sets and indices: 
 .Jobs set :ܬ
 .Machines set :ܫ
,ݐ  .Ԣ: Time indicesݐ
݆: Job indices. 
݅: Machine indices. 
 
Parameters: 
݊: Number of jobs. 
݉: Number of machines. 

ܲ: Processing time job j on machine i. 

௧ܷ : Planning horizon. 
ܹ௧: Completion weight job j if all of its processes 

finishes at time t. 
 ௧: Intermediate storage cost job j at time t if this job isܪ
free at the time. 
M: A big value which is determined regarding to other 
parameters of the problem. 
 
Variables: 
ܨܹ ܶ: Weighted flow time job j. 
 .௧: Intermediate storage cost job j at time tߣ

ܺ௧: Equals 1 if machine i is processing  job j at time t 
and 0 otherwise. 

 .: Completion time job j on machine iܥ
 .: Total completion time job jܥ

ܼ௧: Equals 1 if job j is completed at time t and 0 
otherwise. 

 .௧: Intermediate storage cost job j at time tߣ
 

Using these definitions, the proposed mathematical 
model is as follows: 
 

ሺܼሻܰܫܯ ൌ  ܨܹ ܶ



ୀଵ

   ௧ߣ



ୀଵ



௧ୀଵ

                                  ሺ1ሻ 

 ܺ௧



ୀଵ

 ݅               1 א ,ܫ ݐ א ሼ1,2, … , ௧ܷሽ                ሺ2ሻ 

 ܺ௧



ୀଵ

 ݆               1 א ,ܬ ݐ א ሼ1,2, … , ௧ܷሽ                ሺ3ሻ 

 ܺ௧



௧ୀଵ

ൌ ܲ             ݆ א ,ܬ ݅ א  ሺ4ሻ                                   ܫ

ห ܺሺ௧ାଵሻ െ ܺ௧ห



௧ୀଵ

 ݆                   2 א ,ܬ ݅ א  ሺ5ሻ           ܫ

ܥ ൌ
∑ ݐ ൈ ܺ௧


௧ୀଵ

ܲ
 ܲ

2
݆                 א ,ܬ ݅ א  ሺ6ሻ           ܫ

ܥ  ݆                                               ܥ א ,ܬ ݅ א  ሺ7ሻ           ܫ

ܥ ൌ  ݐ ܼ௧
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݆ א ,ܬ ݐ א ሼ1,2, … , ௧ܷሽ                                                   ሺ11ሻ 

ܺ௧, ܼ௧ א ሼ0,1ሽ   ݅ א ,ܫ ݆ א ,ܬ ݐ א ሼ1,2, … , ௧ܷሽ     ሺ12ሻ 

 
Equation (1) remarks that objective function includes 

weighted flow time and intermediate storage cost. 
Constraint (2) implies that on each time t, machine i can 
process at most one job. Similarly, Constraint (3) states 
that on each time t, at most one machine could process 
job j. Constraint (4) notes that processing time job j on 
machine i equals ܲ. Regarding constraint (5), jobs are 
forced to be processed consecutively. This constraint is 
not a linear constraint, but it could be replaced by the two 
following linear constraints: 

 ܻ௧



௧ୀଵ

 ݆                                         2 א ,ܬ ݅ א  ሺ5Ԣሻ          ܫ

ܻ௧  ܺሺ௧ାଵሻ െ ܺ௧ 

݅ א ,ܫ ݆ א ,ܬ ݐ א ሼ1,2, … , ௧ܷሽ                                     ሺ5ᇱᇱሻ 

ܻ௧ א ሼ0,1ሽ        ݅ א ,ܫ ݆ א ,ܬ ݐ א ሼ1,2, … , ௧ܷሽ       ሺ5ԢԢԢሻ 
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In Constraint (6), we have formulated ܥ by decision 
variables ݆ܺ݅ݐ. Constraint (7) states that total completion 
time job j is greater than completion job j on machine i. 
Constraints (8) and (9) force ܼ௧s to take proper values. 
Constraint (10) implies that if job j is completed at time t 
( ܼ௧ ൌ ܨܹ ,(1 ܶ must be greater than time-dependent weighted 
flow time (ܹܨ ܶ  ܹ௧ܥ). In this case, regarding objective 
function presented by Equation (1), model will set 
ܨܹ ܶ ൌ ܹ௧ܥ. In case of having ܼ௧ ൌ 0, this constraint 
will be ignored by the model (ܹܨ ܶ  െ∞). Intermediate 
storage cost is formulated using Constraint (11). 
Regarding this constraint, if job j is free at time t 
(∑ ܺ௧


