
Rosy Madaan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 753-758

A Framework for Incremental Hidden Web Crawler

Rosy Madaan
Computer Science & Engineering

B.S.A. Institute of Technology & Management
Faridabad, India

Ashutosh Dixit
Department of Computer Engineering

Y.M.C.A. University of Science &Technology
Faridabad, India

A.K. Sharma
Department of Computer Engineering

Y.M.C.A. University of Science &Technology
Faridabad, India

Komal Kumar Bhatia
Department of Computer Engineering

Y.M.C.A. University of Science &Technology
Faridabad, India

Abstract—Hidden Web’s broad and relevant coverage of
dynamic and high quality contents coupled with the high
change frequency of web pages poses a challenge for
maintaining and fetching up-to-date information. For the
purpose, it is required to verify whether a web page has
been changed or not, which is another challenge.
Therefore, a mechanism needs to be introduced for
adjusting the time period between two successive revisits
based on probability of updation of the web page. In this
paper, architecture is being proposed that introduces a
technique to continuously update/refresh the Hidden Web
repository.

Keywords-WWW; Surface Web; Hidden Web; Search engine;
Crawler

I. INTRODUCTION

WWW [1, 12, 16] can be broadly divided into two parts:
Surface Web and Hidden Web [2, 6, 10]. The Surface Web
refers to the part of the Web that can be crawled and indexed
by general purpose search engines [3], while the hidden Web
refers to the abundant information that is “hidden” behind the
query interfaces and not directly accessible to the search
engines. Hence, there is need to access the Hidden Web
through their query interfaces. UUIC survey indicates that
there are more than 300,000 Hidden Web databases [2,6,10]
and 450,000 query interfaces available on the Web. The
contents on Hidden Web are not only increasing but also
spanning well across all topics.

The main characteristics of the Hidden Web are as follows:
 It has Broad, relevant Coverage,
 It contains High quality contents, and
 Its contents exceed all printed contents.

 The existing web crawlers can retrieve only Surface web
pages ignoring the large amounts of high quality information
‘hidden’ behind search forms that need to be filled manually
by the user. A search interface consists of many forms
elements like textboxes ,labels ,buttons etc. and the user is
expected to provide data in at least one of them before

submitting the form in order to obtain the response pages
containing the results of the query.
 In order to download the Hidden Web contents from the
WWW the crawler needs a mechanism for Search Interface
interaction i.e. it should be able to download the search
interfaces in order to automatically fill them and submit them
to get the Hidden Web pages as shown in Fig. 1.

Figure 1. Crawler Search Interface Interaction

 The retrieved Hidden web documents are thereof stored in a
repository. The Indexing function is performed by the Indexer
[3] module of the Search engine. User provides a query on the
query interface of the Search engine, the index is then
searched for finding out a corresponding match, if any and the
results are returned to the user.
 In this paper, a framework has been proposed that updates
the repository of search engine by re-crawling the web pages
that are updated more frequently. The paper has been
organized as follows: section 2 describes the current research
that has been carried out in this area; section 3 describes the
proposed work to crawl the hidden web documents
incrementally; section 4 shows the performance of proposed
work and last section concludes the proposed work.

