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Abstract— This paper proposes a statistical approach by a 
modified Markov chain process model and entropy function in 
the analysis of a large data set. The basic idea is that entropy and 
conditional entropy are used to measure the information content. 
In such analysis of large data sets including signal and image 
processing, unsupervised partitioning of data is required to build 
similar classes or clusters. The idea behind this is to identify each 
data item unambiguously as a member of particular class or 
cluster. The issue of partitioning is viewed as an information 
theoretic problem and it has been shown that the minimization of 
partitioning entropy may be used to evaluate the most probable 
set of data items. The data set considered for the simulation are 
the scanned OMR application forms of the candidates applying in 
various courses of a University.  Classes are defined and inter 
dependence is measured on the basis of Markov process model 
and entropy analysis.. 

Keywords- Markov Chain, Clusters, Entropy, Uncertainty, 
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I.  INTRODUCTION  

Shanon [1] defined the entropy of a random variable, which 
takes on a finite set of arbitrary values by analogy with the 
physical Boltzmann entropy. If the random variable A takes on 
a finite number of values Ak (k = 1, 2, .., m) with the 

probabilities pk > 0, 


m

k 1

 pk = 1; then the Shanon’s entropy of 

the random variable A is defined as  

H (A) = - 


m

k 1

 pk log pk    (1)  

Let us assume Ak form a complete ordered set / system of 
events with the associated probability being given by the 
ordered set { p1, p2, …, pn}. 
The probabilities satisfy the property:  
1   pi   0,  i 




n

i 1

 pi = 1 

We propose the following quantity as a suitable measure of the 
uncertainty of the finite schema: 

E = 


n

i 1

 pi 
–p

i  

And we always take pi 
–pi = 1 for pi = 0. Let’s call the quantity 

E as the power entropy. The power entropy is related to the 
Shanon’s entropy  

H  = - 
1k

 pi loga pi
 

As 
E = aH , a > 0 
Since exponential is a monotonic transformation, maxima of E 
occurs for the same configuration of probabilities as the 
configuration for H. That is the maxima of E occurs when all 
the events are equi-probable, thus Max E occurs when  
pi = 1 / n,    ( i  {1,n}. 
For two mutually independent schemes A and B we have 
E(AB) = E(A) E(B) 
As H(AB) = H(A) + H(B) 
=> E(AB) = aH(A)aH(B) = E(A) E(B)   (2) 
When the two schemes are not mutually independent, let qkl be 
the probability that the event Bl of the scheme B occurs, given 
that the event Ak of the scheme A occured; so that the joint 
probability is  
rkl = pkqkl , ( 1  k   n; 1   l   m) 
Then, 

E(AB) = 
i

 
k

 (rik) 
r
ik 

= 


n

i 1

 


m

k 1

 [ pi qik] 
– p

i
 q

ik 

= 


n

i 1



m

k 1

 [pi –p
i]

q
ik 



n

i 1



m

k 1

[qik 
–q

ik]
p
i 

= 


n

i 1

[pi –p
i] 



m

k 1

q
ik 
 1 



n

i 1

[Ei (B)]p
i 

=E(A) E(B|A)     (3) 
Where we may regard Ei (B) as the conditional power entropy 
of the scheme B evaluated on the assumption that the event Ai 
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A1 A2 … An 
pi1 pi2 … pin 

 

of the scheme A. E(B|A) we designate as the conditional 
power entropy of the scheme B evaluated under the 
assumption that an event of the scheme A occurs. Equation (3) 
may be derived also as 
E(AB) = aH(AB) = aH(A)+H(B|A) 
=E(A) E(B|A) 
It is also apparent that (2) reduces to (1) when the two 
schemas are mutually independent. 
We also have, 
H(B|A)   H(B) 
=> aH(B|A)   aH(B) 
=> E(B|A)   E(B) 
Consistent with the view that the conditional entropy [3] is 
less than or equal to entropy of the scheme. 