ୀଵ ൌ 0) and it is not completed yet (∑ ܼ௧ᇲ

௧ିଵ
௧ᇲୀଵ ൌ

0), we will have ߣ௧   ௧. In this case, the mathematicalܪ
model will consider ߣ௧ ൌ  ௧ to minimize the objectiveܪ
function. In other case (∑ ܺ௧


ୀଵ ൌ 0 ൌ 1 or ∑ Ԣݐ݆ܼ

െ1ݐ
Ԣൌ1ݐ ൌ

1), Constraint (11) will be transformed to ߣ௧  0 
or ݆ݐߣ  െ∞. 
 

3. The proposed genetic algorithm 
 

First time, Holland [14] presented Genetic algorithms 
(GAs). They wanted to solve industrial problems which 
were to complex to be solved using the exact algorithms 
available at that time. Today, GAs are used as one of the 
usual metaheuristic algorithms for solving optimization 
problems. The main idea in GAs originated from 
Darwin’s survival theory which states it is likely that 
good parents produce better offspring. 

This algorithm searches a problem space with a 
population of solution called chromosomes. Each 
chromosome has a fitness value according to its quality. 
A set of search operators are used to find new 
chromosomes in solution space until some stopping 
criteria happen. In one generation of a typical GA, the 
best chromosomes of the current population are 
reproduced in the next generation. A selection 
mechanism is applied so that the chromosome with the 
higher fitness value has a more chance to be selected. 
The selected chromosomes mate and produce new 
offspring. Then each offspring might be mutated by 
mutation mechanism. The values of new population 
objective function is then calculated again and the this 
process is repeated [15]. 

The encoding representation applied in the proposed 
GA is a random key matrix representation. To generate an 
initial schedule, a matrix with m rows and n columns 
including random numbers in the range of [0,1] must be 
produced.  In this matrix, each row i  is representative of 
machine i and each column  j is representative of  job j. A 
sample of this matrix for a problem with 4 machines and 
6 jobs is depicted in Figure 1. 

To determine sequence of jobs on each machine i, we 
entries of row I must be sorted. The job with the smallest 
value in row i is the first job to be set up on machine i. in 

the same way, other jobs must be determined to be 
processed on machine i. In order to decide on the 
sequences of machines that processes job j, random 
numbers in column j must be sorted and sequence of 
machines could be determined likewise. Then having 
jobs and machine sequences, one could schedule jobs on 
machines as soon as possible in order to minimize the 
proposed objective function. 

We have used a uniform crossover operator in which 
for each pair of solution, a random matrix must be 
generated. If the random number in cell (i, j) of this 
matrix is smaller than a predetermined value , the 
corresponding each cell (i, j) paired solutions must 
replaced by the other. The mutation operator applied in 
the proposed GA, is a common uniform mutation 
operator. 

 
 
 
 
 
 
 
 
 
 

4. Computational results 
 

In this section, we investigate quality of solutions obtained by 
the proposed genetic algorithm. To do this, For each (n, m) א 

({5, 6, 7, 8, 9, 10} × {2, 3, 4, 5}), 5 instances are generated and 
solved by the proposed algorithm. In generating test problems, 
for each job j, ݓଵ is chosen in the range of [0.1, 1] and other 
ݐ) ௧sݓ א ሼ2, … , ௧ܷሽ) are considered to be ݓଵሺ1   ሻ௧ in whichݎ
r is the inflation rate assumed to be 0.1 in this paper. For each 
job j and machine i, ܲ is generated in the range of [10, 
30].Since we want to concentrate on the effect of time-
dependent weights, ܪ௧ ݏ are assumed to be equal 0. 