ISSN : 0975-3397 753

Rosy Madaan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 753-758

II. RELATED WORK

 The notion of a Hidden (or Deep or Invisible) Web has been
a subject of interest for a number of years. A number of
researchers have discussed the problems of crawling the
contents of hidden Web databases [3, 8, 12, 9, 10, 11 12, 14,
16] as follows.
 Raghavan and Garcia-Molina [14] proposed HiWE, a task-
specific hidden-Web crawler, the main focus of this work was
to learn Hidden-Web query interfaces. Lin and Chen’s [10]
built a catalogue of small search engines located in sites and
choose which ones were more likely to answer the query.
However, forms with more than a text field was not treated.
Wang and Lochovsky [9] described a system called, DeLa,
which reconstructed (part of) a “hidden” back-end web
database, and it used the HiWE. There are other approaches
that focused on the data extraction. Lage et al. [12] claimed to
automatically generate agents to collect hidden web pages by
filling HTML forms. Liddle et al [12] performed a study on
how Valuable information could be obtained behind web
forms, but did not include a crawler to fetch them. Barbosa
and Freire [11] experimentally evaluated methods for building
multi-keyword queries that could return a large fraction of a
document collection.
 Xiang Peisu et al. [16] proposed model of forms and form
filling process that concisely captures the actions that the
crawler must perform to successfully extract Hidden Web
contents. It described the architecture of the deep web crawler
and described various strategies for building (domain, list of
values) pairs. Although this work extracts some part of Hidden
Web but it is neither fully automated nor scalable.
 In [7], Bhatia et al. proposed a Domain–Specific Hidden
Web Crawler (DSHWC) that automated the process of
downloading of search interfaces, finding the semantic
mappings, merging them and filling the Unified Search
Interface (USI) produced thereof has been designed that
finally submits the form to obtain the response pages from
Hidden Web. The DSHWC automated the process of
searching, viewing, filling in and submitting the search forms
followed by the analysis of the response pages.
 Since the Hidden Web has broad and relevant coverage of
dynamic [16] and high quality contents, there is a need to
refresh/update the local collection of Hidden web documents
incrementally [4,11,13],so as to maintain document collection
or repository updated with the latest information.
 However, a critical look at the available literature
[4,6,11,12,14,16] indicates that although the Hidden Web
crawling enables the crawler to download Hidden Web but
none of the work has been done for the purpose of maintaining
the document collection of Hidden Web pages updated with
the latest information. So, there is a need of some mechanism
to keep the repository fresh. For the purpose, it is required to
verify whether a web page has been changed or not. Therefore,
a mechanism needs to be introduced for adjusting the time
period between two successive revisits of the crawler based on
probability of updation [5,15]of the web page. The architecture of
an Incremental Hidden Web Crawler (shown Fig. 2) has been

proposed that introduces a technique to continuously
update/refresh the Hidden Web repository. It uses a mechanism
for adjusting the time period between two successive revisits of
the crawler based on probability of the web page [5,11,15].

III. PROPOSED WORK

 The architecture of an Incremental Hidden Web Crawler
(shown Fig. 2) has been proposed that introduces a technique
to continuously update/refresh the Hidden Web repository. It
uses a mechanism for adjusting the time period between two
successive revisits of the crawler based on probability of the
web page [5,11,15].
 The proposed architecture consists of the following
functional components:
1. Domain-Specific Hidden Web Crawler (DSHWC)
2. URL Extractor
3. Revisit Frequency Calculator
4. Update Module
5. Dispatcher
 The description of each functional component with required
data structures is given below.

Figure 2. Architecture of an Incremental Hidden Web Crawler

A. Domain Specific Hidden Web Crawler(DSHWC)

 DSHWC [7] is a fully automated crawler that downloads
search interfaces, finds the semantic mappings, merges them
and fills the Unified Search Interface (USI) produced thereof.
Finally, the DSHWC submits the form to obtain the response
pages from Hidden Web [2,6,10].
 After obtaining response pages, the DSHWC stores the
downloaded pages into Page repository that maintains the
documents crawled/updated by the DSHWC along with their
URLs.

B. URL Extractor

 It extracts the URLs along with their link information from
the above repository and stores them in the AllURLs. The
details of link information stored in AllURLs have been
discussed in next section.

ISSN : 0975-3397 754

Rosy Madaan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 753-758

C. AllURLs
 It records all URLs that the crawler has discovered, along
with their link information as contained in the Page
Repository. The AllURLs contains the URLs and their
corresponding link information (see Fig. 3) as follows:
λlow, λmid, λupper : boundary conditions for change frequency of
pages.
λprev : change frequency of page at the previous visit
λcurrent : current change frequency of page
fn : current revisit frequency
∆f : change in the frequency of the page
fn+1: adjusted crawler revisit frequency
Dlast crawl : date of their last crawl
Tlast crawl : time of their last crawl
Dcurr : current date
Tcurr : current time
 The above mentioned information is further used by the
Revisit Frequency Calculator to compute the revisit frequency
for DSHWC.

 Figure 3. URLs and their link information

D. Revisit Frequency Calculator
 In order to maintain the freshness of Page Repository, the
proposed crawler must download the fresh pages, therefore,
Revisit Frequency Calculator [11] of Incremental Hidden Web
Crawler finds the appropriate revisit frequency of the crawling
so that crawler can update its Page Repository with fresh
documents.
 In order to compute revisit frequency of the crawling [11], it
is necessary to find at which rate crawler needs to visit each
page. The rate of revisit of a page should increase for the
pages that change more often. However, this may not be the
conclusion as frequent revisits of a page, mayn’t always
provide the updated information. So, there is a need to modify
the revising rate of a page. It has been observed from Fig. 4
that the revisiting frequency of the crawler is proportional to
the change frequency [5,15] of the page up to a certain
threshold value (λmiddle), after the threshold it remains constant
up to the next threshold (λupper) and then decrease, with
increase in the change frequency of the page after the second
threshold (λupper).