II. ENTROPY OF MARKOV CHAIN 

A Markov chain can be regarded as an iterative process for 
getting the information for each data classes [4, 5]. This 
consists of a number of class states and transition probabilities. 
Information about the observations is exchanged from one 
state to another state during the iteration process Based on this 
information obtained, the observation for each data class are 
updated after each iteration and finally converges to a single 
output. Let the Markov chain has finite number of states A1, 
A2, …, An and with the transition probability matrix pik (I, k,= 
1,2,…, n). We denote by Pk the probability of the sate Ak (1  
k   n), so that in particular 


1k

 Pk Pkl = Pl      (l=1, 2, …, n) 

If the system is in state Ai, then its transitions to the different 
states Ak (k=1, 2, …, n) form a finite scheme 
 
 
 
 
The entropy of which is 

Ei= 


n

k 1

 [pik] 
-p

ik     (4) 

It depends on i and can be regarded as a measure of the 
amount of information obtained when the Markov chain 
moves one step ahead starting from the initial state Ai. 
From here two directions are possible: 

1. The mathematical expectation of Ei over all initial 
states is to be regarded as the measure of the average 
amount of information obtained when the given 
Markov chain moves one step ahead. 

E = 


n

i 1

Pi Ei = 


n

i 1

 


n

k 1

 Pi pik 
-p

ik 

2. Arbitrarily let us define 

E = 


n

i 1

 Ei 
P

i as the entropy of the chain. Ei may be taken as the 

conditional power entropy of the chain evaluated on the 

assumption that the event Ai had already occurred. In a same a 
one step more may be considered as the product event space 
A2 event. Then similar to conditional entropy E(B|A) we may 
define the one step entropy of the chain as: 

E(A|A) = 


n

i 1

 Ei 
P

i = 
i

 
k

 pik 
–p

ik
 P

i  (5) 

Similar to the one step entropy we may define the r step 
entropy as 

E(r) = 


n

i 1

 [Ei
(r)] Pi    (6) 

It seems reasonable to demand that  
E(r+s) = E(r) E(s) 

Or E(r) = Er 
Where E is the one step entropy of the chain. 
The relation is trivially true for r = 1. Assume that it is true for 
some r   1; we need to show that E(r+1) = Er+1 
Let the system be in the state Ai; the finite scheme which 
describes the fate of the system in the next r+1 trials, can be 
then regarded as the product of two dependent schemes: 

(A) The scheme corresponding to the immediately 
following trial with the entropy Ei and 

(B) The scheme describing the fate of the system in the 
next r trials; the entropy of this scheme is Ek

r, if the 
outcome of scheme A was Ak. As 

E(AB) = E(A) E(B|A) 
We have, 

Ei 
(r+1) = Ei 

(1) 


n

k 1

 [Ek 
(r)] pik    (7) 

Thus, 

H(r+1) = 


n

i 1

 [Ei 
(r+1)]P

i  

          = 


n

i 1

 (Ei
P

i) 


n

i 1



n

k 1

 [Ek
(r)]P

i
 p

ik 

          = E 


n

k 1

 [Ek
(r)] 



n

i 1

 P
i
 p

ik 

But, 


n

i 1

 Pi pik = Pk 

H(r+1) = E 


n

k 1

 [Ek
(r)]P

k 

          = E E(r) = E Er = Er+1    (8) 
Equation (4) represents the entropy of the system after r+1 
trials. For assigning appropriate weights based on self and 
conditional entropy let us consider a state transition from Ai to 
Aj with associated weight wij. If this transition is treated as an 
information flow the the state Aj gains information from state 
Ai. State Aj can in turn compute its conditional entropy 
E(Aj|Ai) based on state Ai’s observation. A greater weight 
should be assigned to this transition if the calculated 
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conditional entropy E(Aj|Ai)  is small. This implies that the 
weight (or transition probability) is inversely proportional to 
conditional entropy. The same argument applies to self-
entropy. The larger the self-entropy, the smaller the 
corresponding weight. If E(Aj|Ai) is smaller than E(Ai|Ai), then 
wij is larger than wii . This relationship can be written as: 

wij = η / E(Aj|Ai) Where η is a constant and i, j = 1, 2, …, m. 