Computational results are presented in Table 1.In this 
table, n and m are number of jobs and machines, 
respectively. UB is an upper bound of problem obtained 
by producing random solutions. SOLGAሺୢୣ୮ሻ is the 
objective function of test problems with time-dependent 
weights obtained using the proposed genetic algorithm. A 
lower bound is also presented in Table 1 (LB) which is 
calculated by considering C୨ ൌ ∑ P୧୨

୫
୧ୀଵ  and using 

Equation (1). In order to evaluate quality of obtained 
schedules, percentage deviation index (PDI) is applied 
defined by PDI ൌ ൫SOLୢୣ୮ െ LB൯ ሺUB െ LBሻ⁄ . Lower 
amounts PDI shows that the proposed genetic algorithm 
is more effective in finding best solutions. Also, to show 
impact of considering time-dependent weights comparing 
to the case of having constant weights over planning 
horizon, we have solved the generated problems for both 
cases. 

 J1 J2 J3 J4 J5 J6 

M1 0.09 0.12 0.25 0.35 0.18 0.75 

M2 0.53 0.40 0.13 0.19 0.72 0.49 

M3 0.86 0.34 0.99 0.48 0.29 0.36 

M4 0.32 0.60 0.02 0.85 0.21 0.76 

 
Figure1. A sample of solution representation. 
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In order to have a more rational comparison, constant 
weight for each job j is considered to be average of time-
dependent weights job j over planning horizon (w୨ ൌ

൫∑ w୨୲
U౪
୲ୀଵ ൯ U୲ൗ ) and using the proposed genetic algorithm 

a schedule is obtained for each test problem. Then 
obtained solutions are evaluated by Equation (1) using 
time-dependent weights. Amounts of this objective 
function for test problems, is presented under 
column SOLC୭୬ୱ. Comparison of these two cases is 
calculated by Δୢୣ୮,ୡ୭୬ୱ ൌ ൫SOLC୭୬ୱ െ SOLୢୣ୮൯ SOLୢୣ୮ൗ . 
Greater amounts of Δୢୣ୮,ୡ୭୬ୱ, shows that using time 
dependent weights have been more effective on the 
quality of solutions as compared with the constant 
weights. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

5. Summary and conclusion 
 

In this paper, we have studied the open shop scheduling 
problem with time-dependent weights in minimizing 
weighted mean flow time. Considering weights as time-
dependent factors results in a more realistic situation in 
long scheduling problem. For this problem, a 
mathematical formulation is presented. In addition, a 
genetic algorithm is proposed to solve the problem. 
Computational results demonstrate that the proposed 
genetic algorithm finds high quality solutions. 
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Table 1. Computational results 

௦ܮܱܵ ௗܮܱܵ ܤܷ ݉ ݊  ܤܮ
 ܦܲ
ሺ%ሻ 

Δୢୣ୮,ୡ୭୬ୱ

5 2 45696 1285 1382 58 2.69 7.03
5 3 73009 2419 2913 61 3.23 16.95 
5 4 106276 4416 5704 77 4.09 22.59 
5 5 147439 7890 10549 115 5.28 25.21 
6 2 88120 2455 2694 59 2.72 8.88
6 3 129529 4501 5843 73 3.42 22.96 
6 4 138868 8067 10504 101 5.74 23.20 
6 5 210815 14209 19061 96 6.70 25.46 
7 2 90341 4538 5223 63 4.96 13.12
7 3 130875 8152 10778 53 6.19 24.36 
7 4 241083 14386 20095 117 5.92 28.41 
7 5 369277 25038 37553 99 6.76 33.33 
8 2 116541 8188 9668 57 6.98 15.31
8 3 170216 14471 20372 89 8.45 28.97 
8 4 313405 25215 35336 112 8.01 28.64 
8 5 395342 43443 61717 149 10.9 29.61 
9 2 184450 14507 20731 43 7.84 30.02
9 3 297657 25300 36241 94 8.47 30.19 
9 4 497175 43620 62569 86 8.76 30.28 
9 5 841808 74508 107972 96 8.84 30.99 
10 2 183781 14507 21203 37 7.88 31.58
10 3 248231 25301 38755 78 10.1 34.72 
10 4 471943 43620 69172 131 9.22 36.94 
10 5 601144 74508 118682 140 12.3 37.22 

Average 253876 21023 30613 87 6.90 25.67 
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