Figure 4. Change frequency of page vs. Revisit frequency

 This functional component reads AllURLs and for each
URLi, it computes the Revisit frequency of the crawler by
using the following equation:
fn+1= fn + ∆f , (1)
where
∆f = [{fn ×(λcurrent/λprevious – 1) × u (λcurrent – λlower) × u (λmiddle –
λcurrent) × u (λupper – λcurrent) + { fn ×(1 – λcurrent /λupper)×u(λcurrent
– λupper)×u(1 – λcurrent }] , (2)
and u(x) is a unit step function.
 On the calculation of the adjusted crawler revisit frequency,
AllURLs needs to be updated. Also, ∆f, fn, λprevious, λcurrent
needs to be updated. The algorithm for the Revisit frequency
calculator is as follows:
RevisitFrequencyCalculator()
{
For each URLi in AllURLs
{
compute ∆f;
compute (fn+1 = fn + ∆f);
fn = fn+1 ;
λprev = λcurr ;
update AllURLs with (∆f, fn ,fn+1, λprev, λcurr);
}
}
 For each URL in AllURLs, the revisit frequency fn+1 has
been computed by using the above mentioned method. This
revisit frequency is further overwritten by the calculator in
AllURLs to previous frequency i.e. fn.

E. The Update Module
 Update module one by one fetches the URLs and their
updated link information (with updated revisit frequencies)
from the AllURLs. After fetching a URL from AllURLs, it
finds the time, denoted as τ (computed as inverse of revisit
frequency), after which crawler should revisit the same web
page and compare it with a threshold time T. If τ of a given
URL is greater than T, then the web page needs to be
recrawled and this URL is further stored in URL Buffer
thereof, otherwise this URL is discarded and will not be stored
in URL Buffer but it will exist in AllURLs. In this way, the
URLs of all the web pages that need to be recrawled will be

ISSN : 0975-3397 755

Rosy Madaan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 753-758

placed in the URL Buffer. When this buffer will become full,
the Update Module will send a signal called Fetch URL signal
to Dispatcher. After getting the Fetch URL signal from Update
Module, the Dispatcher will start fetching the URLs one by
one and forward it to the crawler to download the web page
again, so that the freshness of Page repository can increase.
When URL Buffer will become empty, the Dispatcher will in
turn send Buffer Empty signal to Update Module. Buffer
Empty signal signifies that currently the buffer is empty and
after receiving this signal, Update Module will process and
add more URLs in the URL Buffer. The algorithm given
below describes how the Update Module makes the decision
for recrawling the selected URLs, which in turn maintains the
repository fresh.

Update ()
{
wait (Buffer Empty);
fetch URLs and their link info from AllURLs;
for each fetched URL do
{
calculates τ ;
if (τ >= T) then
add URL in URL Buffer;
else
continue;
if full(URL Buffer) then
signal (fetch URL);
}
}
 The revisit frequency for URL www.sample.com has been
computed by assuming the following values.
λlower = 0.1, λmiddle = 0.6 and λupper = 0.8 ,
 Dlast crawl = 13-01-2010,Tlast crawl = 14:00.

Now consider the data given below:
Initial frequency of revisit fl = 10 times/unit time.
Current change frequency of page λcurrent = 0.15 and the
change frequency at the previous visit λprevious = 0.1.
Computing ∆f as given below:
∆f = [{10×(0.15 / 0.1 -1)×u (0.15 – 0.1)×u (0.6- 0.15)×u (0.8-
0.15)} + {10×(1-0.15 / 0.1)×u (0.15 – 0.8) ×(1-0.15)}].
∆f = 5
Now, the new revisit frequency can be computed as follows.
fn+1 = 10+5 = 15 times/unit time.
Let the basic unit of revisit be 24 hours and T (threshold time)
=2 hours.
Calculating τ (time) =2(approx.).
 It means that the crawler will revisit the corresponding web
page every 2 hours (i.e. after a time period of 2 hours).
 Now, τ is compared with T. If τ is greater than or equal to T,
then the corresponding web page needs to be recrawled
otherwise not. Since, for the above example τ is equal to T, so
the web page needs to be recrawled and is further added in the
URL Buffer.