Since, 




m

j 1

 wij = 1 , it follows that the weight is given by 

wij = 1 / (E(Aj|Ai) 


m

j 1

E(Aj|Ai))   (9) 

III. PROBABILITY ESTIMATION 

Let the chain sized s be Ergodic, then 
P { | (mi / s) – Pi | > δ } < Є  
Each possible result of the series of s consecutive trials of the 
given Markov chain can be written as the sequence Ak1, Ak2, 
…, Aks    
The probability of realizing the sequence c does not depend on 
the part of the chain where the series of trials begins (because 
of stationarity) and is obviously equal to 
p(c) =Pk1 pk1 k2 pk2 k3 … pks-1 ks 
Let i and l be two arbitrary numbers from l – n; and let mil be 
the number of pairs of the form kr kr+1 (1   r   s-1) in which 
kr = i, kr+1 = l. Then, 

p(c) = Pk1 


n

i 1



n

l 1

 (pil) 
m

il    (10) 

Let’s divide the sequence c in two groups as 1st group 
sequences satisfy the following properties 

1. It is a possible outcome p(c) > 0 
2. For any i, l  (i, l  {1, n}) the inequality | mil – sPi 

Pil | < s δ 
Where δ is any small positive number and s is 
sufficiently large. 

Thus for the members of this group  
mil = sPi Pil + s δ θil ,      | θil | < 1 
Thus, 

p(c)  = Pk1 
i


l

 (pil) 
sP

i
 P

il
 + s δ θ

il 

=> p(c) = [
il

 pil 
–p

i
 p

il ] 
–s Pk1

il

pil
 s δ θ

il 

=> p(c) E s = Pk1
il

 pil
 s δ θ

il 

=> [p(c)] 1/s E = (pk1) 
1/s 

il

 pil
 δ θ

il 

=> 1 – [p(c)] 1/s E = 1 - (pk1) 
1/s 

il

 pil
 δ θ

il 

=> 1 – [p(c)] 1/s E    η    (11) 
for sufficiently large s and δ. 
And similar to the original proof [2] we may prove the sum of 
the probability of all sequences (classes) that do not belong to 
the first group is less than Є.  

IV. EXPERIMENTATION 

The information content [7, 8]of the system consisting of the 
classes created from candidates data who are applying in a  
University. The various attributes of the data set are: 
Application_no, Family_Income, Religion, 10th_Marks, 
12th_marks, Gender, Pincode, Total and Rank  Classes have 
been created on the basis of the family income of the 
candidates. Based on the information the data set is divided in 
four broad classes viz: 
C1: 0 > Family_Income  1 Lac 
C2: 1 Lac > Family_Income  3 Lac 
C3:  3 Lac > Family_Income   5 Lac 
C4: Family_Income > 5 Lac 
The data set considered are for two consequtive years 2008 
and 2009. Based on the information Table 1 has been derived 
for  probability distribution of various classes in consideration.  
 

CLASSES / 
YEAR 2008 2009

C1 NO NO 
C2 YES YES 
C2 NO NO 
C3 YES  -- 
C3 YES YES 
C3 NO YES 
C3 NO YES 
C4 YES YES 
C4  -- NO 

 
Table 1 
The self and conditional entropy calculated for various classes 
are shown in Table 2. 
 

  2008 2008 2009 2009

  E(AI|AI) E(AJ|AI) E(AI|AI) E(AJ|AI)
C1 0.125 0 0.125 0
C2 0.25 1 0.25 1
C3 0.5 1 0.66 0
C4 0.125 0 0.5 1

 
Table 2 
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Figure 1 
Figure 1 shows the information content of individual classes. 
It has been observed that for the class C1 conditional entropy 
is zero for both the years, where as for other classes it has 
different values.  

V. CONCLUSION 

The main goal of this work was to investigate the applicability 
of Markov process model and entropy concept in the analysis 
of information derived from large data sets. A theoretical 
approach is taken for the derivation of entropy in Markov 
chains and then the concept is used in the analysis of data. The 
experimental results illustrate the usefulness of entropy 
measures in the derivation of information content in the 
classes of similar data values.  
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