F. Dispatcher
 Dispatcher waits for the fetch URL signal and upon receiving
this signal, it fetches an URL from the URL Buffer so that
DSHWC in turn can download the corresponding web page.
However, if dispatcher finds the URL Buffer empty during
this operation, then it sends Buffer Empty signal to the Update
Module so that it can add more URLs in the URL Buffer. The
algorithm for Dispatcher is given below.
Dispatcher ()
{
wait (fetch URL);
while (not (empty URL Buffer)
{
fetch URL from URL Buffer;
forward URL to DSHWC to download web page;
}signal (Buffer Empty);}

IV. IMPLEMENTATION AND PERFORMANCE
EVALUATION

 With the increase in the availability of hidden web pages, the
major problem faced by the current search engines [3] is
difficulty in fresh or updated information retrieval. It is
problematic to identify the desired information from amongst
the large set of web pages given by the search engine. With
further increase in the size of the Hidden Web [2,6,10]
contents, the problem grows exponentially. The number of
web pages which have gone under updation increases [1, 12,
16], with the increase in web size. As discussed above, the
proposed incremental hidden web crawler downloads the fresh
hidden web contents incrementally to make the search engine
repository updated. The proposed incremental Hidden Web
crawler has been implemented using .Net technology on
Windows platform and the snap shot for the incremental
hidden web crawler has been shown in Fig.5. Several
experiments were conducted over the Books and Airline
domains and the initial results were very promising.
 The proposed incremental hidden web crawler updates the
hidden web pages that are already crawled by the hidden web
crawler and makes the repository fresh. Therefore, to evaluate
the proposed work, two performance metrics i.e. freshness of
database and age of database are taken in to the consideration
and several experiments were conducted to evaluate freshness
and age of database.

ISSN : 0975-3397 756

Rosy Madaan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 753-758

Figure 5. Snapshot for Domain-specific Hidden Web Crawler

Freshness of database D at time t is computed as
F(D, t) = 1/N∑F(ei, t) , (3)
where

 1, if page ei is up-to-date at time

F(ei, t) =
 0, otherwise

and N is total number of web pages in D.

Similarly, Age of database D at time t is computed as
A(D, t) = 1/N∑A(ei, t) , (4)
Where

 0, if page ei is up-to-date at time t
A(ei, t) =

 t ,modification time of ei, otherwise

and N is total number of web pages in D.
 As discussed above, that proposed incremental hidden web
crawler updates the repository created by the hidden web
crawler, therefore, freshness and age of the updated database
has been verified and analyzed. The observations show that as
more fresh pages are crawled by the proposed crawler, the
freshness of the database increases and the age of the database
decreases with increase in time i.e. the database become
fresher as the updated hidden web pages are recrawled by the
incremental hidden web crawler.

Figure 6 (a) & (b). Freshness vs. Frequency for Book and Airlines Domain

 Therefore, it may be concluded that the age of the database
decreases as freshness of the database has been increased. The
observation has been shown in form of graphs for both the
domains in Fig. 6 (a) and (b).

V. CONCLUSION
 In this paper, design of an incremental Hidden Web Crawler
has been discussed that not only crawls the Hidden Web but
also maintains the repository updated with the new/ updated
pages. It is based on adjusting the time period between the two
successive revisits of the crawler based on probability of
updation of a web page. The experiments conducted over real
web sites indicate that crawler always keeps the repository
fresh with high freshness rate.
 As the future work, the architecture of a search engine based
on Incremental Hidden Web crawler can be designed.
Moreover, some indexing technique may be applied to index
the web pages stored in the repository.

REFERENCES
1. Arvind Arasu, Junghoo Cho, Hector Garcia-Molina, Andreas Paepcke, and
Sriram Raghavan, “Searching the Web”, ACM Transactions on Internet
Technology (TOIT), 1(1):2–43, August 2001.
2. Michael K. Bergman, “The deep web: Surfacing hidden value”, Journal of
Electronic Publishing, 7(1), 2001.
3. Sergei Brin and Lawrence Page, “The anatomy of a large-scale hypertextual
Web search engine”, Computer Networks and ISDN Systems, 30(1–7):107–
117, April 199
4. J. Cho and H. Garcia-Molina. “The Evolution of the Web and Implications
for an Incremental Crawler.” In Proceedings of the Twenty-Sixth VLDB
Conference, pp. 200– 209, Cairo, Egypt, 2000.
5. J. Cho and H. Garcia-Molina. “Estimating Frequency of Change.”
Technical report, DB Group, Stanford University, Nov 2001.
6. Czajkowski, K., Fitzgerald, S., Foster, I., Kesselman, C.: Grid Information
Services for Distributed Resource Sharing. In: 10th IEEE International
Symposium on High Performance Distributed Computing, pp. 181--184. IEEE
Press, New York (2001) [6] S. Raghavan and H. Garcia-Molina, “Crawling
the Hidden Web”, In Proc. of VLDB, pages 129–138, 2001.

ISSN : 0975-3397 757

Rosy Madaan et. al. / (IJCSE) International Journal on Computer Science and Engineering
Vol. 02, No. 03, 2010, 753-758

7. Komal Kumar Bhatia, A.K.Sharma, “A Framework for an Extensible
Domain-specific Hidden Web Crawler (DSHWC)”, communicated to IEEE
TKDE Journal Dec 2008.
8. Komal Kumar Bhatia, A.K.Sharma, “A Framework for Domain-Specific
Interface Mapper (DSIM)“, International Journal of Computer Science and
Network Security (IJCSNS 2008).
9. Komal Kumar Bhatia, A.K.Sharma, “Merging Query Interfaces in Domain-
specific Hidden Web Databases”, accepted in International Journal of
Computer Science, 2008.
10. A.K. Sharma, Komal Kumar Bhatia, "Crawling the hidden web resources",
Proc. of NCIT- 2007, Delhi.
11. Ashutosh Dixit and A.K Sharma, “Self Adjusting Refresh Time Based
Architecture For Incremental Web Crawler”, International Journal of
Computer Science and Network Security (IJCSNS), Vol 8, No12, Dec 2008.
12. Mike Burner, “Crawling towards Eternity: Building an archive of the
World Wide Web”, Web Techniques Magazine, 2(5), May 1997.
13. Junghoo Cho and Hector Garcia-Molina. 2000, “The evolution of the web
and implications for an incremental crawler”. In Proceedings of the 26th
International Conference on Very Large Databases
14. A. K. Sharma, J. P. Gupta, D. P. Agarwal, “ A novel approach towards
management of Volatile Information” Journal of CSI, Vol. 33 No. 1, pp 18-27,
Sept’ 2003.
15. Junghoo Cho and Hector Garcia-Molina. Estimating frequency of change,
2000.Submitted to VLDB 2000, Research track.
16. Brian E. Brewington and George Cybenko. “How dynamic is the web.”, In
Proceedings of the Ninth International World-Wide Web Conference,
Amsterdam, Netherlands, May 2000.

Rosy Madaan received B.E. degree in Computer Science & Engineering with
Hons. from Maharshi Dayanand University in 2005 and is persuing M.Tech.
in Computer. Presently, she is working as Senior Lecturer in Computer
Engineering department in B.S.A. Institute of Technology & Management,
Faridabad. Her areas of interests are Search Engines, Crawlers and Hidden
Web.

Ashutosh Dixit received the B.E, M.Tech. degrees in Computer Science
Engineering with Hons. from Maharshi Dayanand University in 2001 and
2004 respectively. Presently, he is working as Senior Lecturer in Computer
Engineering department in YMCA University of Science & Technology,
Faridabad. He is also persuing Ph.D in Computer Engineering and his areas of
interests are Search Engines and Crawlers.

Prof. A. K. Sharma received his M.Tech. (Computer Science & Technology)
with Hons. from University of Roorkee in the year 1989 and Ph.D (Fuzzy
Expert Systems) from JMI, New Delhi in the year 2000. From July 1992 to
April 2002, he served as Assistant Professor and became Professor in
Computer Engg. at YMCA University of Science & Technology, Faridabad in
April 2002. He obtained his second Ph.D. in IT from IIIT & M, Gwalior in the
year 2004. His research interests include Fuzzy Systems, Object Oriented
Programming, Knowledge Representation and Internet Technologies.

Dr. Komal Kumar Bhatia received the B.E, M.Tech. and Ph.D. degrees in
Computer Science Engineering with Hons. from Maharshi Dayanand
University in 2001, 2004 and 2009, respectively. Presently, he is working as
Assistant Professor in Computer Engineering department in YMCA
University of Science & Technology, Faridabad. He is also guiding Ph.Ds in
Computer Engineering and his areas of interests are Search Engines, Crawlers
and Hidden Web.

ISSN : 0975-3397 758

